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External dc bias-field effects in the nonlinear ac stationary response of dipolar particles
in a mean-field potential
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External dc bias-field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of
permanent dipoles in a uniaxial mean-field potential are studied via the rotational Brownian motion model
postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments
fn(t) = 〈Pn〉(t) (the expectation value of the Legendre polynomials Pn). By solving these equations, the nonlinear
dielectric and Kerr-effect ac stationary responses are evaluated for arbitrary dc field strength via perturbation
theory in the ac field. Simple analytic equations based on the large separation of the time scales of the fast
intrawell and slow overbarrier (interwell) relaxation processes are also derived.
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I. INTRODUCTION

The theory of electric polarization of dielectric fluids
is essential for understanding dielectric and electro-optical
relaxation phenomena. This problem was originally treated by
Debye [1], who calculated the linear dielectric susceptibility
of noninteracting polar molecules subjected to a weak ac
electric field E(t) = E cos ωt using the rotational diffusion
model when inertial effects are negligible and the rotation of
the molecule can be described by a random walk over small
angular orientations. Now, in the linear response, the complex
dielectric susceptibility is independent of the electric field
strength E so that the orientational electric polarization of
noninteracting permanent dipoles in an ac field E(t) depends
solely on the first-order Legendre polynomial averaged over
dipole orientations 〈P1(cos ϑ)〉(t), ϑ being the polar angle of
the electric dipole moment vector μ of the molecule. Later, the
original Debye calculation was generalized using perturbation
theory to nonlinear phenomena in polar dielectrics subjected to
strong external fields [2–4]. In particular, we cite the dynamic
Kerr-effect response governed by the averaged second-order
Legendre polynomial 〈P2(cos ϑ)〉(t) and the nonlinear
dielectric effect [2–6]. The conclusions for the Kerr-effect
relaxation in a pure sinusoid electric field are that the square
law nonlinearity rectifies E(t), yielding a frequency-dependent
dc response superimposed on the dephased second harmonic
[2]. In the nonlinear dielectric relaxation, additional terms in
the fundamental, third, etc., harmonic appear in 〈P1(cos ϑ)〉(t)
[3–5]. These nonlinear effects have been confirmed by experi-
mental data (e.g., see Refs. [2,7–10]). Additionally, the Debye
theory has also been extended to nonlinear effects in dipolar
systems in arbitrarily large external fields (see, for example,
Refs. [11–16] and references cited therein). Nevertheless,
these calculations still assume assemblies of noninteracting
dipoles implying that the Debye model and its extensions may
not be used for dense dipolar systems, where intermolecular
interactions occur. However, experimental data of such dipolar
systems may be explained using a more sophisticated model
of the noninertial rotational Brownian motion of dipoles in an
external mean-field potential V (e.g., see Refs. [17–19]).

In particular, this mean-field approximation was used to
treat nematic liquid crystals in Refs. [17,18], where the linear

dielectric response was calculated via the rotational Brownian
motion in the Maier-Saupe uniaxial anisotropy potential:

V = −Kcos2ϑ. (1)

Here K is the anisotropy constant and ϑ is the colatitude,
i.e., the angle between μ and the Z axis of the laboratory
coordinate system. The mean-field approximation has a re-
stricted applicability because it ignores local order effects.
Nevertheless, it is easily visualized and permits quantitative
evaluation of dielectric parameters, demonstrating the effect of
intermolecular interactions on dielectric parameters that must
be accounted for to compare with experiments [20]. Now,
the theory of dielectric relaxation of nematic liquid crystals
bears a close resemblance to the theory of magnetic relaxation
of single domain ferromagnetic particles as formulated by
Brown [21]. Brown’s major contribution to this theory was the
derivation of the Fokker-Planck equation for the distribution
function of the particle magnetic moment orientations on
the unit sphere. For the longitudinal relaxation in uniaxial
magnetic nanoparticles, this Fokker-Planck equation becomes
mathematically identical to that used in the theory of dielectric
relaxation of nematic liquid crystals [16]. Various numerical
methods have also been developed [22,23] for calculating the
nonlinear ac stationary response of dipolar molecules (electric
dipoles) in the Maier-Saupe uniaxial potential, Eq. (1), and
for that of uniaxial magnetic nanoparticles (magnetic dipoles),
which, in most respects, is just a replica of dielectric relax-
ation of nematics. Such numerical approaches cannot yield,
however, simple formulas for comparison with experiments
and the qualitative behavior of the nonlinear response is
not obvious. Preliminary steps toward an accurate analytical
treatment of nonlinear response of dipoles in the uniaxial
potential, Eq. (1), were made in Refs. [24,25], showing that the
nonlinear response to an ac driving field E(t) can be evaluated
by utilizing the so-called two-mode approximation [16,26,27]
combined with Morita’s treatment [28] of the nonlinear
response of dipolar systems, whereby the distribution function
induced by an external perturbing field may be calculated
from the appropriate Green function in the absence of the
perturbation, with the linear response theory as a special
case. Thus, the linear response of dipoles in a mean-field
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potential comprising an infinity of relaxation modes may be
accurately represented by two modes only [16,26,27], namely,
a slowest interwell barrier crossing mode and a fast mode,
representing the infinity of high-frequency near-degenerate
“intrawell” modes approximated as a single mode. Here we
generalize this approach [24–27] to include the effects of an
external dc bias field on the nonlinear ac stationary response
of a system of permanent dipoles in the uniaxial mean-field
potential, Eq. (1). Both matrix perturbation and analytical
solutions are given for the ac stationary response of the
first- and second-rank response functions 〈P1(cos ϑ)〉(t) and
〈P2(cos ϑ)〉(t), determining the nonlinear dielectric and Kerr-
effect responses. Our calculations are, in particular, motivated
by recent measurements of the nonlinear frequency-dependent
polarization response in strong dc electric fields [29], where
the influence of the dc field on the glass temperature Tg of
glycerol was demonstrated, showing that the Tg increase is in
proportion with the square of the dc field amplitude. Here an
accurate representation of the nonlinear components of the ac
stationary dielectric response spectrum is required in order to
compare with experimental data [29,30].

II. BASIC RELATIONS

We shall consider the nonlinear ac stationary response
of rigid dipolar particles undergoing rotational Brownian
motion in a mean-field potential, Eq. (1), acted on by strong
external superimposed dc E0 and ac E(t) = E cos ωt fields.
Each particle contains a rigid dipole μ. For simplicity we
suppose that both E0 and E are directed along the Z axis
of the laboratory coordinate system and that effects due
to the anisotropy of the polarizability of the particles can
be neglected. The calculation of the nonlinear ac stationary
response of permanent dipoles to an ac driving field usually
starts with the rotational diffusion or Smoluchowski equation
for the distribution function W (μ,t) of orientations of dipole
moments μ on the surface of the unit sphere under the influence
of external electric fields [16], viz.,

∂W

∂t
= LFPW + LtW, (2)

where

LFPW = (2τD)−1[�W + β∇ · (W∇V )] (3)

is the unperturbed Fokker-Planck operator, which contains the
effect of the potential V due to the mean field and the time-
independent dc bias field, while

LtW = (2τD)−1β∇ · (W∇Vt )

contains the effect of the time-dependent potential Vt due
to the ac field E(t). Here � and � are the gradient and
Laplacian on the surface of the unit sphere, respectively, τD

is the free diffusion relaxation time, and β = (kT )−1 is the
inverse thermal energy. When the superimposed effective field
(due to the uniaxial anisotropy) and external dc bias field E0 are
directed along the Z axis of the laboratory coordinate system,
the axially symmetric potential V (ϑ) is given by

βV (ϑ) = −σcos2ϑ − ξ0 cos ϑ, (4)

where σ = βK is the dimensionless anisotropy or inverse
temperature parameter (K is the anisotropy constant) and
ξ0 = βμE0 is the dimensionless dc bias field parameter. The
time-dependent ac field is assumed to be parallel to the dc bias
field so that

βVt (ϑ,t) = −ξ cos ϑ cos ωt, (5)

where ξ = βμE is the dimensionless ac field parameter.
The uniaxial potential Eq. (4) has two nonequivalent wells
with minima at ϑ = 0 and π separated by a barrier at
ϑ0 = arc cos(−ξ0/2σ ). For a positive, finite dc field, ξ0 > 0,
the dipoles in the shallower well at ϑ = π are inhibited
from crossing into the deeper well by the potential barrier
of height σ (1 − ξ0/2σ )2. However, the dipoles populating
the deeper well at ϑ = 0 have smaller probability to escape
from the well, owing to the elevated potential barrier height
σ (1 + ξ0/2σ )2. Thus, the escape rate strongly depends on the
dc field strength, which affects the orientational relaxation and,
hence, the dielectric and Kerr-effect responses.

