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Grid-based partitioning for comparing attractors
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Stationary dynamical systems have invariant measures (or densities) that are characteristic of the particular
dynamical system. We develop a method to characterize this density by partitioning the attractor into the smallest
regions in phase space that contain information about the structure of the attractor. To accomplish this, we develop
a statistic that tells us if we get more information about our data by dividing a set of data points into partitions
rather than just lumping all the points together. We use this method to show that not only can we detect small
changes in an attractor from a circuit experiment, but we can also distinguish between a large set of numerically
generated chaotic attractors designed by Sprott. These comparisons are not limited to chaotic attractors—they
should work for signals from any finite-dimensional dynamical system.
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I. INTRODUCTION

The description and analysis of chaotic attractors is an
evolving field. Much of this work is concerned with modeling
and prediction of dynamical systems [1–5]. Finding a model
of the actual vector field is probably the most efficient way
to describe a dynamical system, but finding a model without
knowing the proper functional form is computationally diffi-
cult and sensitive to noise. If the goal is only to characterize,
but not to predict, then studies of the geometry of the attractor
may be useful. Such techniques have been used for many
years [6–11]. More recently, graph theory has been used to
characterize attractors as networks [12], although with the
exception of networks based on recurrences, it is not clear
what the physical significance of the network is.

The shape of a chaotic attractor is well defined and not sub-
ject to prediction errors, but there are few tools for describing
this shape [13,14]. Diks et al. [15] compared delay vector dis-
tributions by convolving the individual embedded vectors with
Gaussians to create a smooth probability distribution. Attrac-
tors were compared by taking the difference between densities.

Our work is similar in spirit to Diks et al., but we use
partitioning methods that speed up the computation. Diks
et al. were limited to comparing attractors of a few hundred
points, while we have compared attractors of 100 000 points.
In this work, we describe the shape of a chaotic attractor by
partitioning the attractor into regions of different densities. It
is well known that the probability measure of a dynamical
system reflects its long-term behavior in phase space [10,16].
For some dynamical systems, such as complex electronic
circuits, or driven structures, it is not mathematically tractable
to generate a model for the system [17,18], so characterizing
the attractor without including details of the dynamics is all that
is possible. Partitioning the attractor into regions of different
density reduces the size of the data set, which could be a useful
first step for graph theory calculations, which require one to
find the distance between each point in the data set and all
other points [12,19]. In the work described here, the attractor
is partitioned into regions that each contain the same amount of
information. By information, we mean that we can distinguish
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that the distribution of points in some local region is not best
described by a uniform distribution. We develop a statistic
to make this comparison. We then use common statistical
methods to compare densities in corresponding regions of
different attractors. In previous work, it was established that
density can be used to compare attractors [20]. The current
method extends the range of application of density-based
methods to attractors that are not similar to each other, and
it does away with an arbitrary parameter by using the data
itself to determine how to create a histogram for the attractor.

There are other methods for characterizing attractors, such
as fractal dimension, Lyapunov exponents, linking numbers,
etc. [21]. These methods are commonly used because
in theory they are invariant under orientation preserving
diffeomorphisms, so that a change in the embedded variable
or the embedding method should not change the measurement.
In practice, there are well-known problems when applying
these standard methods to real data; see, for example,
Ref. [22]. Real data is finite and limited in resolution by
digitization. In order to understand the topology of data, after
embedding the data we must establish some sort of metric.
This metric is necessary to understand the topology of the
data—without it, we can not distinguish where the attractor is
and where it may have holes or cavities. Changing embedding
parameters will change this metric—this is true for any
measurement on data, so no data analysis is completely
invariant under changes in the embedding parameters. There
is still the outstanding question of how to choose embedding
dimension and delay; we don’t solve that problem here, but
once our data is embedded, further analysis depends only at
what level of information we want to partition our data. There
are no other arbitrary thresholds to be determined.

In order to show the flexibility of this data-partitioning
method, we use two different partitioning examples below.
First, we show how data partitioning may be used to distinguish
between the 19 different Sprott attractors [23]. Second, we
track the small deviation from linearity in an experiment using
an operational amplifier.

II. DENSITY IN PHASE SPACE

We begin by embedding a time series s into a
d-dimensional phase space using the method of delays [21].
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For each point in s, a vector s(i) is defined as s(i) =
{s(i),s(i + τ ), . . . ,s[i + (d − 1)τ ]}. The embedding dimen-
sion d and the delay τ may be found by any one of a number
of standard methods [21].

