
PHYSICAL REVIEW E 93, 042203 (2016)

Inhomogeneity induces relay synchronization in complex networks
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Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which
uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information
but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such
simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this
phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay
nodes, and how it is actually responsible for an enhancement of synchronization in the network.
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From physiological rhythmic processes to communication,
from technological to natural networks, synchronization of
interacting units is the foundation that leads a system to operate
collectively [1,2]. A lot is already known about several forms
of synchronization emerging as the result of specific coupling
configurations (unidirectional or bidirectional, instantaneous
or delayed, continuous or discontinuous in time) between
two (or more) chaotic units [3]: complete synchronization
(when the states of two identical systems overlap fully), phase
synchronization (when the adjustment of two nonidentical
oscillators leads to a bounded phase difference between
them) [4], lag synchronization (when the systems’ states are
shifted in time with a lag [5]), and generalized synchronization
(when the evolution of different coupled systems is established
by a functional, possibly invertible, dependence of the state of
one system to the other [6]).

As soon as more than two units are networking, other forms
of collective dynamics may emerge, whose distinguishing fea-
ture is that synchronization does not occur at the macro-scale
of the system. Examples are partial synchronization [7], cluster
synchronization [8] (where nodes group into clusters of distinct
synchronized dynamics), chimera states [9] (i.e., symmetry-
broken structures of coherent and incoherent domains), and
remote and relay synchronization [10,11]. These latter, in
particular, refer to indirect coupling configurations between
outer units realized by means of mismatched relay nodes,
which eventually induce complete synchronization of the iden-
tical oscillators. More specifically, remote synchronization
has been observed in networks of periodic (Stuart-Landau)
oscillators with an amplitude dynamics that plays a central
role in allowing synchronization of not directly connected
nodes [12], while relay synchronization (RS) is proper of
uncoupled chaotic systems that synchronize under the action of
an intermediate node displaying generalized synchronization
with them [13]. While chimera states and cluster, partial,
and remote synchronization have been observed in complex
networks, the arousal of RS has been observed so far only
in regular topologies, such as, e.g., open chains of mutually
coupled oscillators [13–16].
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RS has been the subject of a stream of theoretical and
experimental studies [14], and dynamical relaying has been
proposed, for instance, as the main mechanism allowing
synchronization in distant cortical areas of the brain [15].
RS’s theoretical relevance is linked to the fact that it actually
may be accompanied by the enhancement of synchronization:
the critical coupling strength for complete synchronization
of the outer nodes may even be lowered by the presence of
lag synchronization between the central mismatched node
and the outer oscillators [16]. Furthermore, RS has been
experimentally observed, for instance, in optical systems [11].

In this paper, we show that RS is by no means limited to
chains of mutually coupled oscillators, but it can also emerge
in complex networks. Toward that end, and starting from the
earlier studies in the simplest case of three connected nodes,
we identify the main criteria to investigate RS in large graphs
with arbitrary topologies. As a major result, we find that the
presence of inhomogeneity is indeed fundamental to induce
dynamical relaying effects. Furthermore, we show that relay
nodes, either already existing or intentionally added to the
graph, lead to an enhancement of synchronization in the whole
network, or in a subpart of it.

For the sake of exemplification, and without lack of
generality, we start by considering N Rössler oscillators [17],
diffusively coupled to each other within a network. This being
the case, the equations of motion read

ẋi = −yi − zi,

ẏi = xi + ayi + σ

N∑

j=1

aij (yj − yi), (1)

żi = b + zi(xi − ci),

where xi = (xi,yi,zi)T is the three-dimensional vector state of
the ith node, dots denote temporal derivative, σ is the coupling
strength (σ = 0 corresponds to the uncoupled limit), and
i = 1, . . . ,N . A = {aij } is the network’s adjacency matrix.
In analogy with the traditional case of a three-node open-
chain configuration (where the outer nodes interact with a
mismatched inner unit [13,15,16]), here we set a framework
in which some of the network oscillators have different
parameters with respect to the rest of the units. We choose a
bimodal (fully polarized) distribution of the parameter ci , and
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we focus on the case in which a fraction f of the network nodes
(those having higher values of the degree k) displays a value
of ci equal to ci = c0 while the rest of the network has ci = c.
We call the nodes with ci = c0 relay nodes in anticipation
of their role in mediating for synchronization. The other two
parameters (a and b) are equal for all the graph’s units, and
they are set in a way such that all oscillators, when uncoupled,
exhibit a chaotic dynamics.

