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We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time
series, which is a simple and useful approach to distinguish between systems with different dynamical properties
but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time
series into magnitude and sign series derived from the consecutive increments in the original series, and we study
their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a
function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series
with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed
as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order
approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many
fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation
exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude
and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain
how the linear and nonlinear properties of the composed series depend on the correlation exponents of their
magnitude and sign series. Based on this information we propose a method to generate surrogate series with
controlled correlation exponent and multifractal spectrum.
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I. INTRODUCTION

A wide variety of phenomena in different fields ranging
from physiology to economy show complex dynamics gener-
ating output signals that appear to be erratic and noisy but that,
in fact, possess long-range correlations with scale-invariant
structure. In addition, it has been observed that the presence of
such correlations is linked to relevant properties of the system
under study; for example, the correlations in the series of
heartbeats change from healthy to pathological conditions [1]
or under different physiological states [2].

In many cases, given a time series xi,i = 1,2, . . . ,N , its
increments �xi = xi+1 − xi are more relevant than the series
itself because the dynamical properties of the increments
provide with interesting clues about the underlying dynamics
of the system and could help to develop useful models.

For nonlinear systems it is important to go beyond the
study of linear correlations because they do not account for
all dynamical properties of such systems; e.g., increment time
series with the same linear correlations could correspond to
systems with completely different nonlinear and multifractal
behaviors [3]. A simple approach to break this degeneration
consists in studying separately the correlations of magnitude
and sign of the increment time series. The correlations in the
series of magnitudes (also known as volatility series) have
been related to the presence of nonlinear correlations and
multifractal structure [3–5], whereas the properties of the sign
series are solely determined by the linear correlations [3,4]
and have been studied in the context of first-passage time in
scale-invariant correlated processes [6].

In addition, from the intuitive point of view, magnitude
and sign time series contain different and complementary

information about the original signal: the magnitude measures
how big the changes are and the sign indicates their direction.
An example of this is the dynamics of the heart [3], which
is thought to be the result of two competing forces, the
sympathetic and parasympathetic branches of the autonomous
nervous system, that leads to complex variability with scale-
invariant characteristics. Roughly speaking, the first one is
responsible for slow (small in magnitude) increases (positive
in sign) of the heart rate, while the second is usually associated
with fast (large in magnitude) decreases (negative in sign).
Other examples of the usefulness of the magnitude and sign
analysis are also found in fluid dynamics [7], geological [8,9],
geophysical [10,11], and economical time series [12].

Despite the importance of the magnitude and sign time
series we have just mentioned, there are still open questions:
for example, given a time series with known long-range
correlations, a key question is whether there are correlations
present also in the magnitude and sign time series? The
approach to address this question is what we call here the
decomposition problem. In principle, the systematic study of
this problem is a complicated task, since the original time series
can have very different nature, as mentioned above. Instead,
we study the decomposition problem in artificial time series,
which are commonly used to model the behavior of long-range
correlated time series. In particular, we consider fractional
Gaussian noises (fGns) and fractional Brownian motions
(fBms) to model respectively stationary and nonstationary
long-range correlated time series.

Furthermore, a second important problem (still open in
many cases) is how the magnitude and sign of the increments
are coupled to form the whole signal: for example, in
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the human heart, when analyzing the increments of the
interbeat interval time series, it is not clear yet what the
relationship is between the magnitude (how big the change
in the cardiac rhythm is) and the sign (the direction of
the change). Obviously, a systematic study of the coupling
between magnitude and sign series would be of great interest
to improve the understanding of the relation between them
and the behavior of the underlying mechanisms of control.
Specifically, we investigate how the correlations of the whole
signal are controlled by the correlations in the magnitude
and sign time series, as well as by the coupling between
them. However, the coupling mechanism of magnitude and
sign will be different in time series of different nature,
since the underlying dynamics will be different as well,
and this variety of potential coupling mechanisms makes a
systematic analysis difficult. Nevertheless, we can approach
this problem from a different point of view: we can study
systematically the correlation properties of time series with
uncoupled magnitude and sign. Such time series can be
artificially generated by multiplying magnitude and sign time
series (each one with known correlations) obtained from
different fGns or fBms. In this way, we guarantee that both
magnitude and sign series are independent and thus uncoupled.
Such analysis is what we call here the composition problem.
The composition problem can be useful to understand the
behavior of complex systems characterized by the coupling of
two different mechanisms, each controlling the dynamics of
magnitude and sign respectively. In addition, the results of the
composition problem are a reference of uncoupling and then
can be used to detect the existence of coupling mechanisms
when analyzing real complex time series.