For the axially symmetric potential Eq. (4), the azimuthal
angle dependence of the distribution function W may be
ignored. Hence, W (ϑ,t) can be expanded in a Fourier series as
[2–5,16]

W (ϑ,t) =
∞∑

n=0

(n + 1/2)fn(t)Pn(cos ϑ), (6)

where Pn(z) is the Legendre polynomial of order n [31] and the
Fourier coefficients (relaxation functions) fn(t) are formally
given by

fn(t) =
∫ π

0
Pn(cos ϑ) W (ϑ,t) sin ϑdϑ, (7)

due to the orthogonality property of the Legendre polynomials,
viz., ∫ π

0
Pn(cos ϑ) Pm(cos ϑ) sin ϑdϑ = 2δnm

2n + 1
(8)

(δnm is Kronecker’s delta). On substituting Eq. (6) into
the Fokker-Planck equation (2) and utilizing the properties of
the Legendre polynomials, we obtain an infinite hierarchy of
differential-recurrence equations for the relaxation functions
fn(t), n = 1,2, . . ., namely,

τD

d

dt
fn(t) + cnfn−2(t) + dnfn(t) + gnfn+2(t)

= an(ξ0 + ξ cos ω t)[fn−1(t) − fn+1(t)], (9)

where the coefficients an, cn, dn, and gn are given by

an = n(n + 1)

2(2n + 1)
, cn = −σn(n2 − 1)

4n2 − 1
,

dn = n(n + 1)

2
− σn(n + 1)

(2n − 1)(2n + 3)
,

gn = σn(n + 1)(n + 2)

(2n + 3)(2n + 1)
.

Our goal is to evaluate, by solving Eq. (9), the ac station-
ary response of the electric polarization P (t) and dynamic
Kerr-effect K(t) ac stationary responses [1,2], which are
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defined as

P (t) = b1〈P1(cos ϑ)〉(t) = b1f1(t) (10)

and

K(t) = b2〈P2(cos ϑ)〉(t) = b2f2(t), (11)

where the coefficients b1 and b2 depend on the concentration of
polar particles, particle depolarization factors, the relative per-
mittivity, and other parameters. Here, for simplicity, we assume
that b1 = 1 and b2 = 1, i.e., we consider normalized responses
only. Furthermore, we suppose that the internal field effects
and the long-range torques due to the connection between the
dipole moments and the Maxwell fields may be ignored. In
the dynamic nonlinear response, these effects present a very
difficult problem. However, in the first approximation they
may be ignored for dilute systems. Here the internal field
effects (the effects of long-range torques due to the connection
between the average moments and the Maxwell fields) are not
taken into account.

III. MATRIX PERTURBATION SOLUTION

Now, although the applied ac electric field in experiments
[7–10] can be high enough (�106 V/m) to observe nonlinear
effects, the energy of the dipole in the field |Vt | remains
sufficiently weak compared to the thermal energy to allow one
to use perturbation theory in the calculation of the ac stationary
response for a weak ac field ξ (t) = ξ cos ω t (ξ � 1). Thus,
we may seek perturbation solutions of Eq. (9) in the form

fn(t) = f (0)
n + f (1)

n (t) + f (2)
n (t) + f (3)

n (t) + · · · , (12)

where f (m)
n ∝ ξm, yielding the coupled differential-recurrence

relations

τD

d

dt
f (m)

n (t) + cnf
(m)
n−2(t) + dnf

(m)
n (t) + gnf

(m)
n+2(t),

= ξ0an

[
f

(m)
n−1(t) − f

(m)
n+1(t)

]
+ ξan

[
f

(m−1)
n−1 (t) − f

(m−1)
n+1 (t)

]
cos ωt (13)

(m = 1,2, . . .) with the initial conditions at t = −∞ given
by

f (0)
n (−∞) = f (0)

n , f (m)
n (−∞) = 0 (m = 1,2, . . .). (14)

For ξ = 0, the system of dipoles is in equilibrium with
Boltzmann distribution

W0(ϑ) = Z−1eσcos2ϑ+ξ0 cos ϑ , (15)

where Z is the partition function (see Eq. (C5) in Appendix C),
so that f (0)

n = 〈Pn〉0 can be calculated as

f (0)
n =

∫ π

0
Pn(cos ϑ)W0(ϑ) sin ϑdϑ. (16)

Clearly, the equilibrium averages f (0)
n also satisfy the

following five-term recurrence equation:

cnf
(0)
n−2 + dnf

(0)
n + gnf

(0)
n+2 − ξ0an

(
f

(0)
n−1 − f

(0)
n+1

) = 0. (17)

Equations (13) and (17) are seven-and five- term
differential-recurrence relations, respectively, which can be
solved for weak ac fields (ξ � 1) using matrix methods [32].

To proceed, we rearrange Eqs. (13) and (17) for f (0)
n and

f (m)
n (t) (m = 1,2,3, . . .) into matrix form as the set of the

coupled linear matrix differential equations:

d

dt
c(1)(t) + Ac(1)(t) = ξ (t)c1, (18)

d

dt
c(m)(t) + Ac(m)(t) = ξ (t)Bc(m−1)(t), (19)

with the initial conditions c(0)(−∞) = c(0) and c(m)(−∞) =
0 (m = 1,2,3, . . .) yielded by Eq. (14). Here, ξ (t) = ξ cos ωt

and the infinite column vectors c(m)(t) and c1 are given by

c(m)(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f
(m)
1 (t)

f
(m)
2 (t)

...
f (m)

n (t)
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, c1 =

⎛
⎜⎜⎜⎜⎜⎝

τ−1
D a1

0
0
0
...

⎞
⎟⎟⎟⎟⎟⎠+ Bc(0),

c(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈P1〉0
〈P2〉0

...
〈Pn〉0

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

while the matrix elements of the time-independent five-
diagonal matrix A and two-diagonal matrix B are

(A)pq = 1

τD

(δpq+2cp − δpq+1ξ0ap + δpqdp

+ δpq−1ξ0ap + δpq−2gp),

(B)pq = 1

τD

(δpq+1ap − δpq−1ap).

Now, the column vector c(0) can be evaluated via inversion
of the system matrix A as (Ref. [16], Chap. 7)

c(0) = A−1

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ0τ
−1
D a1

−τ−1
D c2

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

thereby yielding the initial condition vector c1 in Eq. (18) [we
remark in passing that both Eqs. (20) and (16) yield identical
results for 〈Pn〉0]. Equations (18) and (19), which are coupled
matrix first-order linear differential equations, may then be
solved analytically, yielding

c(1)(t) =
∫ t

−∞
ξ (t ′)e−A(t−t ′)c1dt ′ = ξRe

[
ϕ

(1)
1 (ω)eiωt

]
, (21)

c(2)(t) =
∫ t

−∞
ξ (t ′)e−A(t−t ′)B

∫ t ′

−∞
ξ (t ′′)e−A(t ′−t ′′)c1dt ′′dt ′

= ξ 2

2
Re
[
ϕ

(2)
0 (ω) + �

(2)
2 (2ω)ϕ(2)

0 (ω)e2iωt
]
, (22)
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c(3)(t) =
∫ t

−∞
ξ (t ′)e−A(t−t ′)B

∫ t ′

−∞
ξ (t ′′)e−A(t ′−t ′′)B

∫ t ′′

−∞
ξ (t ′′′)e−A(t ′′−t ′′′)c1dt ′′′dt ′′dt ′

= ξ 3

4
Re
{(

2Re
[
�

(3)
1 (ω)

]
ϕ

(2)
0 (ω) + �

(3)
1 (ω)�(2)

2 (2ω)ϕ(2)
0 (ω)

)
eiωt + �

(3)
1 (3ω)�(2)

2 (2ω)ϕ(2)
0 (ω)e3iωt

)}
, (23)

and so on to any desired order in m. Here the column vectors
ϕ

(1)
1 (ω), ϕ

(2)
0 (ω) and matrixes �

(2)
2 (ω), �

(3)
1 (ω) are given by

ϕ
(1)
1 (ω) = (A + iωI)−1c1, (24)

ϕ
(2)
0 (ω) = A−1B(A + iωI)−1c1, (25)

�
(2)
2 (ω) = (A + iωI)−1A, (26)

�
(3)
1 (ω) = (A + iωI)−1B, (27)

where I is the unit matrix, and we have used the fact that
eAt |t=−∞ = 0 (because all the eigenvalues λk of A are positive,
i.e., λk > 0). We note that the column vectors ϕ

(1)
1 (ω) and

ϕ
(2)
0 (ω) can also be written as

ϕ
(1)
1 (ω) =

⎛
⎜⎜⎝

χ11X11(ω)
χ21X21(ω)
χ31X31(ω)

...