Synchronization in the network is monitored by the error
between two oscillators i and j , eij = 〈‖xi − xj )‖〉t , where
‖ · ‖ stands for the Euclidean norm, and 〈·〉t indicates time
averaging over a predefined (sufficiently long) observation
window. Two nodes are taken as synchronized if eij < δ (δ
being a small constant threshold), and a distinction is made
between (i) nodes that synchronize due to the effect of a
physical link between them, or a path of synchronized nodes
connecting them, and (ii) nodes that synchronize due to the
effect of only one relay node (or more). In other words, two
nodes i and j are said to synchronize by dynamical relaying
if they are synchronized, and they are neither connected by a
direct link (i.e., aij = 0) nor by a path of synchronized nodes.
To systematically quantify the extent of RS, the number of
pairs of nodes that are synchronized by dynamical relaying
is counted, and indicated by lr . Furthermore, as in three-node
open chains it has been demonstrated that the outer nodes
and the inner one are in generalized synchronization [13],
the synchronization points percentage (SPP) indicator [18] is
also monitored. Namely, to assess whether two phase-space
configurations, one within the domain and the other within the
codomain subsystem, are locally synchronized, the existence
of a local continuous function from one point to the other
is asserted by analyzing their respective neighborhoods with
a given statistical confidence level. The ratio between the
number of locally synchronized configurations and the total
number of available points m is the SPP: values of the index
close to 1 indicate the existence of a global mapping from one
subsystem to the other, i.e., they give evidence of generalized
synchronization [18].

For our analysis, we fix the parameter mismatch by
assigning ci = c0 = 9 if ki > k∗, and ci = c = 7 otherwise.
These parameter values generate in the hub and in the outer
nodes distinct chaotic attractors. Provided that this condition
is satisfied, other settings may be used with similar results,
included the case in which the mismatch is implemented by
varying other parameters of the Rössler system, such as a and
b. The value of k∗ is set so that the percentage of relay nodes is
less than the 15% of the total number of nodes in the network
(i.e., f � 0.15). A more systematic analysis on the effect of
the number of relay nodes is discussed below. Furthermore,
we consider two different network types, namely the scale-free
(SF [19]) and the Erdös-Rényi (ER [20]) network’s topologies,
and we report the results obtained for N = 100 and average
degree 〈k〉 = 4. We focus first on a single SF network, whose
structure is shown in Fig. 1. The inset is a magnification of
two small parts of the network, which we will use later for a
better illustration of our observations.

As the setting of synchronization in the network depends
on the value of σ , we first analyze the scenario at σ = 1 and
later on follow the evolution of synchronization for coupling
strengths that gradually increases from 0 to 1. The N × N

FIG. 1. Sketch of the considered scale-free network with N =
100, 〈k〉 = 4, k∗ = 7. The higher-degree nodes are colored in blue
(the size of the nodes being proportional to their degree), and the
others are in red. The inset zooms on a portion of the graph containing
two different sets of nodes that are in relay configurations.

matrix reported in Fig. 2 summarizes the scenario emerging at
σ = 1. In the matrix, the elements are color-coded according
to the final (asymptotic) state of the corresponding pairs of
nodes. To be specific, black pairs are those pairs of nodes that
come out to evolve asynchronously, orange pairs are those pairs
of synchronized nodes that, however, are directly connected
in the network either by physical links or paths, and white
pairs are those nodes that evolve synchronously thanks to the
unique effect of dynamical relay. As is seen, the incidence of
relay synchronization is significant, leading to the presence
of a consistent amount of pairs of nodes that synchronize
through some relay nodes. A better illustration is gathered
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FIG. 2. N × N matrix summarizing the synchronization scenario
in the network of Fig. 1 at σ = 1. Color codes are used with the
following stipulations: black corresponds to pairs of unsynchronized
nodes, orange to those pairs of synchronized nodes directly connected
in the network either by physical links or paths, and white to pairs of
nodes whose asymptotic behavior is synchronous thanks to the effect
of dynamical relay. The vertical and horizontal blue lines denote
furthermore the nodes with ci = c0 = 9.
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FIG. 3. Relay synchronization in the SF network of Fig. 1. (a),(b) SPP (upper plots, see text for definition) and synchronization error eij

(lower plots) vs σ (a) between nodes 16 and 41 (blue line) and between nodes 41 and 79 (red line), and (b) between nodes 8 and 75 (blue line)
and between nodes 75 and 71 (red line). (c) Global synchronization error E vs σ . (d) Schematic representation of three paths from node 41 to
79. The network edges have been redrawn as continuous (dashed) lines if they connect (do not connect) two nodes that are synchronized. Light
blue arrows (light red boxes) indicate synchronization through dynamical relaying (through direct links).