This article is organized as follows: In Sec. II we describe
the methods and algorithms used in this article. Specifically, in
Sec. II A we describe Detrended Fluctuation Analysis (DFA),
the method used here to quantify the linear correlations,
in Sec. II B we explain Multifractal Detrended Fluctuation
Analysis (MFDFA), the algorithm we use to obtain multifractal
spectra of time series, and Sec. II C introduces the Fourier
Filtering Method, which allows us to generate signals with
given correlation exponent.

In Sec. III we systematically study the decomposition
problem, i.e., the correlation properties of the magnitude and
sign time series obtained from long-range power-law linearly
correlated time series. In Sec. IV we investigate the compo-
sition problem; i.e., we systematically study the correlations
properties of composed time series with uncoupled magnitude
and sign series. The multifractal properties of such composed
series are analyzed in Sec. V, and, finally, Sec. VI presents the
conclusions of this work.

II. METHODS

A. Detrended Fluctuation Analysis (DFA)

Here we quantify the linear correlations of time series by
using Detrended Fluctuation Analysis (DFA) [13], a modified
version of Fluctuation Analysis (FA), which is able to eliminate
the effects of the nonstationarity. This method provides a single
quantitative parameter, the scaling exponent α, to represent the
correlation properties of a long-range correlated series.

DFA consists of the following steps [13]:
(i) Starting with a correlated series {xi} of size N we first

integrate the series and obtain

y(j ) ≡
j∑

i=1

[xi − μ], (1)

where μ is the mean value of the entire series.
(ii) The integrated series y(j ) is divided into boxes of equal

length �.
(iii) In each box of length �, we calculate a linear fit of y(j )

which represents the linear trend in that box. The y coordinate
of the fit line in each box is denoted by y�(j ).

(iv) The integrated series y(j ) is detrended by subtracting
the local trend y�(j ) in each box of length �.

(v) For a given box size �, the root mean square (r.m.s.)
fluctuation for this integrated and detrended series is calcu-
lated:

F (�) =
√√√√ 1

N

N∑
j=1

[y(j ) − y�(j )]2. (2)

(vi) The above computation is repeated for a broad range
of scales (box sizes �) to provide a relationship between F (�)
and the box size �.

For a power-law correlated time series, there exists a
power-law relation between the average root-mean-square
fluctuation function F (�) and the box size �: F (�) ∼ �α . Thus,
the fluctuations can be characterized by a scaling exponent
α, a self-similarity parameter which quantifies the long-range
power-law correlation properties of the signal.

If the power-law correlated time series is stationary (α < 1),
the autocorrelation function decays as a power law, C(�) ∼
sgn(1 − γ )/�γ , and the exponent α is related to the exponent
γ by [14–16]

α = 2 − γ

2
. (3)

Note that for the special case γ = 1 (α = 0.5) the autocorre-
lation function vanishes.

In addition, it can be shown, via the Wiener-Khinchin
theorem, that the power spectrum of the series is also a power
law, whose exponent β is indeed related to α [16]:

α = β + 1

2
. (4)

Here it is worth mentioning that, although Wiener-Khinchin
theorem is only for α < 1, this relationship between α and β

is also valid for α > 1.
Values of α < 0.5 indicate the presence of anticorrelations

in the time series, α = 0.5 absence of correlations (white noise)
and α > 0.5 indicates the presence of positive correlations in
the time series. In particular, for α = 1.5 the series correspond
to the well-known Brownian motion.

The performance of DFA has been systematically studied
for time series with different trends [17,18], missing data
[19], different artifacts [20], linear and nonlinear preprocessing
filters [21], and coarse graining of the time series values [22].
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B. Multifractal Detrended Fluctuation Analysis (MFDFA)

DFA studies the scaling of the second-order moment as a
function of the window size �, and thus, it takes into account
only the linear correlations present in the series. MFDFA can
be understood as a generalization of DFA in the sense that
it analyzes the scaling of all possible moments of order q

(including negative ones) [23]. To do so, Eq. (2) is generalized
as follows:

Fq(�) =
⎡
⎣ 1

N

N∑
j=1

|y(j ) − y�(j )|q
⎤
⎦

1
q

. (5)

For long-range power-law correlated time series, the fluc-
tuations Fq(�) scale as a power law of the form

Fq(�) ∼ �h(q), (6)

where h(q) is the scaling exponent of the fluctuations of order
q as a function of the window size �. Obviously, the DFA
exponent α is a particular case for q = 2, i.e., α = h(2). For
series with only linear correlations h(q) = α ∀q, i.e., there is
a single scaling exponent and the series is monofractal. On
the other hand, when nonlinear correlations are present in the
series, each moment scales with a different exponent h(q) and
the series will be multifractal.