A histogram of the embedded attractor in the phase space
is then created. The phase space is divided into partitions, and
the partition locations and sizes are recorded, as well as the
number of points in each partition. The partitions may have
different sizes.

A. Determining partitions

We choose to subdivide, or partition, the attractor based
on whether subdividing a part of the attractor yields more
information than not subdividing. We measure information by
counting the number of attractor points mk that fall into each
of our K partitions, or subdivisions. We compare the counts
mk,k = 1, . . . ,K to the number of counts we would expect
if the points on the attractor were distributed uniformly over
the region we are subdividing. If we can’t distinguish between
the observed values of mk and what we would expect from a
uniform distribution, then we don’t subdivide. If, on the other
hand, the set of counts mk differs from what we would expect
from a uniform distribution, then we gain information about the
attractor by subdividing, so we proceed with the subdivision.

Partitioning the attractor might seem to be losing spatial
information, since we are grouping points into bins. Because of
the information criteria for choosing partition size however, we
subdivide the attractor until the set of points in each partition
can not be distinguished from a uniform distribution over the
same space, so we are finding the minimum size partitions that
contain information about the attractor.

In most cases, the final partitions found using this informa-
tion criteria will not be all the same size—some regions of the
attractor contain structure at smaller length scales than other
parts. The size of the final partitions will also depend on the
number of data points, as more data will allow us to better see
small-scale variations.

We will refer to the type of partitioning just described
as top-down partitioning. Top-down partitioning is fast, but
it divides the phase space by a factor of two each time,
so the final partitions may miss some structure in the data.
There will be situations described later in this paper where
it may be better to start with some small region of the
attractor containing only a few points and expand. In this
bottom-up approach, the phase space is first partitioned using
the top-down approach. The smallest resulting partition is
taken as the smallest meaningful length scale on the attractor.
The phase space is then divided into Nb bins along each axis,
where Nb = (axis length)/(minimum length scale). Using the
information criterion defined below [Eq. (6)], individual bins
may be combined into larger partitions. Bottom-up partitioning
is slower than top-down partitioning, but because the initial
partitions are located where there is data, and the partitions
are expanded in small increments, bottom-up partitioning can
better reflect the structure of the data.

B. Information criteria

Based on the number of points mk found in each partition,
we want to estimate the probability πk of finding a point in

each of the K partitions. We will then use the Kullback-Leibler
divergence [24] to find the difference between the probability
distribution given by the set of πk’s and a distribution that is
uniform over all K partitions.

Initially we don’t know anything about the probabilities πk .
If the vector of counts is m = [m1,m2, . . .], while the vector
of probabilities is π = [π1,π2, . . .], then the probability of
finding m things in k partitions when the probability for each
partition is πk is given by a multinomial distribution

Mult(m|π ) = M!
K∏

k=1

(πk)mk

mk!
s.t.

K∑
k=1

mk = M and
K∑

k=1

πk = 1.

(1)
The conjugate prior for the multinomial distribution is the
Dirichlet distribution [25]

p(π |α) = Dir(π |α) = �
(∑

k αk

)
∏
k

�(αk)

∏
k

π
αk−1
k , (2)

where � is the γ function and the αk’s are adjustable
parameters. The Dirichlet distribution is sometimes referred to
as a probability of a probability. For a given set of parameters
α, the Dirichlet distribution gives us the prior probability of
a particular set of π ’s. We use the maximum entropy prior
distribution, for which all αk’s = 1/2.

The probability of seeing a particular set of πk’s based on
the observed mk’s may then be found from Bayes’ theorem

Dir(π |α) ∝ Mult(m|π )Dir(π |α′). (3)

The probability distribution in Eq. (3) can be compared to
a constant distribution over the same part of phase space.

The density ρ0 is equal to
K∑

k=1
mk/

K∑
k=1

Vk , where Vk is the

volume of an individual partition. The Kullback-Leibler
divergence [24] is used to compare probability distributions.
For two probability distributions p and q, the Kullback-Leibler
divergence is

DKL(p||q) ≡
K∑

k=1

p(k) ln

(
p(k)

q(k)

)
. (4)

The Kullback-Leibler divergence is described as the number
of bits needed to encode the probability distribution p using
samples from q. As an example, if p was the alphabet and q

was a binary code, then DKL(p||q) would be the number of
bits needed to encode the alphabet.