by selecting two specific pairs of nodes, and reporting for
them the evolution of the synchronization error versus the
coupling coefficient [lower plots of Figs. 3(a) and 3(b)]. Such
pairs of nodes are the ones appearing in the inset of Fig. 1
along with the relay nodes mediating for their synchronization;
they are nodes 41 and 79 (which are synchronized through
the relay action of node 16) and nodes 71 and 75 (which
are synchronized through the action of nodes 8 and 4). In
fact, nodes 4, 8, and 16 are all of high degree and, therefore,
they have ci = c0. Along with the synchronization error, the
upper plots of Figs. 3(a) and 3(b) report the trend of the
SPP, confirming that the microscopic mechanism leading to
synchronization is that of RS. Indeed, for the first case [nodes
41-16-79, Fig. 3(a)] the synchronization between the outer
nodes is allowed thanks to the passage of information through
the central node. The synchronization between nodes 41 and
79 occurs at σc = 0.28, while e16,41 remains greater than zero
(analogously e16,79 > 0). From the SPP behavior of Fig. 3(a)
we also observe a transition at σc = 0.28 from low values
to values close to 1, indicating the existence of generalized
synchronization. In the second case, the relay nodes are two
(nodes 4 and 8). As shown in Fig. 3(b), when nodes 71 and
75 synchronize, the SPP takes values close to 1, indicating
the presence of generalized synchronization between node
75 (or 71) and either one of the two relays [Fig. 3(b), for

example, reports the SPP between nodes 75 and 8, but the
same holds for the other pairs]. Figure 3(c) reports the global
synchronization error E = 1

N(N−1)

∑
i,j eij , illustrating a clear

dynamical transition of relay synchronization, occurring at the
same critical value σc = 0.28 that yields synchronization at
the microscopic scale.

One should notice that, as the graph is connected, there
are obviously other paths connecting nodes 41 and 79, which
could allow synchronization between them. To discriminate
the genuine nature of RS between nodes 41 and 79, one
has therefore to analyze in detail the structure of network
paths between the two nodes. Two such paths are illustrated
in Fig. 3(d) along with the one passing through node 16. In
the figure, based on the results of numerical simulations with
σ = 1, we have redrawn the network edges as continuous
(dashed) lines if they connect two nodes that are (are not)
synchronized. Furthermore, we distinguish between those
subpaths formed only by synchronized nodes due to physical
links (highlighted with light red boxes) and those including
dynamical relays (light blue arrows). The path through the
nodes 14-12-35-8 includes nodes that are not synchronized
with each other (14 and 12, for instance, which are linked
by a dashed edge), therefore it cannot be responsible for the
synchronization of nodes 41 and 79. The two other paths
are formed either by one node in dynamical relaying (node
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FIG. 4. lr (see text for definition) in the parameter space (σ,f ) for SF (a) and ER networks (b). Color bars report the corresponding color
codes.

16) or by two (node 14, which relays 41 with the group
of synchronized nodes 66, 33, and 20; and node 8, which
relays the group with 79), and, hence, they have equivalent
synchronization features. All other paths between nodes 41
and 79 [not reported in Fig. 3(d)] have properties similar to
the ones discussed above.

ER networks also show RS in the presence of inho-
mogeneity. However, the overall phenomenon appears with
distinguishing quantitative features. To illustrate the differ-
ences, we performed a systematic analysis of the parameter
lr as a function of the coupling strength and the impact
of inhomogeneity measured by the fraction of relay nodes.
Figure 4 reports the values of lr for SF [Fig. 4(a)] and
ER [Fig. 4(b)] networks. The parameter lr is greater in SF
networks than in ER topologies. In addition, the peak of
RS is observed in SF networks for a number of relay nodes
smaller than that in ER networks. Inhomogeneity in a small
set of nodes is sufficient to induce a high level of relay
synchronization, whereas the more homogeneous the structure
is, the higher is the inhomogeneity required in the node
dynamics to elicit RS, generally associated with lower peaks of
lr . The difference of RS in SF and ER networks originates from
their topological structure. In SF networks, a few high-degree
nodes act as hubs to connect many units. As many paths pass
through these nodes, they can relay the information needed
to synchronize many pairs of units. Therefore, SF networks
require few relay nodes to induce a large number of pairs
synchronized by dynamical relaying. On the contrary, in more
homogeneous structures, such as in ER networks, a larger
fraction of mismatched nodes is required to elicit RS. In
addition, the more homogeneous topology yields the formation
of a smaller number of paths passing through relay nodes, thus
explaining the lower values of lr observed in ER networks than
in SF.