The scaling exponents h(q) can be related to the classical
multifractal box-counting scaling exponents τ (q) by means of
the expression

τ (q) = qh(q) − 1. (7)

Finally, calculating the Lengendre transform we can obtain the
multifractal spectrum (see Ref. [23]):

ζ = τ ′(q), (8)

f (ζ ) = qζ − τ (q), (9)

where f (ζ ) denotes the fractal dimension of the subset of the
series characterized by ζ . For the particular case of monofractal
time series, as all the moments scale with the same exponent,
h(q) = α,h′(q) = 0, and the multifractal spectrum will be a
delta function:

f (ζ ) = δ(ζ − α). (10)

In contrast, for a multifractal series, f (ζ ) will have a
nonzero width, �ζ , which can be used as a measure of the
strength of the nonlinearities present in the series.

C. Fourier Filtering Method

To generate artificial series with long-range power-law
correlations we use the Fourier Filtering Method (FFM)
[24,25]. This method makes use of Eq. (4) to obtain a series
with DFA exponent α.

It works as follows:
(i) Generate a white noise η(i), i.e., a series of uncorrelated

Gaussian-distributed numbers all with the same mean and
variance, and compute its Fourier transform, η̂(f ).

(ii) The series with the desired correlation exponent α is
obtained as

x(i; α) ≡ F−1

[
η̂(f )

f α−1/2

]
, (11)

where F−1[·] denotes the inverse Fourier transform. To check
this, simply take into account that the Fourier transform of
x(i; α) is a power law of exponent α − 1/2 and thus its power
spectrum follows a power law with exponent 2α − 1, which,
according to Eq. (4), gives a DFA exponent α. Time series
generated by FFM are normalized to zero mean and unit
variance.

III. DECOMPOSITION OF A TIME SERIES:
CORRELATIONS IN THE MAGNITUDE AND SIGN

Our aim is to quantify the correlations in the magnitude and
sign time series obtained from the decomposition of a long-
range correlated time series with a given input correlations.
To systematically analyze the correlation properties of the
magnitude and sign series, we generate artificial series of
length 220 � 106 using FFM with different input values of the
correlation exponent (αin) equally spaced in the (0,2) interval.
Figure 1 shows an example of a correlated series obtained for
αin = 1, as well as its magnitude and sign series.

For each individual series we obtain its corresponding
magnitude and sign series, compute their correlation exponents
(αmag and αsign respectively), and average them over an
ensemble of 200 experiments for each input αin value. We
also compute the correlation exponent of the generated time
series (αout), which could be slightly different from αin due to
statistical fluctuations and finite size effects (Fig. 2).

In Fig. 3 we show the results. We observe three different
regions:

(i) αin � 0.5. Despite the anticorrelations of the time
series, both magnitude and sign are essentially uncorrelated.
In all cases the magnitude series show a perfect fit to a power
law with exponent αmag = 0.5 for all considered scales. These
series are virtually indistinguishable from random i.i.d. series.
But, on the other hand, the sign series (especially for αin > 0.2)
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FIG. 1. (a) Example of correlated series obtained with the Fourier
filtering method and αin = 1. (b) Series of its magnitudes and (c) series
of its signs.
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FIG. 2. Finite size effects. (a) Distributions of αout, αmag, and
αsign for two ensembles of 65 000 series generated by using the FFM
with αin = 0.7. Open symbols: length of the series N = 220 � 106,
full symbols: length of the series N = 210 � 103. Due to statistical
fluctuations, the values of the correlation exponent αout are not exactly
equal to αin; instead they are normally distributed with a variance that
decreases as N increases. A similar behavior is observed for αmag

and αsign. (b) Mean values and standard deviations (error bars) of
the distributions of of αout,αmag, and αsign for experiments similar
to those in (a) for series size ranging from N = 210 to N = 220.
In all three cases the mean values seem to approach an asymptotic
value as N grows. In particular, both αout and αsign tend to the same
value, αin, the convergence being slower for αsign. The fact that αout

and αsign have the same asymptotic limit is observed only within
the region 0.5 � αin < 1, whereas in the region αin > 1,αmag tends
asymptotically to the same limit as αout (see Sec. III).
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FIG. 3. Averaged correlation exponents for the composed signal
(αout), magnitude (αmag), and sign (αsign) as a function of αin. For each
value of αin we generate 200 series of length N = 220 to obtain the
averages.
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FIG. 4. Fsign(�) vs � for the sign series in the region αin � 0.5. We
average Fsign(�) over an ensemble of 200 sign series obtained from
anticorrelated series of size N = 220 and αin = 0.2. The global scaling
exponent, αsign = 0.46, indicates the presence of anticorrelations, but
the direct inspection of Fsign(�) reveals the existence of a crossover
around �c = 190. Below �c the sign series exhibits anticorrelations
(α1 = 0.36), but such behavior disappears for � > �c (α2 = 0.50).

show values of αsign � 0.5 thus implying the presence of
anticorrelations.