The Appendix shows how Eqs. (2)–(4) may be combined
to give an analytic result that gives the Kullback-Leibler
divergence between the probabilities estimated from Eq. (3)
and a distribution with a constant density given by ρ0. The
divergence is

DKL[Dir(π |α′)||Dir(π |α)]

= 1

ln 2

K∑
k=1

[
(mk − ρ0Vk)ψ

(
mk + 1

2

)
− ln �

(
mk + 1

2

)

+ ln �

(
ρ0Vk + 1

2

)]
. (5)
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Equation (5) represents the amount of information we gain by
dividing the data into K partitions, rather than just considering
the data to be uniformly distributed over the same volume.

We also need to add a partitioning penalty to the information
difference function. Dividing the data into K partitions creates
information; we could partition the entire phase space so finely
that no partition contained more than one point, in which
case DKL[Dir(π |α′)||Dir(π |α)] would be large. Specifying K

partitions requires log2K bits for each partition; for example,
four partitions could be specified by k = 0,1,2,3, or in binary,
00, 01, 10, 11, so four partitions require two bits for each
partition. A penalty function L(	) = Klog2K assigns a cost
to partitioning the data. The final information criterion is then

R(X,	) = DKL[Dir(π |α′)||Dir(π |α)] − L(	)

K
. (6)

The units of R(X,	) are bits/partition. We may set a reasonable
threshold: if R(X,	) > 1 bit, then partitioning the data into
K partitions gives more information than treating the data as
a constant distribution over the same volume.

III. IDENTIFYING SPROTT ATTRACTORS

Sprott [23] found a family of 19 different chaotic attractors
defined by three-dimensional ODE’s with one or two quadratic
nonlinearities. This group of attractors is a useful test set for
our attractor comparison methods.

Each set of ODE’s for the Sprott attractors was integrated
using a fourth-order Runge-Kutta integrator with a time step of
0.01. The integrator output was decimated by keeping every
50th point to produce a time series. Time series of 20000
points were embedded in a three-dimensional space with an
embedding delay of two points.

As an example, the Sprott C attractor was described by the
differential equations

dx

dt
= yz

dy

dt
= x − y

dz

dt
= 1 − x2. (7)

Figure 1 is a plot of the embedded attractor for the Sprott C
system.

The Sprott attractors were partitioned by initially dividing
the phase space into two bins/axis, for a total of eight bins. The
information criterion R(X,	) [Eq. (6)] was found by counting
the number of points in each of the eight bins (the mk values).
For the initial division, R(X,	) was much greater than one
bit/partition, so each of the eight bins was further partitioned
into eight bins. The initial set of eight bins can be denoted as
(1),(2),(3), . . . ,(8). At the next level, bin (1) is divided into
bins (1,1),(1,2),(1,3), . . . ,(1,8). In order to determine whether
a further subdivision is required, R(X,	) is computed using
the number of points in the bins (1,1),(1,2),(1,3), . . . (1,8).
If R(X,	) > 1 bit, each of the bins at this level are again
subdivided, and the process continues until R(X,	) < 1 bit.
In the same manner, all the other top level bins are also
subdivided. The final bins may have different sizes.
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FIG. 1. Embedded time series signal for the Sprott C attractor
with an embedding delay of 2.

The result of top-down partitioning for the Sprott C attractor
is shown in Fig. 2. The partitioning yielded 2427 total bins of
different sizes. The density of the bin with the highest density is
ρmax. Figure 2(a) shows all the bins for the partitioned attractor
whose density is > 0.1ρmax, Fig. 2(b) shows bins with densities
from 10−1ρmax to 10−2ρmax, Fig. 2(c) shows bins with densities
from 10−2ρmax to 10−4ρmax, and Fig. 2(d) shows bins with
densities < 10−4ρmax.

A. Comparing densities

Once attractors have been partitioned, they can be compared
by comparing densities at the same locations in their respective
phase spaces. The Kullback-Leibler divergence [Eq. (5)] can
be used to for this comparison, but there can be situations where
one attractor has a finite density at a particular location while
the other attractor has zero density. As a result, the Kullback-
Leibler divergence can not be used to compare densities for
such a location. To avoid this problem, we use the Jensen-
Shannon divergence [26] to compare attractors. The Jensen-
Shannon divergence is a symmetrized version of the Kullback-
Leibler divergence:

DJS(p‖q ) =
K∑

k=1

1

2

[
log

(
p(k)

0.5[p(k) + q(k)]

)
p(k)

+ log

(
q(k)

0.5[p(k) + q(k)]

)
q(k)

]
. (8)