⎞
⎟⎟⎠, ϕ

(2)
0 (ω) =

⎛
⎜⎜⎜⎜⎝

χ12X
(2)
10 (ω)

χ22X
(2)
20 (ω)

χ32X
(2)
30 (ω)
...

⎞
⎟⎟⎟⎟⎠, (28)

where Xn1(ω) and X
(2)
n0 (ω) are the normalized [i.e., Xn1(0) =

X
(2)
n0 (0) = 1] linear and second-order nonlinear dc dy-

namic susceptibilities, respectively, while χn1 = [ϕ(1)
1 (0)]n and

χm2 = [�(3)
1 (0)ϕ(2)

0 (0)]m are the corresponding static suscepti-
bilities (they are evaluated in Appendix A).

These matrix solutions [Eqs. (21), (22), and (23)] are very
useful for computational purposes. As far as the practical cal-
culation is concerned, we approximate all infinite matrices and
column vectors involved by the corresponding matrices and
column vectors of finite dimensions N×N and N, respectively.
The value of N, depending on the numerical values of the
model parameters (ξ0,σ ) as well as on the rank n and the order
of perturbation solution m of f (m)

n (t) required, must be chosen
according to the desired degree of accuracy. For example, in
evaluation of f

(m)
1 (t) and f

(m)
2 (t) for m = 1,2,3, and for σ

and ξ0 up to 20, the matrix dimension N need not exceed 60
for an accuracy of not less than 6 significant digits in most
instances. The numerical results obtained using this method
are in complete agreement with those from the independent
numerical methods developed in Refs. [16,22,23].

IV. TWO-MODE APPROXIMATION
FOR LINEAR RESPONSE

Although the matrix solutions obtained in the previous
section allow us to evaluate nonlinear responses numerically,
it does not give us a qualitative understanding of the relaxation
dynamics of the system. However, such a qualitative under-
standing of the dynamical behavior is provided by the two-
mode approximation, which is based on the large separation
of the timescales of the fast intrawell and slow overbarrier

(interwell) relaxation processes in the double-well mean-field
potential, Eq. (4) [16,26] (see also Appendix B). In this section,
we shall now show how the two-mode approximation explains
the relaxation dynamics in the presence of a weak ac field
(ξ � 1), yielding a simple analytic description of the linear
response characteristics of dipolar particles in the potential
Eq. (4) for all ranges of the model parameters σ and ξ0.
According to Eq. (12), the ac stationary linear response is
governed by the response functions f (1)

n (t) = [c(1)(t)]n, which
are given by the nth element of the column vector c(1)(t) in
Eq. (21), so that

f (1)
n (t) = ξRe

{[
ϕ

(1)
1 (ω)

]
n
eiωt
} = ξRe

[
F (1)

n (ω)eiωt
]
, (29)

where F (1)
n (ω) = χn1Xn1(ω), and Xn1(ω) and χn1 = [ϕ(1)

1 (0)]n
are the normalized linear dynamic and static susceptibilities,
respectively, and are defined by Eq. (28). The static suscep-
tibilities χn1 are expressed via the expectation values of the
Legendre polynomials at equilibrium as (see Appendix A)

χn1 = 〈PnP1〉0 − 〈Pn〉0〈P1〉0. (30)

According to linear response theory, the normalized dy-
namic susceptibility Xn1(ω) is defined by the Kubo equation
[33,34],

Xn1(ω) = 1 − iω

∫ ∞

0
e−iωt�n1(t)dt, (31)

where �n1(t) is the normalized equilibrium correlation func-
tion viz.

�n1(t) = 〈Pn[cos ϑ(0)]P1[cos ϑ(t)]〉0 − 〈Pn〉0〈P1〉0

〈PnP1〉0 − 〈Pn〉0〈P1〉0

, (32)

which comprises, in general, an infinity of relaxation modes
(decaying exponentials), i.e., [16,33]

�n1(t) =
∞∑

k=1

cn
k e

−λkt . (33)

Here λ1,λ2,λ3, . . . are the eigenvalues of the system matrix
A and, therefore, the eigenvalues of the Fokker-Planck operator
LFP defined by Eq. (3). These eigenvalues can be evaluated
from the characteristic equation [16]

det(λI − A) = 0. (34)

For high potential barriers, �V = σ (1 − ξ0/2σ )2 	 1, the
relaxation process is dominated by the smallest nonvanish-
ing eigenvalue λ1, which is much smaller than all other
eigenvalues, i.e., λ1 � λ2,λ3, . . . [16]. This eigenvalue has
an Arrhenius-like behavior, λ1 ∼ e−�V , and is associated with
the slowest overbarrier relaxation mode (the explicit equations
for λ1 in the low- and high-barrier limits are given by Eqs. (C6)
and (C9) in Appendix C, respectively). All other eigenvalues
λ2,λ3, . . . are associated with the fast “intrawell” relaxation
modes and weakly depend on temperature [16,26]. Thus, one
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FIG. 1. Real (a) and imaginary (b) parts of the linear susceptibility
F

(1)
1 (ω) = χ11X11(ω) vs. the normalized frequency ωτD for various dc

field amplitudes ξ0 with the anisotropy parameter σ = 10. Solid lines:
the matrix solution, Eq. (21). Symbols: the two-mode approximation
Eq. (36) with parameters calculated from Eqs. (34), (B7), (B8), (B11),
and (B12).

may suppose [16,26,27] that �n1(t) may be approximated by
two relaxation modes only,

�n1(t) ≈ �n1e
−λ1t + (1 − �n1)e−t/τ

(n1)
W , (35)

where τ
(n1)
W is the inverse of the characteristic frequency of the

near degenerate high-frequency modes while �n1 and 1 − �n1

are amplitudes accounting for the overbarrier and intrawell
relaxation processes, respectively. The parameters �n1 and
τ

(n1)
W can be expressed in terms of the characteristic relaxation

times of the correlation function �n1(t) [16,27] (details in
Appendices B and C). By inserting Eq. (35) into Eq. (31),
the normalized dynamic susceptibility Xn1(ω) can be obtained
analytically as the sum of two Lorentzians, viz.,

Xn1(ω) ≈ �n1

1 + iω/λ1
+ 1 − �n1

1 + iωτ
(n1)
W

. (36)

In particular, both for the linear dielectric and Kerr-effect
response, the parameters �n1 and τ

(n1)
W in Eq. (36) are evaluated

by letting n = 1 and n = 2 in Eqs. (B11) and (B12) of
Appendices B, respectively.

In Figs. 1 and 2, we show the real and imaginary parts
of X11(ω) and X12(ω) calculated using the matrix solution,
Eqs. (21) and (24), and the approximate Eq. (36). These figures
indicate that there is no practical difference between the matrix
solution and the two-mode approximation (the maximum
relative deviation between the corresponding curves does not
exceed a few percent). Clearly, two peaks appear in the spectra
of the imaginary parts −Im[X11(ω)] and −Im[X21(ω)] and
two dispersion bands are noticeable in the spectra of the real
parts Re[X11(ω)] and Re[X21(ω)]. The low-frequency part of
the spectra is dominated by the slowest overbarrier relaxation
mode. The characteristic frequency ωmax and the half-width
�ω of this band are determined by smallest nonvanishing
eigenvalue λ1. The eigenvalue λ1 is related to the frequency
ωmax of the low-frequency peak in the spectra −Im[X11(ω)]
and −Im[X21(ω)], where they attain maxima, and/or the half-
width �ω of the spectra of the real part of the susceptibility

FIG. 2. Real (a) and imaginary (b) parts of the linear Kerr effect
response F

(1)
2 (ω) = χ21X21(ω) vs. ωτD for various dc field amplitudes

ξ0 with the anisotropy parameter σ = 10. Solid lines: the matrix
solution, Eq. (21). Symbols: the two-mode approximation Eq. (36)
with the parameters calculated from Eqs. (34), (B7), (B8), (B11), and
(B12).

Re[X11(ω)] and Re[X21(ω)] via

λ1 ≈ ωmax ≈ �ω. (37)

Here, comparison of λ1 as extracted from the spectra X11(ω)
and X12(ω) via Eq. (37) with λ1 calculated independently via
the system matrix A shows that both methods yield identical
results. Our calculations indicate that on increasing the dc
field parameter ξ0, the magnitude of the low-frequency band
drastically decreases due to the depletion of the population
in the shallower potential well of the potential V [16,26],
which results in the virtual disappearance of the low-frequency
peak in the spectra −Im[X11(ω)] and −Im[X21(ω)] (see
Figs. 1 and 2). Furthermore, the low-frequency peak shifts
monotonically to higher frequencies with increasing ξ0. The
high-frequency peaks of −Im[X11(ω)] and −Im[X21(ω)] are
due to the near-degenerate high-frequency intrawell modes
corresponding to the eigenvalues λk (k � 2). These individ-
ual intrawell modes are indistinguishable in the spectra of
−Im[X11(ω)] and −Im[X21(ω)] appearing merely as a single
high-frequency Lorentzian band (see Figs. 1 and 2).