The appearance of RS in complex networks shows a
profound difference with the phenomenon of remote syn-
chronization [12]. Although the latter is also characterized
by the synchronization of not directly connected nodes
through the action of intermediate units, the microscopic
mechanism underlying RS is different. In fact, RS is allowed
by generalized synchronization between the hubs and the outer
nodes. On the contrary, remote synchronization is ruled at the
microscopic scale by the action of the amplitude dynamics,

whose modulation permits the transmission of the information
for synchronization. Another distinguishing trait is that remote
synchronization appears as a state prior to the onset of global
synchronization observed for larger coupling, whereas RS
represents the strongest form of synchronization possible in
the inhomogeneous network, as global synchronization is
prevented by the large mismatch between the parameters of
the hubs and those of the outer nodes.

We now move to show that dynamical relaying leads, in
fact, to an enhancement of synchronization. Toward that end,
we reconsider the SF network of Fig. 1, and we extract a
subnetwork � of 77 nodes. The subnetwork � is connected,
and it is formed by those nodes having all ci = c and fully
synchronized at σ = 1. We then compare the synchronization
properties of � in two distinct situations: (i) when it is isolated
from the other nodes of Fig. 1, and (ii) when a variable number
of relay nodes from the network of Fig. 1 are added to it. The
synchronization error is calculated on all the possible pairs
of nodes of the subnetwork �: 〈e〉 = 1∑

(i,j )∈� aij

∑
(i,j )∈� eij .

Figure 5 shows the behavior of 〈e〉 for � (black line) and four
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FIG. 5. 〈e〉 (see text for definition) vs σ for the isolated subnet-
work � (black line) and when an increasing number of relay nodes
is considered (colored lines, color codes in the inset). Dynamical
relays enhances synchronization of � by lowering the synchronization
threshold.
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other networks (color lines), which are obtained by adding 2
(�1), 4 (�2), 6 (�3), or 8 (�4) relay nodes. It is seen that the
threshold for synchronization is progressively reduced, as an
increasing number of relay nodes is added.

In the previous example, the relay nodes have been added
according to their connectivity in the SF network of Fig. 1,
that is, each relay node is added along with its links in
the SF network. By iterating the procedure, the original SF
network can therefore be fully retrieved. However, we have
found that the enhancement by dynamical relaying is a much
more general phenomenon. Let us indeed consider here a
different scenario, in which a number of relay nodes with
totally arbitrary links to the already existing nodes is added
to a given pristine network. A remarkable result is that such
relay nodes generically favor the onset of synchronization.
In particular, we take into account a SF network with N =
100 identical nodes with ci = c (the pristine network) and
we analyze the behavior of the synchronization error 〈e〉
when we add two relay nodes (having cj = c0) with an
increasing number of links to the original network. The result
is shown in Fig. 6, where the pristine network has again
been named �, and the networks �a , �b, �c, and �d are
obtained with the inclusion of the two relays with different
node degrees. The introduction of only two dynamical relays
in the network led to an enhancement of the synchronization
of the pristine network, which becomes more significant as the
number of links increases. In networks of coupled oscillators,
synchronization is made possible by the links that enable the
interactions between the units. We have found that dynamical
relaying provides a further mechanism to effectively couple
the dynamics of two nodes, which eventually are not con-
nected by a physical edge. Consequently, adding mismatched
nodes able to act as dynamical relays generally results in
a lower threshold for the overall synchronization of the
network.

In summary, we presented evidence of relay synchroniza-
tion in a generic complex network. Analogously to what
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FIG. 6. 〈e〉 vs σ in a SF pristine network, �, of N = 100 identical
nodes with ci = c (black line), compared with the case when two relay
nodes with cj = c0 are added to this network with a different degree:
in �a (blue line) each relay node forms 10 links with the pristine
networks, in �b (red line) it forms 20 links, in �c (green line) 30
links, and in �d (purple line) 40 links.

was observed in a simple chain configuration, we have
demonstrated that the underlying mechanism through which
relay nodes act is generalized synchronization. In particular,
we have shown that the presence of relay synchronization
is induced by the inhomogeneity of the node dynamics, and
such synchronization appears in SF and ER networks with
distinct features, requiring in the former case a lower fraction
of mismatched nodes with respect to the latter. We have also
shown that relay synchronization is generically associated with
an enhancement of synchronization. Remarkably, when some
mismatched nodes are randomly added to a generic pristine
network, their inclusion (provided that their degree is high
enough) favors synchronization by lowering the threshold for
complete synchronization.
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