We use the Jensen-Shannon divergence only to compare
attractors, so using the Jensen-Shannon divergence here does
not affect the derivation of the information criterion in Eq. (5).
Why not use the Jensen-Shannon divergence to derive the
information criterion? As described in Eq. (5), the Kullback-
Leibler divergence is described as the number of bits needed
to encode the probability distribution p using samples from q.
The Jensen-Shannon divergence does not have such a simple
interpretation.
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FIG. 2. Histogram bins found by top-down partitioning of the Sprott C attractor. The density of the bin with the highest density is ρmax.
(a) shows all the bins for the partitioned attractor whose density is > 0.1ρmax, (b) shows bins with densities from 10−1ρmax to 10−2ρmax, (c)
shows bins with densities from 10−2ρmax to 10−4ρmax, and (d) shows bins with densities < 10−4ρmax.

B. Distinguishing attractors

We want to build up statistics on how well we can
distinguish the 19 Sprott attractors, so for each attractor we
generate a time series of 200 000 points and divide each time
series into ten parts of 20000 points each. We embed the 20000
point times series in three dimensions with an embedding delay
of two points, and apply the top-down partitioning method to
create partitions to divide the phase space into local regions in
which the attractor density appears constant; Fig. 2 shows an
example of these regions. The embedded Sprott attractors are
denoted S(i,j ), where i = 1, . . . ,19 indicated the particular
Sprott system and j = 1, . . . ,10 indicates the part of the time
series.

We choose a partition (or bin) on one attractor S(i1,j1),i1 =
1, . . . ,19,j1 = 1, . . . ,5 and look for partitions on a different
attractor S(i2,j2),i2 = 1, . . . ,19,j2 = 6, . . . ,10 that overlap.
From the densities in these two overlapping regions we cal-
culate the Jensen-Shannon divergence [Eq. (8)]. The Jensen-
Shannon divergence compares probabilities, so the density in
each partition is multiplied by the volume by which the two
partitions overlap. There may be more than one partition on
S(i2,j2) that overlaps with the partition on S(i1,j1). It is also
possible that no partition on S(i2,j2) overlaps with the chosen
partition on S(i1,j1), but the Jensen-Shannon divergence still
gives a result.

Once the Jensen-Shannon divergence has been calculated,
a different partition on S(i1,j1) is chosen, the comparison is
repeated and the result is summed with the previous value. The
process is continued for all the partitions on S(i1,j1).

The number of errors in identification ne is given by

ne =
19∑

i1=1

5∑
j1=1

5∑
j2=1

H (i1,j1,j2), (9)

where H (i1,j1,j2) is defined as

if
min [DJS(S(i1,j1)‖S(i2,j2)] i2 = 1, . . . ,19)
< DJS[S(i1,j1)‖S(i1,j2)]
H (i1,j1,j2) = 1

else
H (i1,j1,j2) = 0.

(10)

The error fraction is ne divided by the total number of
comparisons. For the 19 Sprott attractors with no noise, the
error rate in correctly distinguishing the attractors is 0.002.

C. Sprott C vs Sprott D comparison

As an example, we show some of the details of the
comparison between the Sprott C and D systems. The Sprott
D system was described by

dx

dt
= −y

dy

dt
= x + z

dz

dt
= xz + 3y2. (11)
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FIG. 3. Embedded time series signal for the Sprott D attractor
with an embedding delay of 2.

Figure 3 shows the Sprott D attractor, embedded from a time
series of the x signal with a delay of 2. The Sprott C and
D attractors have very different shapes, so they could not
be compared using the method of Ref. [20]. We choose the
unknown signal to be a signal from the Sprott C system,
and compare to references from either the C or D system.
We take each cluster from the reference and compare to all
the other clusters in the signal. Figure 4 shows for each
reference cluster the total overlap area with all the clusters
in the signal. Figure 4 shows that the overlap between system
C and a reference from system C is larger than system C and
a reference from system D, so it is not surprising that the
Jensen-Shannon divergence between C and C is smaller than
the divergence between C and D. For many reference clusters,

FIG. 4. For each cluster in the reference, total overlap Ao with all
the clusters in the signal from system C. The cluster index is nc. The
average overlap area when reference is system C is 0.03, while the
average when D is the reference is 0.003.