We find that only at short scales sign series show clear
anticorrelated behavior, while at intermediate and large scales,
the behavior is uncorrelated. This effect is shown in Fig. 4,
where we plot the typical behavior of Fsign(�) for the sign
series in the region αin � 0.5. At small �,Fsign(�) scales with
exponent α1 = 0.36 and, after a transition regime, the rest of
the curve shows an scaling exponent α2 = 0.50 corresponding
to uncorrelated behavior.

For this reason, the global exponent αsign, obtained as a fit
for the whole � range (Fig. 3), is affected by these first values
of the Fsign(�) curve, thus leading to αsign � 0.5.

In summary, for large enough scales, both magnitude
and sign series are uncorrelated. Having this in mind, the
anticorrelations in the series (present at all scales) must be
a result of the coupling between magnitude and sign because
none of them are significantly anticorrelated themselves. To
check this, we perform the following experiment: Generate
a signal with αin = 0.3, decompose it into its magnitude
and sign series, shuffle the sign (thus destroying all possible
coupling between magnitude and sign), and finally multiply
the randomized sign series by the original magnitude series
to obtain a surrogate signal with uncoupled magnitude and
sign. We also do the same experiment but randomizing the
magnitude series. The results shown in Fig. 5 confirm our
initial guess: the two surrogate series lose their anticorrelations
since F (�) scales as �0.5. Note that in the second experiment,
where we randomized the magnitude, the surrogate series still
preserves certain anticorrelations at small scales coming from
those present in the original sign series. Nevertheless, for
� large enough, the random behavior is recovered and the
fluctuations scale with α = 0.5.

An important conclusion drawn from here is the fact that
it is not possible to obtain long-range anticorrelated binary
sequences from the sign of an anticorrelated time series. This
limitation has also been found in other methods described in
the bibliography for the generation of long-range correlated
binary sequences [26–28].
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FIG. 5. F (�) vs � for anticorrelated series (αin = 0.3) and for sur-
rogate series obtained by means of sign or magnitude randomization:
Generate a sign with αin = 0.3, decompose it into its magnitude and
sign series, randomize the sign or magnitude series, and obtain two
surrogate series, one multiplying the randomized sign by the original
magnitude (�) and the other multiplying the randomized magnitude
by the original sign (�). Both curves have been obtained for signals
with N = 220 and averaging over 200 experiments.

(ii) 0.5 < αin < 1. In this region sign series show correla-
tions in the whole interval, while magnitude series are corre-
lated only beyond αin = 0.75. Nevertheless, the correlations in
the original signal are controlled by those in the sign no matter
if the magnitude series are correlated or not. These results
are in agreement with Ref. [29], where an analytical relation
between C(�) and Csign(�) was found:

C(�) = sin

[
π

2
Csign(�)

]
(12)

valid for γ < 1 and C(�) > 0, i.e., 0.5 < α < 1. Taking into
account that the correlations will be much smaller than one
for large enough �, the sine in Eq. (12) can be approximated
by its argument, and, assuming power-law dependence for the
autocorrelation function, we get

1

�γout
� π

2

1

�γsign
, (13)

and using (3) we obtain

αsign � αout − log(π/2)

2 log �
. (14)

Note that, according to Eq. (14), in Fig. 3, αsign is always
slightly smaller than αout. In fact, αsign → αout only asymptot-
ically [see Fig. 2(b)]. This behavior has been already observed
by Carretero-Campos et al. [6] studying the sign series in the
context of the distribution of first-passage times in correlated
time series.

Within this region, sign series provide an easy method to
obtain correlated binary sequences with a correlation exponent
αsign, which is virtually the same as the exponent of the original
series αin. For example, this method is useful to study DNA
sequences that have been frequently modeled as correlated
binary sequences with correlation exponents 0.5 < α < 1
[30].