Now we shall show that the two-mode approximation yields
also an accurate description of the dynamic Kerr-effect spectra
and nonlinear dielectric relaxation.

V. TWO-MODE APPROXIMATION FOR
DYNAMIC KERR EFFECT

The second-rank response f
(2)
2 (t) = [c(2)(t)]2 governing the

dynamic Kerr-effect response can be written as a sum of a dc
term and a term depending on e2iωt , so that

f
(2)
2 (t) = ξ 2Re

[
F

(2)
2,0(ω) + F

(2)
2,2(ω)e2iωt

]
, (38)

where F
(2)
2,0(ω) = [ϕ(2)

0 (ω)]2/2 and F
(2)
2,2(ω) =

[�(2)
2 (2ω)ϕ(2)

0 (ω)]2/2. In the two-mode approximation,
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the Fourier amplitudes F
(2)
2,0(ω) and F

(2)
2,2(ω) can be written as

F
(2)
2,0(ω) ≈ χ22

2
X

(2)
20 (ω), (39)

F
(2)
2,2(ω) ≈ χ22

2
X22(2ω)X′(2)

20 (ω), (40)

where the static susceptibility χ22 is given by (see Appendix A)

χ22 = 1

3

(〈
P 2

2

〉
0 − 〈P2〉2

0

)− 〈P1〉0(〈P1P2〉0 − 〈P1〉0〈P2〉0),

(41)

and the dynamic susceptibilities X
(2)
20 (ω), X′(2)

20 (ω), and X22(ω)
may again be written in the two-mode approximation as

X
(2)
20 (ω) ≈ �20

1 + iω/λ1
+ 1 − �20

1 + iωτ
(20)
W

, (42)

X
′(2)
20 (ω) ≈ �′

20

1 + iω/λ1
+ 1 − �′

20

1 + iωτ
(′20)
W

, (43)

X22(ω) ≈ �22

1 + iωτ22

+ 1 − �22

1 + iωτ
(22)
W

. (44)

In the Kerr effect response, �20 and τ
(20)
W in Eq. (42) can

be calculated [24] via Eqs. (B11) and (B12), where the time
constants τ20 and τ eff

20 are estimated from the low- and high-
frequency asymptotes, Eq. (B6), yielding

τ20 = − lim
ω→0

1

ω
Im

{
1

χ22

[
ϕ

(2)
0 (ω)

]
2

}
and

τ eff
20 = lim

ω→∞
1

ω
Im

{
χ22[

ϕ
(2)
0 (ω)

]
2

}
.

However, analytic equations for the other parameters, �′
20,

τ
′(20)
W ,�22, τ22, and τ

(22)
W , like Eqs. (B7) and (B8) no longer

exist. Therefore, they are treated as adjustable parameters.
The spectra of the dc component of the second-order

Kerr-effect Re[F (2)
2,0(ω)] and the Kerr-effect second harmonic

component Re[F (2)
2,2(ω)] are shown in Fig. 3 for various dc field

parameters ξ0 as calculated from the matrix and two-mode
approximation solutions. Just as with the linear response, no
practical difference exists between the matrix and two-mode
approximation solutions.

VI. HIGHER-ORDER DIELECTRIC
AND KERR-EFFECT RESPONSES

In the nonlinear dielectric response, where the terms of
order ξ 2 and ξ 3 cannot be neglected, the second-rank response
function f

(2)
1 (t) = [c(2)(t)]1, which is proportional to ξ 2, can

be written, by inspection of Eq. (22), as a sum of a dc term and
a term depending on e2iωt so that

f
(2)
1 (t) = ξ 2Re

[
F

(2)
1,0(ω) + F

(2)
1,2(ω)e2iωt

]
, (45)

where

F
(2)
1,0(ω) = 1

2

[
ϕ

(2)
0 (ω)

]
1 and F

(2)
1,2(ω) = 1

2

[
�

(2)
2 (2ω)ϕ(2)

0 (ω)
]

1.

FIG. 3. Dc component of the second-order Kerr-effect
Re[F (2)

2,0(ω)] (a) and the Kerr-effect second harmonic component

Re[F (2)
2,2(ω)] (b) vs. ωτD for various dc field amplitudes ξ0 with

the anisotropy parameter σ = 10. Solid lines: the matrix solution.
Symbols: the two-mode approximation Eqs. (39) and (40) using fitting
parameters.

Furthermore, the third-order contribution f
(3)
1 (t) =

[c(3)(t)]1, which is proportional to ξ 3, can be written as

f
(3)
1 (t) = ξ 3Re

[
F

(3)
1,1(ω)eiωt + F

(3)
1,3(ω)e3iωt

]
, (46)

where

F
(3)
1,1(ω) = 1

4

{
2
[
Re
[
�

(3)
1 (ω)

]
ϕ

(2)
0 (ω)

]
1

+ [�(3)
1 (ω)�(2)

2 (2ω)ϕ(2)
0 (ω)

]
1

}
and

F
(3)
1,3(ω) = 1

4

[
�

(3)
1 (3ω)�(2)

2 (2ω)ϕ(2)
0 (ω)

]
1.

In the two-mode approximation, the Fourier amplitudes
F

(2)
1,0(ω), F

(2)
1,2(ω), F

(3)
1,1(ω), and F

(3)
1,3(ω) can be written as

F
(2)
1,0(ω) ≈ χ12

2
X

(2)
10 (ω), (47)

F
(2)
1,2(ω) ≈ χ12

2
X12(2ω)X′(2)

10 (ω), (48)

F
(3)
1,1(ω) ≈ χ13

4

{
2Re[X13(ω)]X′(2)

10 (ω)

+X13(ω)X12(2ω)X′(2)
10 (ω)

}
, (49)

F
(3)
1,3(ω) ≈ χ13

4
X13(3ω)X12(2ω)X′(2)

10 (ω), (50)

where the generalized dynamic susceptibilities X
(2)
10 (ω),

X
′(2)
10 (ω), X12(ω), and X13(ω) are given by

X
(2)
10 (ω) ≈ �10

1 + iω/λ1
+ 1 − �10

1 + iωτ
(10)
W

, (51)

X
′(2)
10 (ω) ≈ �′

10

1 + iω/λ1
+ 1 − �′

10

1 + iωτ
′(10)
W

, (52)
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X12(ω) ≈ �12

1 + iωτ12
+ 1 − �12

1 + iωτ
(12)
W

, (53)

X13(ω) ≈ �13

1 + iω/λ1
+ 1 − �13

1 + iωτ
(13)
W

, (54)

and the static susceptibilities χ12 and χ13 are (see Appendix A)

χ12 = 1
3

(〈
P2P1

〉
0 − 〈P2

〉
0〈P1〉0

)− 〈P1〉0
(〈
P 2

1

〉
0 − 〈P1〉2

0

)
,

(55)

χ13 = 1
6

(〈
P 4

1

〉
0 − 〈P 3

1

〉
0〈P1〉0

)− 1
2

〈
P 2

1

〉
0

(〈
P 2

1

〉
0 − 〈P1〉2

0

)
+〈P1〉2

0

(〈
P 2

1

〉
0 − 〈P1〉2

0

)− 1
2 〈P1〉0

(〈
P 3

1

〉
0−〈P1〉0

〈
P 2

1

〉
0

)
.

(56)

Similarly, the third-order contribution f
(3)
2 (t) = [c(3)(t)]2 to

the second-rank response function f2(t) governing the Kerr-
effect relaxation is

f
(3)
2 (t) = ξ 3Re

[
F

(3)
2,1(ω)eiωt + F

(3)
2,3(ω)e3iωt

]
, (57)

where

F
(3)
2,1(ω) = 1

2

[
Re
[
�

(3)
1 (ω)

]
ϕ

(2)
0 (ω)

+ 1
2�

(3)
1 (ω)�(2)

2 (2ω)ϕ(2)
0 (ω)

]
2,

and

F
(3)
2,3(ω) = 1

4

[
�

(3)
1 (3ω)�(2)

2 (2ω)ϕ(2)
0 (ω)

]
2.