FIG. 5. Jensen-Shannon divergence DJS [Eq. (8)] for each refer-
ence cluster and all of the other clusters from the signal from system
C. in (a) the reference is from system C, while in (b), the reference
is from system D. The sum of the Jensen-Shannon divergence for all
reference clusters is 0.14 when the reference is C, while the same sum
is 0.21 when the reference is D. A smaller value of the Jensen-Shannon
divergence indicates a better match.

the overlap area is 0, which is why the Jensen-Shannon
divergence is used in place of the Kulback-Leibler divergence.
Figure 5 shows the Jensen-Shannon divergence between each
cluster in the reference and all the clusters in the signal.
When we compare five realizations of the Sprott C system
to five instances of a reference the same system, the mean
Jensen-Shannon divergence is 0.03 ± 0.01. When comparing
the Sprott C to references from the Sprott D system, the
mean Jensen-Shannon divergence is 0.21 ± 0.01. Likewise,
when comparing five realizations of the Sprott D system
to five instances of a reference the same system, the mean
Jensen-Shannon divergence is 0.03 ± 0.01. When comparing
the Sprott D to references from the Sprott C system, the mean
Jensen-Shannon divergence is 0.23 ± 0.01.

D. Noise considerations

Rarely in the real world do we have access to a noise-free
signal, so the attractor density partitioning method must also
be robust to added noise. When noise is added to a signal
and the result is normalized, the amplitude of the actual signal
is reduced. In order for the densities such as that shown in
Fig. 2 to properly overlap, the density for the noisy signal
must be rescaled so that the actual signal covers the same
region of phase space as the noise-free signal. It is complicated
to calculate the size of this rescaling, however, as it depends
on the relative statistics of the noise and the signal. In order to
avoid this complication, we add noise with the same amplitude
and spectrum to the original noise-free signal

For this noise study, bandpass filtered noise with the same
amplitude and spectrum was added to both S(i1,j1) and
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FIG. 6. Probability of error pe in identifying the 19 Sprott systems
when additive noise is present. N/S is the noise level divided by the
signal level.

S(i2,j2). The noise spectrum occupied the same frequency
range as the spectra of the Sprott systems.

Figure 6 shows the error rate for identifying the Sprott
attractors when noise was added to all signals. Figure 6 shows
a slight drop in the probability of error for small noise levels.
Beyond that, the probability of error increases to about 20%
when the noise is as large as the signal.

IV. EXPERIMENT: DETECTING NONLINEARITY
IN OP AMPS

In the previous section, we showed that density partitioning
could distinguish between attractors that were very different
from each other. In this section, we use the same method to
detect very small changes in a circuit experiment.

Operational amplifiers (op amps) are widely used devices
that are generally assumed to be linear. Like all active elec-
tronic devices, however, op amps are based on semiconductors
whose behavior is not linear. Attempts are made in amplifier
design to minimize nonlinearity, but in the experiment in this
section we show that we can still detect that op amps are not
linear.

The experimental circuit is shown in Fig. 7. To create the
signal driving signal V0, a series of sinusoids with different

FIG. 7. Op amp circuit used in the experiment. The op amps
are type OP-07. The resistor R1 could be changed to change the
gain of the circuit. The potentiometer was used to maintain the peak
to peak amplitude of the output signal V1 at a constant value of 2
V. The driving signal V0 was sine wave with a chaotic frequency
modulation.

V
1(

i+
2)

 (
V

)

V1(i) (V)

FIG. 8. Output signal V1(i) from the op amp experiment, embed-
ded in two dimensions with a delay of two points.

frequencies were concatenated so that they matched in phase.
The center frequency of each sinusoid was 10 kHz, while
the frequency deviation was determined by a signal derived
from the shift map. The process of creating the signal V0

was

xn+1 = 2.1xn mod 1

Tn = 100 + β(xn − 0.5)

V0(i, . . . ,i + Tn) = sin(2πτi/Tn). (12)

The time step τ = 10−6s, while the frequency deviation factor
β = 40, resulting in a bandwidth of 3 kHz. The gain of the
circuit was changed by changing the resistor R1. The goal of
this experiment was to measure changes in the op amp circuit,
not in the digitizer, so the potentiometer was used to maintain
the peak to peak amplitude of the output signal V1 at 2 V,
independent of the op amp circuit gain.

The output signal V1 was digitized at a rate of 100 000
points/sec. Dimension estimates show that V1 is two dimen-
sional [27]. Figure 8 shows V1 embedded in two dimensions
with a embedding delay of 2. The circuit gain for Fig. 8 was
1.0.

A. Density partitioning

The top-down partitioning approach was applied to the
embedded circuit data, as described previously in Eqs. (2)–(8),
but the top-down method had difficulty in detecting changes in
the circuit experiment. The top-down method appears to create
overly large partitions in two dimensions. Figure 9 shows the
partitions found for the circuit attractor of Fig. 8, using a total
of 100 000 points. The top-down partitioning in Fig. 9 does
find a large number of partitions (881 partitions found), but the
partitions are very uniform, washing out fine scale variations in
the actual data density. Figure 9 shows little density variation
over large regions of the attractor.
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FIG. 9. Partitions for the V1 signal from the op amp circuit
(gain = 1) using the top-down partitioning method. A total of 881
partitions were found.

It appears that in two dimensions, top-down partitioning
does not capture fine scale variations in the data. As mentioned
above, the initial partitions in top-down partitioning are not
related to the actual data, and the partition size is halved at
each iteration, so some structure in the data may be missed. The
attractor is obviously nonuniform on the largest length scales,
and we hope to see structure on small length scales, but in two
dimensions there appears to be an intermediate length scale on
which the attractor can not be distinguished from a uniform
distribution. In order to see small length scale variations in
the op amp circuit attractor, we use the bottom-up partitioning
method. While bottom-up partitioning is slower than top-down
partitioning, its speed is not too bad for two-dimensional data,
and bottom-up partitioning is better at capturing structure in
the data at small length scales.

In order to speed up the bottom-up clustering method, the
top-down method is first applied to the op amp data, and the
minimum bin size found from the top-down data is used as
the length scale for binning the op amp data. The bottom-up
partitioning will be accelerated because when expanding the
size of the region for partitioning, the region can be expanded
by one set of bins in each direction, so points may be added
to the partition in groups, rather than just one at a time.
The top-down partitioning divides partitions by a factor of
2 along each axis for each level of partitioning; for the circuit
data, the maximum number of divisions by 2 was 9, so the
data histogram should have 29 = 512 bins along each axis.
The smallest length scale on which the top-down partitioning
detected structure in the attractor was 1/512 of the full attractor
size.

B. Data histogram

Each of the d dimensional points is sorted into a bin by
assigning a bin number. If the maximum and minimum values
of s are smax and smin, and there are Nb bins along each
dimension of the phase space, then the bin number kb for a

point s(i) is

kb =
d∑

j=1

[(s(i) − smin)/(smax − smin)]Nj−1
b . (13)

For the circuit data, d = 2 and Nb = 512. In order to save
memory, only the bins containing points are counted.

C. Bottom-up partitioning

Most bins contain only a small number of points, so the
bottom-up partitioning method may be used to combine bins.
To initiate this procedure, an initial bin k1 and its neighboring
bins k2, . . . ,k4 are chosen. The bin k1 is chosen from among
the filled bins. The neighboring bins are k2 = k1 + 1,k3 =
k1 + Nb,k4 = k1 + Nb + 1 (for the two-dimensional case).
Any points in these bins are divided into four partitions, and
the information criteria R(X,	) of Eq. (6) is calculated. If
R(X,	) > 1 bit, then these bins are retained as partitions;
otherwise, the number of points is increased by considering
the next level of bins.

At each level of expansion le, the bins searched for points
are

k1 + i1 + i2Nb i1,i2 = 0, . . . ,le − 1. (14)

The points found in these bins are divided into four partitions
and R(X,	) is calculated based on these four partitions.
Expansion continues until R(X,	) > 1 bit or le/Nb > 0.1.
The second requirement prevents overly large partitions in
regions of the attractor that contain few or no points.

In order to prevent partitions from overlapping, expansion
is also stopped if a bin is encountered that is already part of
a partition. Because the partitions are arranged on a grid, this
requirement may mean that some points are not assigned to
a partition, but in practice, the points that are missed are in
low-density parts of the attractor, so missing these points did
not have a large effect on attractor comparisons.

The bottom-up partitioning method could also be used for
embedding dimensions higher than 2, but the requirement for
searching nearby histogram bins made the bottom-up method
slower than the top-down method for dimensions greater
than 2.

Figure 10 shows the results of using bottom-up partitioning
on the op amp circuit data. The bottom-up partitioning yielded
431 total partitions. More importantly, the partitions better
reflected the structure of the attractor.