Again, using the two-mode approximation, these Fourier
amplitudes are

F
(3)
2,1(ω) ≈ χ23

4

{
2Re[X23(ω)]X′(2)

20 (ω)

+X23(ω)X22(2ω)X′(2)
20 (ω)

}
, (58)

F
(3)
2,3(ω) ≈ χ23

4
X23(3ω)X22(2ω)X′(2)

20 (ω), (59)

where the dynamic susceptibility X23(ω) is given by

X23(ω) ≈ �23

1 + iω/λ1
+ 1 − �23

1 + iωτ
(23)
W

, (60)

and the static susceptibility χ23 is (see Appendix A)

χ23 = 1
6

(〈
P 3

1 P2
〉
0 − 〈P 3

1

〉
0

〈
P2
〉
0

)− 1
2 〈P1P2〉0

(〈
P 2

1

〉
0 − 〈P1〉2

0

)
+〈P1〉0

〈
P2
〉
0

(〈
P 2

1

〉
0 − 〈P1〉2

0

)
− 1

2 〈P1〉0
(〈
P 2

1 P2
〉
0 − 〈P1〉0〈P1P2〉0

)
. (61)

The spectra of the dc component of the second-order non-
linear dielectric response Re[F (2)

1,0(ω)], the second harmonic
component of the second-order nonlinear dielectric response
Re[F (2)

1,2(ω)], the fundamental component of the third-order

nonlinear dielectric response Re[F (3)
1,1(ω)], the 3rd harmonic

component of the third-order nonlinear dielectric response
Re[F (3)

1,3(ω)], the fundamental component of the third-order

nonlinear Kerr-effect response Re[F (3)
2,1(ω)], and the third

harmonic component of the third-order nonlinear Kerr-effect
response Re[F (3)

2,3(ω)] are shown in Figs. 4 and 5 for various
dc field parameters ξ0, which are calculated using the matrix
and two-mode approximation solutions. Just as with the other
responses, the matrix and two-mode approximation solutions
are in complete agreement.

For the particular case of zero anisotropy σ = 0 and zero dc
bias field ξ0 = 0, the equations we have obtained above for the
dielectric and Kerr-effect response functions f1(t) and f2(t)
subjected to combined ac and dc fields reduce to the known
results [5], namely,

f1(t) = ξ

3

cos ωt + ωτD sin ωt

1 + ω2τD
2

− ξ 3

45

[ (
27 − 13τD

2ω2
)

cos ωt

4
(
1 + τD

2ω2
)2(

9 + 4τD
2ω2
) + ωτD

(
21 + τD

2ω2
)

sin ωt

2
(
1 + τD

2ω2
)2(

9 + 4τD
2ω2
)

+ 3

(
3 − 17τD

2ω2
)

cos 3ωt + 2ωτD

(
3τD

2ω2 − 7
)

sin 3ωt

4
(
9 + 4τD

2ω2
)(

1 + τD
2ω2
)(

1 + 9τD
2ω2
)

]
+ o(ξ 3), (62)

f2(t) = ξ 2

30
(
1 + ω2τD

2
)
[

1 +
(
3 − 2ω2τD

2
)

cos 2ωt + 5ωτD sin 2ωt

3
(
1 + 4ω2τD

2/9
)

]
. (63)

VII. DC COMPONENTS OF THE DIELECTRIC
AND KERR-EFFECT AC STATIONARY RESPONSES

Now we consider in detail the time-independent but
frequency-dependent components of the dielectric and Kerr-
effect ac stationary responses f1(ω) and f2(ω), defined as the
time averages over a period of the ac field:

fn(ω) = ω

2π

∫ 2π/ω

0
fn(t) dt = 〈Pn〉0 + ξ 2Re

[
F

(2)
n,0(ω)

]
+ o(ξ 2), (n = 1,2). (64)

First, in contrast to the Kerr-effect response, the dc
component of the dielectric response f1(ω) is nonzero only

when an external dc bias field is superimposed on the ac field.
The nonlinear ac field contributions to f1(ω) and f2(ω) are
of order ξ 2 and both strongly depend on the dc bias field ξ0

and the anisotropy parameter σ . According to the results of
Sec. VI, in the two-mode approximation, both f1(ω) and f2(ω)
may be approximated by a sum of two Lorentzians, viz.,

fn(ω) ≈ 〈Pn〉0 + χn2ξ
2

2

⎛
⎝ �n0

1 + (ω/λ1)2 + 1 − �n0

1 + (ωτ
(n0)
W

)2
⎞
⎠,

(n = 1,2), (65)

where χ12 and χ22 are given by Eqs. (55) and (41), respectively.
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FIG. 4. Dc component Re[F (2)
1,0(ω)] (a), the second harmonic component Re[F (2)

1,2(ω)] (b), the fundamental component Re[F (3)
1,1(ω)] (c), and

the third harmonic component Re[F (3)
1,3(ω)] (d) of the nonlinear dielectric response vs. ωτD for various dc field amplitudes ξ0 with σ = 10.

Solid lines: the matrix solution. Symbols: the two-mode approximation Eqs. (47), (48), (49), and (50) using fitting parameters.

FIG. 5. Fundamental component Re[F (3)
2,1(ω)] (a) and the third

harmonic component Re[F (3)
2,3(ω)] (b) of the third-order Kerr effect

vs. ωτD for various dc field amplitudes ξ0 with the anisotropy
parameter σ = 10. Solid lines: the matrix solution. Symbols:
the two-mode approximation Eqs. (58) and (59) using fitting
parameters.

In Fig. 6, we plot f1(ω) and f2(ω) as functions of frequency
in order to illustrate the nonlinear effects induced by the ac
field in the dc components f1(ω) and f2(ω), which exhibit a
pronounced frequency dependence. Clearly, the approximate
Eq. (65) and is in agreement with the numerical calculations.
By inspection of Fig. 6, two distinct low- and high-frequency
dispersion regions appear in the spectra of f1(ω) and f2(ω), just
as with the real part of the dynamic susceptibilities Re[X11(ω)]
(cf. Fig. 1). The low-frequency dispersion region of each of
the two functions f1(ω) and f2(ω) is clearly governed by the
barrier-crossing relaxation modes with the same characteristic
frequency ω1 = λ1, indicating that the overbarrier relaxation
time may be determined directly from measurements of the
dc responsesf1(ω) and f2(ω). In addition, for weak ac fields,
the characteristic frequency ω1 of this low-frequency band
is associated with the overbarrier relaxation processes and
may be determined as ω1 = λ1. Now, at the opposite end of
the spectrum, the high-frequency band is due to “intrawell”
relaxation modes. These individual near-degenerate high-
frequency modes are, however, virtually indistinguishable in
the frequency spectra of f1(ω) and f2(ω), appearing merely
as a single high-frequency relaxation band, just as with
Re[X11(ω)] (see Fig. 1). The results clearly demonstrate that
the dc components of the ac stationary nonlinear dielectric
and Kerr-effect responses contain the same information about
the relaxation processes as the linear and nonlinear dynamic
susceptibilities. This fact suggests that a new method of
measurement of the overbarrier relaxation time are possible
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FIG. 6. dc components f1(ω) (a) and f2(ω) (b) vs. ω τD with σ =
10,ξ = 0.1, and ξ0 = 1 showing pronounced frequency-dependence,
including two distinct dispersion regions caused by the entanglement
of the dc and ac responses. Solid lines: the matrix solution. Crosses:
the two-mode approximation Eq. (65).

via the dc component of dielectric (or magnetic) relaxation
and birefringence.

VIII. GENERALIZATION TO ANOMALOUS RELAXATION

Now, one of the most noteworthy features of the dielectric
relaxation of disordered materials and complex liquids such
as glass-forming liquids, liquid crystals, amorphous polymers,
etc., is the failure of the Debye theory [1] of normal dielectric
relaxation to adequately describe the low-frequency spectra of
their linear dielectric susceptibilities. The relaxation processes
in such complex systems are characterized by the tempo-
rally nonlocal behavior arising from the energetic disorder,
which produces obstacles or traps, simultaneously delaying
the motion of the particle and producing memory effects.
A significant amount of experimental data on anomalous
relaxation of complex liquids supports an empirical equation
of Havriliak-Negami [35]:

χHN(ω) = χS

[1 + (iω τD)α]ν
, (66)

where χS is the static susceptibility and α (0 < α � 1) and
ν (0 < ν � 1) are parameters with values, which are usually
obtained by fitting to experimental data. For the particular
cases ν = 1 and α = 1, Eq. (66) reduces, respectively, to other
well-known phenomenological equations of Cole and Cole
[36] and Cole and Davidson [37]:

χCC(ω) = χS

1 + (iω τD)α
, (67)

χCD(ω) = χS

(1 + iω τD)ν
. (68)

In the context of the linear susceptibility, Eqs. (66)–(68),
the Cole-Cole parameter α is a broadening parameter because
the dielectric loss spectrum broadens as α is reduced while the
Cole-Davidson parameter ν in Eqs. (66) and (68) is a skewing
parameter. The interested reader can find detailed discussions
of anomalous relaxation behavior in complex disordered sys-
tems and various underlying microscopic models in Refs. [16]
and [38–48]. Equations (66)–(68), which are generalizations
of the Debye equation for the complex susceptibility, viz.,

χD(ω) = χS

1 + iωτD

, (69)

may be derived using a variety of microscopic models of
the relaxation process. For example, Debye [1] extended
Einstein’s treatment of the translational Brownian motion to
the rotational Brownian motion of noninteracting permanent
dipoles subjected to an external time-varying field. It might
also happen that the motion that prevails is different for dif-
ferent kinds of dipoles. Moreover, both large- and small-jump
transitions may exist simultaneously. The above observations
lead us to the second microscopic (relaxator) model considered
by Debye [1] (and much extended by Fröhlich [49]), which
is a Poisson-like process, where relaxation occurs due to rare
members of an assembly of dipoles over a potential barrier by
large jumps due to the shuttling action of thermal agitation.
This model also produces a relaxation spectrum of the form
of Eq. (69); however, the overbarrier relaxation time has
Arrhenius-like behavior as it depends exponentially on the
height of the potential barrier.