D. Detecting nonlinearity

Time series of 1 × 106 points at a digitization rate of
100 000 points/s were obtained for the op amp circuit with
gains of 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, and 2.0. Each time series
was divided into 10 parts of 100 000 points each. Each section
of the time series was embedded in two dimensions with a
delay of two points to create S(i,j ) i = 1 . . . 8, j = 1, . . . ,10,
where the index i referred to the gain and j referred to the
particular 100 000 point section of the time series. Bottom
up density partitioning was performed on all attractors. The
density partitioned attractors for i = 1, . . . ,8, j = 6, . . . ,10
were compared to the density partitioned attractors for a gain of
1, or i = 1, j = 1, . . . ,5 using the Jensen-Shannon divergence
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FIG. 10. Partitions for the V1 signal from the op amp circuit
(gain = 1) using the bottom-up partitioning method. A total of 431
partitions were found.

as defined in Secs. III A and III B above. For each gain level
therefore there were a total of 25 comparisons. Figure 11 shows
the Jensen-Shannon divergence DJS[S(i1,j1)‖S(i2,j2)] found
by comparing density partitioned attractors for different gains
to density partitioned attractors for gain = 1. The error bars
show the standard deviation for each comparison. Figure 11
shows that the bottom-up partitioning detects a monotonically
increasing difference in the op amp output as gain increases
from 1–2. Op amps are usually treated as linear devices, so this
plot shows that the density partitioning method is sensitive to
small differences as well as large differences in attractors.

Figure 11 also shows the derivative difference � between
attractors calculated for the same data by the method of

Δ

FIG. 11. The left axis is Jensen-Shannon divergence DJS as
a function of gain g found by comparing attractors from the op
amp circuit experiment to attractors for g = 1. The attractors were
partitioned using the bottom-up density partitioning method. The
error bars were the standard deviations found by performing 25
comparisons at each gain level. The right axis shows the difference
� between op amp attractors found by using the derivative difference
method of Ref. [27]. The curve for the density method is slightly
offset along the gain axis so that the error bars for both curves are
visible. The two methods yield similar results, but the variance for
the density method is smaller.

Ref. [27]. The derivative difference method was also sensitive
to small differences between attractors, but the derivative
difference method required that the two attractors remain close
together in phase space, so the method was less general. As
can be seen in Fig. 11, the variance of the derivative difference
method was smaller.

Standard methods for detecting nonlinearity include driving
a component with a sum of two sine waves with incom-
mensurate frequencies and measuring the difference in the
power spectrum at the sum and difference frequencies. Such
measurements require a very stable frequency sources; the
computer-generated sine waves we used for this experiment
were not stable enough to detect nonlinearity in the op amp
experiment. The phase-space methods can detect nonlinearity
with a relatively unstable signal source.

V. CONCLUSIONS

We have shown a method to estimate the invariant measure
of a dynamical system by partitioning an embedded signal
from the system into regions containing approximately equal
information. While this method can detect small changes
in an attractor, as shown in a circuit experiment, it is
not limited to attractors that are similar to each other, as
shown by the ability to distinguish between the 19 dif-
ferent Sprott attractors. The way in which the partitioning
is done depends on the embedding dimension, but for
dimensions of 2 or 3, the partitioning is relatively fast to
compute.

These partitioning methods partition the data into regions
that can not be distinguished from constant densities, so they
provide a way to eliminate redundant information from the
description of an attractor. As such, they may provide a
useful first step in networking or graph theory calculations
for systems with many data points. Many of these calcu-
lations require the calculation of an affinity matrix, which
compares each point in a data set to every other point.
Removing redundant information by partitioning will reduce
the number of data points, reducing the size of the affinity
matrix.

APPENDIX: DERIVING THE KL DIVERGENCE IN THE
PARTITION DECISION CRITERIA

Deriving a closed-form solution for the Kullback-Leibler
(KL) divergence between Dirichlet distributions with concen-
tration parameter vectors α and α′ requires a few nontrivial
steps. The Dirichlet distribution is a probability distribution,
Dir(π |α), over a k − ary exclusive probability,

Dir(π |α) = 1

Z(α)

K∏
k=1

(πk)αk−1,

where Z(α) =
∏K

k=1 �(αk)

�(α0)
such that

K∑
k=1

πk = 1, (A1)
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where α0
.= ∑K

k=1 αk . The KL divergence has the form

DKL[Dir(π |α′)||Dir(π |α)] =
∫

K−simplex
dπDir(π |α′) ln

(
Dir(π |α′)
Dir(π |α)

)
. (A2)

The technical issue that needs to be addressed is simplifying the domain of the integral over the K simplex while obeying the
sum rule on the probability p. The integration domain can be extended over RK

+ if the sum rule is enforced by using a δ function

∫
K−simplex

dπ =
∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0

K∏
k=1

dπkδ

(
1 −

K∑
k=1

πk

)
,πk ∈ [0,1]. (A3)

The bounds are simpler but the d function still makes the integral complicated. However, by substituting the Fourier transform
of the d function and performing a change of variables (k = ik):

δ(x) = 1

2π

∫ ∞

−∞
dke−ikx → δ(x) = 1

2πi

∫ i∞

−i∞
dκeκx. (A4)

This adds an extra dimension to the integral but the boundary is now straightforward,∫
K−simplex

dπ = 1

2πi

∫ ∞

−∞
dκeκ

∫ ∞

0
dπ1e

−κπ1

∫ ∞

0
dπ2e

−κπ2 . . .

∫ ∞

0
dπKe−κπK . (A5)

The KL divergence can be written in terms of this new integration domain as

DKL[Dir(π |α′)||Dir(π |α)] = 1

Z(α′)
1

2πi

∫ i∞

−i∞
dκeκ

K∏
k=1

∫ ∞

0
dπke

−κπk (πk)α
′
k−1

⎛
⎝ln

Z(α)

Z(α′)
+

K∑
j=1

(α′
j − αj ) ln πj

⎞
⎠ (A6)

= 1

Z(α′)
1

2πi

∫ i∞

−i∞
dκeκ

⎛
⎝ln

Z(α)

Z(α′)
+

K∑
j=1

(α′
j − αj )

∫ ∞
0 dπj ln πje

−κπj (πk′)α
′
j −1∫ ∞

0 dπje
−κπj (πj )α

′
j −1

⎞
⎠

×
(

K∏
k=1

∫ ∞

0
dπke

−κπk (πk)α
′
k−1

)
. (A7)

There are few definite integrals that are useful in further simplifying this expression:

l

∫ ∞

0
dπke

−κπk (πk)α
′
k−1 = κ−α′

k�(α′
k) (A8)∫ ∞

0
dπj ln πje

−κπj (πj )α
′
j −1 = κ−α′

j �(α′
j )[ψ(α′

j ) − ln κ]. (A9)

After some algebraic manipulation and then using these integrals,

DKL = 1

Z(	α′)

(
K∏

k=1

�(α′
k)

)
1

2πi

∫ i∞

−i∞
dκκ−α′

0eκ

⎛
⎝ln

Z(	α)

Z(	α′)
+

K∑
j=1

α′
j − αj

�(α′
j )

κα′
j

∫ ∞

0
dπj ln πje

−κπj (πj )α
′
j −1

⎞
⎠ (A10)

= �(α′
0)

1

2πi

∫ i∞

−i∞
dκκ−α′

0eκ

(
ln

Z(	α)

Z(	α′)
+

K∑
k=1

(α′
k − αk) · ψ(α′

k) − (α′
0 − α0) ln κ

)
(Relabel : j → k) (A11)

= �(α′
0)

(
ln

Z(	α)

Z(	α′)
+

K∑
k=1

(α′
k − αk)ψ(α′

k)

)(
1

2πi

∫ i∞

−i∞
dκκ−α′

0eκ

)
− �(α′

0)(α′
0 − α0)

(
1

2πi

∫ i∞

−i∞
dκκ−α′

0eκ ln κ

)
.

(A12)

To evaluate the remaining integrals, one can note these are known inverse Laplace transforms,

l
1

2πi

∫ i∞

−i∞
dκκ−νeκt = tν−1

�(ν)
(A13)

1

2πi

∫ i∞

−i∞
dκκ−νeκt ln κ = tν−1 ψ(ν) − ln t

�(ν)
for ν > 0,t > 0. (A14)
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Finally, we obtain the general form for the KL divergence,

DKL[Dir(π |α′)||Dir(π |α)] = ln
Z(α)

Z(α′)
+

K∑
k=1

(α′
k − αk)ψ(α′

k) − (α′
0 − α0)ψ(α′

0). (A15)

The specific KL divergence used in the information partition criterion can be derived from this expression by substituting
αk = M

K
+ 1

2 and α′
k = mk + 1

2 while noting that α′
0 = α0:

DKL[Dir(π |α′)||Dir(π |α)] =
K∑

k=1

[(
mk − M

K

)
ψ

(
mk + 1

2

)
− ln �

(
mk + 1

2

)
+ ln �

(
M

K
+ 1

2

)]
. (A16)
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