The Cole-Cole, Cole-Davidson, and Havriliak-Negami
relaxation processes can be modeled via fractional diffusion
equations by using the method of Nigmatullin and Ryabov
[38]. According to this approach, the conventional kinetic
equation describing the ac stationary response to a forcing
function F (t) = Feiωt , namely,(

τD

d

dt
+ 1

)
f (t) = F (t), (70)

for a system characterized by the single exponential relaxation
function f (t) = e−t/τD and, hence, the Debye equation for
the complex susceptibility, Eq. (69), may be generalized to a
fractional kinetic equation of fractional order α, so describing
a system with Cole-Cole anomalous relaxation behavior as
[44] (

τα
D−∞Dα

t + 1
)
f (t) = F (t), (71)

where the fractional derivative −∞Dα
t is given by the Riemann-

Liouville definition [39]

−∞Dα
t [f (t)] = 1

�(1 − α)

d

dt

∫ t

−∞

f (t ′)dt ′

(t − t ′)α
,

and �(z) is the gamma function and 0 < α < 1. The physical
meaning of the parameter α is the fractal dimension of the
set of waiting times, which is the scaling of the waiting-
time segments in the random walk with magnification. The
fractional exponent α measures the statistical self-similarity
(or how the whole looks similar to its parts) of the waiting time
segments [40]. Assuming adiabatic switching on of the ac field
F (t) = Feiωt , the solution of Eq. (71) yields the Cole-Cole
Eq. (67). In the time domain, the exponential relaxation
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function f (t) = e−t/τD for the normal diffusion becomes
f (t) = Eα[−(t/τD)α] for anomalous relaxation, where Eα(z)
is the Mittag-Leffler function defined as [39]

Eα(z) =
∞∑

n=0

zn

�(1 + nα)
.

The Mittag-Leffler function interpolates between the initial
stretched exponential form Eσ [−(t/τD)α] ∼ e−(t/τD)α/�(1+α)

and the long-time inverse power-law behavior
Eσ [−(t/τD)α] ∼ (t/τD)−α/�(1 − α) [16]. In like manner, one
may also introduce the fractional kinetic equation [40,42,44](

τσ −∞Dα
t + 1

)ν
f (t) = F (t), (72)

to incorporate the Havriliak-Negami anomalous relaxation.
The fractional derivatives in Eqs. (71) and (72) are memory
functions with a slowly decaying power law kernel in the time.
Such behavior arises from random torques with an anomalous
waiting time distribution.

The nonlinear dielectric and Kerr-effect relaxation, treated
in the present paper via the rotational diffusion model, may be
extended to anomalous relaxation by using the above fractional
kinetic equation approach. Here we consider as an example
the Cole-Cole relaxation mechanism characterizing by the
anomalous exponent α (other relaxation mechanisms can be
treated in like manner). The generalization of the theory, based
on a fractional version of the Smoluchowski equation, namely,

τα−1
D −∞Dα

t W = LFPW + LtW, (73)

has been fully explained in Refs. [16,44]. Here the general
solution of Eq. (73) is of the form of the Fourier series, Eq. (6),
so that, just as for the normal diffusion, we can obtain from
Eq. (73) the fractional analogue of the differential-recurrence
Eq. (9) for the response functions fn(t) = 〈Pn(cos ϑ)〉(t) [cf.
Eq. (9)],(

τα
D−∞Dα

t + dn

)
fn(t) + cnfn−2(t) + gnfn+2(t)

= an(ξ0 + ξ cos ω t)[fn−1(t) − fn+1(t)]. (74)

Under linear response conditions, ξ � 1, and σ,ξ0 = 0,
Eq. (74) yields the linear susceptibility from Eq. (67).
Moreover, just as for the normal diffusion, Eq. (74) also
allows one to evaluate the nonlinear ac stationary responses
via a generalization of the two-mode approximation (see
Ref. [33] for details). In the time domain, such a two-mode
approximation is equivalent to assuming that the relaxation
function �nm(t) may be approximated by two Mittag-Leffler
functions only [cf. Eq. (35)],

�nm(t) ≈ �nmEα[−(t/τD)ατDλ1]

+ (1 − �nm)Eα

[−(t/τD)ατD/τ
(nm)
W

]
(75)

(in general, �nm(t) comprises an infinite number of Mittag-
Leffler functions [44]). Noting that [16]∫ ∞

0
Eσ [−(t/τ )α]e−st dt = 1

s + τ−αs1−α
,

the corresponding normalized dynamic susceptibility Xnm(ω)
may now be approximated by a sum of two Cole-Cole

functions, viz.,

Xnm(ω) ≈ �nm

1 + (iω/ωc)α
+ 1 − �nm

1 + (iω/ω
(nm)
W

)α , (76)

where ωc = τ−1
D (τDλ1)1/α and ω

(n1)
W = τ−1

D (τD/τ
(n1)
W )1/α are

the characteristic frequencies. In particular, we have the
generalization of Eqs. (65), viz.,

fn(ω) ≈ 〈Pn〉0 + χn2ξ
2

2
Re

(
�n0

1 + (iω/ωc)α

+ 1 − �n0

1 + (iω/ω
(n0)
W

)α
)

. (77)

All other nonlinear response equations obtained can be
readily generalized in like manner. Such a generalization is
likely to be important as the Cole-Cole relaxation behavior
has proved useful in the analysis of magnetic and dielectric
relaxation data.

IX. RESULTS AND DISCUSSION

We have presented two complementary approaches for
treating the effects of an external dc bias field on the
nonlinear ac stationary response of permanent dipoles in a
uniaxial mean-field potential to any desired order of the ac
field amplitude with arbitrary dc field strength. The first
approach is based on perturbation theory, allowing one to
calculate numerically the nonlinear ac stationary responses
using powerful matrix methods. The results obtained from
these numerical calculations are in complete agreement with
the independent numerical solution of Ref. [23a] for weak ac
fields, ξ � 1. The second, semianalytic approach, based on the
two-mode approximation originally proposed to model linear
response functions of dipolar systems [25,26], effectively
generalizes the existing results to treat the nonlinear response
of dipolar particles over wide ranges of the anisotropy
and external field parameters. Our results apply both to
nonlinear dielectric and Kerr-effect relaxation of nematic
liquid crystals and to nonlinear magnetization relaxation and
magnetic birefringence relaxation of magnetic nanoparticles.
In particular, one may explain the successful application of
the known frequency dependence of the Kerr-effect response
for free rotational diffusion to the analysis of experimental
spectra of electric birefringence of nematics, which was
previously done without any theoretical justification (see,
for example, Ref. [50]). Furthermore, the analytic solution
for the Kerr-effect response (e.g., Figs. 1 and 3) clearly
demonstrates that this response contains information about
the longest relaxation time of the system, which is due to
the overbarrier relaxation processes. This fact suggests that
new methods of measurement of the overbarrier (longest)
relaxation time are possible via the electric or magnetic
birefringence. We remark that until now two kinds of nonlinear
response experiments have usually been carried out, namely,
where either (i) a strong ac field alone (for example, see
Refs. [7,8]) or (ii) a weak ac field superimposed on a strong dc
bias field (e.g., see Refs. [9,10]) was applied to the dielectric
liquids. In polar dielectrics, although the applied fields in
these experiments were high enough (�106 V/m) to observe
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nonlinear effects, their strengths were sufficiently weak to
allow one to use the nonlinear response equations obtained
using perturbation theory. Comparison of experimental data
[7–10] with the perturbation theory results demonstrated that
they are in agreement. However, as the theory presented here
is also applicable for arbitrary dc field strengths, it provides
a theoretical basis for comparison with nonlinear response
experiments in high dc fields. Note that some molecular and
Brownian dynamics simulation data for systems of dipolar
molecules in strong ac fields are also available (e.g., see
Refs. [51–56]). Furthermore, the use of computer simulation
data is preferable to experimental data for testing a nonlinear
theory as it is much easier to achieve high values of the dc field
parameter ξ0 � 1.

It is worth mentioning the experimental results of Wan-
dersman et al. [57] in the context of the present work. In
particular, these authors measured the magnetic birefringence
in two dense ferrofluids. Their experimental data is fitted by
the birefringence function

K(t) = ae−t/τ1 + (1 − a)e−(t/τ2)α , (78)

where a is the normalized amplitude of the short-time decay
mode and τ1 is the associated time scale, while the τ2 time
scale describes the stretched exponential long time decay of
the magnetic birefringence. Bearing in mind that this stretched
exponential behaviour is the short time expansion of the
Mittag-Leffler function, one may say that anomalous diffusion
manifests itself at long times only. Equation (44) is then
formally a special case of Eq. (78) with α = 1. Equation (78)
in turn suggests a straightforward generalization to fractional
birefringence dynamics, which has been alluded to in Sec. VIII
[see, for example, Eqs. (75) and (76)].

Now, as alluded to in the Introduction, Ladieu et al.
[30] have recently suggested a model of nonlinear dielectric

relaxation of supercooled liquids that has been compared
with experimental data. The work presented here may be
of importance in order to accurately represent their so-called
“trivial” component (the words “trivial” component used by
Ladieu and coworkers means a monotonic frequency behavior
of the nonlinear response modulus, similar to the “ideal
gas” behavior of the Coffey-Paranjape formulas [5], so that
the nonlinear polarization response consists of this “trivial”
component augmented by a “singular” component which
must definitely be associated with intermolecular dynamical
correlations). The formulas obtained in the present paper
cannot describe all the features of the experimental spectrum,
because dynamical correlations are not accounted for in
the mean-field approximation. This is clearly illustrated by
the quasimonotonic behavior of the moduli of the Fourier
amplitudes for the nonlinear dielectric response, as can be
seen in Fig. 7 (conversely, the moduli of the Fourier amplitudes
for the Kerr-effect response have nonmonotonic behavior; see
Fig. 8). However, the formulas presented here can be used in
calculating quasi-static nonlinear properties of the polarization
of glass-forming liquids, and therefore can be included in
Ladieu’s model [30] as a first approximation.

The given methods of the solution of infinite hierarchies of
multiterm recurrence relations are quite general and can be ap-
plied to analogous nonlinear response problems, where time-
dependent stimuli in high ac external fields are considered.
In particular, our methods can also be used for the nonlinear
dielectric and Kerr effect ac stationary responses of polar and
anisotropically polarizable molecules [3,14]. Furthermore,
they may be extended to nonstationary responses and to
other mean-field potentials. Moreover, they can be applied
(with small modifications) to the nonlinear magnetic response
of uniaxial magnetic nanoparticles. Here the magnetization
dynamics are governed by equations very similar to the

FIG. 7. Moduli of the dc component of the nonlinear dielectric response |F (2)
1,0(ω)| (a), the second harmonic component of the nonlinear

dielectric response |F (2)
1,2(ω)| (b), the fundamental component of the nonlinear dielectric response |F (3)

1,1(ω)| (c), and the third harmonic component

of the nonlinear dielectric response |F (3)
1,3(ω)| (d) vs. ωτD for various dc field amplitudes ξ0 with σ = 10. Solid lines: the matrix solution. Symbols:

the two-mode approximation Eqs. (47), (48), (49), and (50) using fitting parameters.
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FIG. 8. Moduli of dc component of the second-order Kerr effect |F (2)
2,0(ω)| (a), the Kerr effect second harmonic component |F (2)

2,2(ω)| (b), the

fundamental component of the third-order Kerr effect |F (3)
2,1(ω)| (c), and the third harmonic component of the third-order Kerr effect |F (3)

2,3(ω)|
(d) vs. ωτD for various dc field amplitudes ξ0 with the anisotropy parameter σ = 10. Solid lines: the matrix solution. Symbols: the two-mode
approximation Eqs. (39), (40), (58), and (59) using fitting parameters.

Fokker-Planck Eq. (2) [16,21,22]. Finally, the range of the area
of applicability of the rotational diffusion model in the
mean-field potential is restricted to the low-frequencies range
(ωτD � 1), because the model does not include inertial effects.
A consistent treatment of these effects must be carried out
using the Fokker-Planck equation for the probability density
function in configuration-angular velocity space. The inertia
corrected rotational diffusion model in the uniaxial potential
was used in Ref. [58] to determine the linear complex
dielectric susceptibility tensor of polar liquid crystals in the

entire frequency range of orientational polarization (up to
5 THz).
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APPENDIX A: STATIC SUSCEPTIBILITIES

In the case of superimposed ac and dc fields ξ0 + ξ cos ωt in the static limit, ω → 0, fn(0) to cubic order in ξ

fn(0) =
∫ 1
−1 Pn(x)eσx2+(ξ+ξ0)xdx∫ 1

−1 eσx2+(ξ+ξ0)xdx
= 〈Pn〉0 + ξ 〈xPn〉0 + 1

2ξ 2〈x2Pn〉0 + 1
6ξ 3〈x3Pn〉0 + o(ξ 3)

1 + ξ 〈x〉0 + 1
2ξ 2〈x2〉0 + 1

6ξ 3〈x3〉0 + o(ξ 3)

= 〈Pn〉0 + ξ (〈xPn〉0 − 〈x〉0〈Pn〉0) + ξ 2

[
1

2
(〈x2Pn〉0 − 〈x2〉0〈Pn〉0) − 〈x〉0(〈xPn〉0 − 〈x〉0〈Pn〉0)

]

+ ξ 3

[
1

6
(〈x3Pn〉0 − 〈x3〉0〈Pn〉0) + 〈x〉0〈Pn〉0

(〈x2〉0 − 〈x〉2
0

)− 1

2
〈x〉0(〈x2Pn〉0 − 〈x〉0〈xPn〉0)−1

2
〈xPn〉0

(〈x2〉0 − 〈x〉2
0

)]

+ o(ξ 3). (A1)

Because P1(x) = x and P2(x) = (3x2 − 1)/2, we have the first-, second-, and third-order contributions to fn(0), respectively,

f (1)
n (0) = ξχn1 = ξ (〈P1Pn〉0 − 〈P1〉0〈Pn〉0), (A2)

f (2)
n (0) = ξ 2χn2 = ξ 2

[
1
3 (〈P2Pn〉0 − 〈P2〉0〈Pn〉0) − 〈P1〉0(〈P1Pn〉0 − 〈P1〉0〈Pn〉0)

]
, (A3)

f (3)
n (0) = ξ 3χn3 = ξ 3

[
1
6

(〈
P1

3Pn

〉
0 − 〈P1

3
〉
0〈Pn〉0

)+ 〈P1〉0〈Pn〉0
(〈
P1

2
〉
0 − 〈P1〉2

0

)
− 1

2 〈P1〉0
(〈
P1

2Pn

〉
0 − 〈P1〉0〈P1Pn〉0

)− 1
2 〈P1Pn〉0

(〈
P1

2
〉
0 − 〈P1〉2

0

)]
. (A4)
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For the zero dc field case, ξ0 = 0, the above results are dramatically simplify. Here, the odd f2n−1(0) are expressed via the
stationary averages up to cubic order in ξ as

f2n−1(0) = ξ 〈xP2n−1〉0 + ξ 3

6
(〈x3P2n−1〉0 − 3〈x2〉0〈xP2n−1〉0) + o(ξ 3)

= ξ 〈P1P2n−1〉0 + ξ 3

30

[
2〈P3P2n−1〉0 − 3

(
5
〈
P 2

1

〉
0 + 1

)〈P1P2n−1〉0

]+ o(ξ 3). (A5)

Similarly, the even f2n(0) up to second order in ξ are given by

f2n(0) = 〈P2n〉0 + ξ 2

2
(〈x2P2n〉0 − 〈x2〉0〈P2n〉0) + o(ξ 2)

= 〈P2n〉0 + ξ 2

3
(〈P2P2n〉0 − 〈P2〉0〈P2n〉0) + o(ξ 2). (A6)

APPENDIX B: TWO-MODE APPROXIMATION

In linear response theory [32,33], the normalized complex
susceptibilities Xn1(ω) are defined via the normalized equilib-
rium correlation function �k,m(t) via Eq. (31), where �k,m(t)
is defined as

�km(t) = 〈Pk(0)Pm(t)〉0 − 〈Pk(0)〉0〈Pm(0)〉0

〈Pk(0)Pm(0)〉0 − 〈Pk(0)〉0〈Pm(0)〉0
. (B1)

Three time constants characterize the time behavior of
�k,m(t), namely the integral relaxation time τn is defined as
the area under the decaying �n1(t),

τn =
∫ ∞

0
�n1(t)dt, (B2)

the effective relaxation time τ eff
n describing the initial decay of

�n1(t) defined by

τ eff
n = − 1

�̇n1(0)
, (B3)

and the longest relaxation time defined by the inverse of
the smallest non-vanishing eigenvalue λ1 of the Fokker-
Plank operator LFP, which describes the slowest relaxation
mode. Now, the low-frequency behavior of the normalized
susceptibility Xn1(ω) is evaluated by taking the low-frequency
limit ω → 0 in Eq. (31),

Xn1(ω) = 1 − iω

∫ ∞

0
�n1(t) dt + · · · = 1 − iωτn + · · · ,

(B4)
while the high-frequency limit is obtained by taking the limit
ω → ∞,

Xn1(ω) = −
∫ ∞

0
�̇n1(t)e−iωtdt

= − �̇n1(0)

iω
+ · · · = − i

ωτ eff
n

+ · · · . (B5)

Thus, the low- and high-frequency behavior of Xn1(ω) is
completely determined by the integral and effective relaxation
times, respectively. Hence, the equivalent definitions of τn and
τ eff
n can be given via Eqs. (B4) and (B5) as

τn = limω→0
Xn1(0) − Xn1(ω)

iω
,

τ eff
n = −i limω→∞

1

ωXn1(ω)
. (B6)

Here, the integral and effective relaxation times τn and τ eff
n

are given by the exact analytic equations [16]

τn = 2τD

Z(〈PnP1〉0 − 〈Pn〉0〈P1〉0)

∫ 1

−1

ψ1(z)ψn(z)eσz2+ξ0z

1 − z2
dz,

(B7)

τ eff
n = − 1

�̇n1(0)
= τD

χn1
[dnχn1 + gnχn+21 + cnχn−21

+ ξ0an(χn+11 − χn−11)], (B8)

where

ψn(z) =
∫ z

−1
[Pn(x) − 〈Pn〉0]eσx2+ξ0xdx. (B9)

The correlation function �n1(t) generally comprises an
infinity of relaxation modes (decaying exponentials), i.e.,
�n1(t) =∑

k

cn
k e

−λkt ; however, we can suppose �n1(t) may

be approximated by two modes only [25,26],

�n1(t) = �n1e
−λ1t + (1 − �n1)e−t/τ

(n1)
W , (B10)

where the parameters �n1 and τ
(n1)
W given by

�n1 = τn/τ
eff
n − 1

λ1τn − 2 + (λ1τ eff
n

)−1 , (B11)

τ
(n1)
W = λ1τn − 1

λ1 − 1/τ eff
n

. (B12)

Equations (B11) and (B12) are the solutions of algebraic
equations due to substituting Eq. (36) into Eqs. (B4) and (B5),
viz.,

�n1/λ1 + (1 − �n)τ (n1)
W = τn.

�n1λ1 + (1 − �n1)/τ (n1)
W = 1/τ eff

n (B13)

By inserting Eq. (B10) into Eq. (31), χn1(ω) is obtained as
the sum of two Lorentzians, Eq. (36).
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APPENDIX C: PARAMETERS FOR THE TWO-MODE
APPROXIMATION OF THE LINEAR DIELECTRIC AND

KERR-EFFECT RESPONSES

To illustrate the results of Appendix B, we calculate explic-
itly the parameters appearing in Eq. (36) for the linear dielectric
and Kerr-effect responses. For the dielectric response, the
equations for τ1 and τ eff

1 required for the calculation of �11 and
τ

(11)
W in Eq. (36) can be evaluated by letting n = 1 in Eqs. (B8)

and (B7), yielding Equation Section (Next)

τ1 = 2τD

Z
(〈
P 2

1

〉
0 − 〈P1〉2

0

) ∫ 1

−1

ψ2
1 (z)eσ (z2+2hz)

1 − z2
dz, (C1)

τ eff
1 = − 1

�̇11(0)
= 2τD

〈
P 2

1

〉
0 − 〈P1〉2

0

1 − 〈P 2
1

〉
0

. (C2)

Here the equilibrium averages 〈P1〉0 and 〈P 2
1 〉0 are, accord-

ing to Eq. (16),

〈P1〉0 = 1

Z

∫ 1

−1
xeσ (x2+2hx)dx = eσ sinh(2σh)

σZ
− h, (C3)

〈
P 2

1

〉
0 = 1

Z

∫ 1

−1
x2eσ (x2+2hx)dx

= eσ [cosh(2σh) − h sinh(2σh)]

σZ
+ h2 − 1

2σ
, (C4)

where h = μE0/(2K) is the dimensionless dc bias field
parameter, Z is the partition function given by

Z =
∫ 1

−1
eσ (x2+2hx)dx

=
√

π

4σ
e−σh2{erfi[(1 + h)

√
σ ] + erfi[(1 − h)

√
σ ]}, (C5)

and

erfi(z) = 2√
π

∫ z

0
et2

dt

is the error function of imaginary argument [31]. Now, in the
low-barrier case, σ,h � 1, the behavior of λ1, �11, and τ

(11)
W

is [16]

λ1τD = 1 − 2

5
σ + 48

875
σ 2 − 32

21875
σ 3

+ 4h2

(
1

10
σ 2 + 1

875
σ 3 + · · ·

)
+ · · · , (C6)

τ
(11)
W

τD

= 1

6
+ 1

135
σ +

(
175

108
+ 1739

486
σ + · · ·

)
h2 + · · · ,

(C7)

�11 = 1 − 12

4375
σ 2 − 22

375
σ 2h2 + · · · , (C8)

respectively. Equation. (C6) is related to the smallest non-
vanishing eigenvalue of the Fokker Planck operator, while
Eqs. (C7) and (C8) may be evaluated by taking the Taylor
series expansions of Eqs. (C1) and (C2) and then substituting
the results into Eqs. (B11) and (B12). In the high-barrier case,
σ (1 − h)2 	 1 and h < 1, the behavior of λ1, �11, and τ

(11)
W

is given by [16,26]

λ1τD ≈ (1 − h2)σ 3/2

√
π

[
(1 − h)e−(1−h)2σ + (1 + h)e−(1+h)2σ

]
+ · · · , (C9)

τD

τ
(11)
W

≈ 2(1 + h)σ − 5 + h

1 + h
+ · · · , (C10)

�11 ≈ 1

1 + (1−h)cosh2(2σh)
4σ 2(1+h)3

+ · · · , (C11)

where Eq. (C9) follows from asymptotic expansions of the
mean first-passage time [1], while Eq. (C10) follows from
Eq. (4.15) of Ref. [26] and Eq. (C11) can be evaluated from
the partition function Z, Eq. (C5).

For the Kerr-effect response, the parameters �21 and τ
(21)
W

are again expressed via three characteristic time constants,
namely, the inverse of the smallest nonvanishing eigenvalue
1/λ1, the integral relaxation time τ2 defined by Eq. (B7), and
the effective relaxation time τ eff

2 defined by Eq. (B8). The
relaxation times τ2 and τ eff

2 are now given by Eqs. (B7) and
(B8) for n = 2. In the low barrier case, σ � 1, the behavior
of �21, and τ

(21)
W are given by, following the method for

calculating �11 and τ
(11)
W [Eqs. (C7) and (C8)],

τ
(21)
W

τD

= 1

3
+ 1

315
σ − 1252

165375
σ 2 − 16

315
σ 2h2 + · · · ,

�21 = 3

4
− 23

280
σ + 1149

98000
σ 2 − 11

140
σ 2h2 + · · · , (C12)

while for the high-barrier case, σ (1 − h)2 	 1, we have the
following relaxation times τ2 and τ eff

2 :

τ2

τD

= 8eσ (1−h)2√π
σ

[
1 + sinh(4σh)

4σh

]−1

[1 − h + e−4σh]{2 + 4σ (1 − h2)2 − e−σ (1−h)2
[1 + 2σ (1 + h)2]} , (C13)

τ eff
2

τD

= 6h2 cosh(4σh)

sinh2(4σh)
+ h

64 + 28σ − 7 cosh(4σh)

32σ sinh(4σh)
+ (85 + 28σ )

224σ 2h2 cosh(8σh) − 1

112σ 2sinh2(4σh)
. (C14)

Equations (C13) and (C14) can be used to evaluate τ
(21)
W and �21 for large σ in the range h � 0.17, since outside this range

Eq. (C13) diverges exponentially from λ−1
1 . The parameters τ

(21)
W and �21 are then evaluated by Eqs. (B11) and (B12).
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Kędziora, J. Jadżyn, K. De Smet, and L. Hellemans, Linear
and nonlinear dipolar relaxation of 4,4′-n-hexylcyanobiphenyl,
J. Mol. Liquids 80, 19 (1999); J. Jadżyn, P. Kędziora, and L.
Hellemans, Frequency dependence of the nonlinear dielectric
effect in diluted dipiolar solutions, Phys. Lett. A 251, 49 (1999);
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