Here, contrary to what we observed in the previous region,
the coupling between magnitude and sign does not seem to
play a relevant role. Indeed, as we will show in Sec. IV, even
under the assumption of independence between magnitude and

sign, the correlations of the signal are controlled by those in
the sign, as long as αmag,αsign ∈ (0.5,1).

(iii) 1 < αin < 2. Both αmag and αsign continue increasing
with αin. Now, αmag is the one which tends asymptotically to
αout; i.e., in this region correlations of the composed signal are
controlled by the magnitude. On the other hand, αsign grows as
a function of αin with slope 1/2; thus, in this region:

αsign = 1
2 (1 + αin). (15)

This behavior can be explained analytically by using the
properties of the distribution of first-passage times for linearly
correlated series found in Ref. [6]. It is also easy to show that
αsign cannot be larger than 3/2 (see Appendix A for a proof of
both properties).

In summary, we have for the correlation exponent αsign as
a function of αin the next asymptotic behavior:

αsign =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 αin < 1

2
αin

1
2 � αin < 1

1
2 (1 + αin) 1 � αin < 2
3
2 2 � αin

. (16)

For the correlation exponent αmag the asymptotic behavior
consists of an uncorrelated zone for αin < 3

4 , a transition for
3
4 < αin < 5

4 , and a region where αmag � αin for αin > 5
4 . The

correlations observed for the series of magnitudes |�xi | are in
good agreement with those obtained for the series (�xi)2 in
Ref. [5].

IV. COMPOSITION OF MAGNITUDE AND SIGN SERIES

As we stated in the introduction, we are also interested
in the properties of the composition of independent series
of correlated signs and magnitudes. Our interest is double:
On the one hand, we study the behavior of time series
whose magnitude and sign are controlled by independent
mechanisms. One of them controls the magnitudes of the
increments while their signs are controlled by the other. This
can be considered as the simplest approach to model real
signals. On the other hand, by understanding the behavior of
time series with independent magnitude and sign, we are able
to identify when magnitude and sign are not independent, and
consequently, we can establish a coupling detection method.
Thus, by investigating the correlation properties of such
composed time series, we can elucidate whether the magnitude
and sign of a real time series are uncoupled or not.

The procedure to generate a composed time series with
independent magnitude and sign works as follows. In order
to obtain independent series of magnitude and sign, using
FFM we generate two independent correlated series with input
correlation exponents αin1 and αin2,x(i; αin1) and x(i; αin1)
respectively. Then the magnitude series is obtained as

xmag(i) = |x(i; αin1)|, (17)

whose correlation exponent, αmag depends on αin1 (Fig. 3).
Correspondingly, we obtain the sign series as

xsign(i) = sgn[x(i; αin2)], (18)
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whose correlation exponent αsign depends on αin2 (Fig. 3).
Finally, the composed series is given by

xcomp(i) = xmag(i) · xsign(i). (19)

Here we systematically study the correlations of the
composed series with αin1,αin2 in the range [0.5,2] leading
to αmag ∈ [0.5,1.5] and αsign ∈ [0.5,2] (Fig. 3). Note that
we do not explore the region αin1,αin2 < 0.5 because, as
we have shown above, for these values both magnitude and
sign are essentially uncorrelated. Depending on αmag and αsign

we have observed three different behaviors.

A. Case αsign < 1

Here, independently of the exponent αmag, the correlations
in the composed series are controlled by those in the sign.
Given a time series obtained as the product of two independent
magnitude and sign series we show in Appendix B that its
autocorrelation function can be written as

C(�) = Csign(�)
(π − 2)Cmag(�) + 2

π
, (20)

where C(�),Cmag(�), and Csign(�) are the autocorrelation
functions of the composed signal at distance �, its magnitude,
and its sign, respectively.

Depending on αmag we distinguish two regimes:
(i) αmag < 1. If the series are power-law correlated we have

Cmag(�) ∼ �−γmag and Csign(�) ∼ �−γsign , (21)

where γmag = 2αmag − 2 and γsign = 2αsign − 2 according to
(3). Using Eq. (21) in Eq. (20) we have for the autocorrelation
of the composed signal:

C(�) ∼ π − 2

π
�−(γmag+γsign) + 2

π
�−γsign . (22)

As we are considering αmag,αsign ∈ [0.5,1), it follows that
γsign < γmag + γsign, and thus, the second term will be the
leading one for large enough �:

C(�) ∼ Csign(�). (23)

(ii) αmag � 1. Now Cmag(�) = constant and it follows
straightforwardly from (20) that

C(�) ∝ Csign(�). (24)

Here it is important to note that while (23) is an approxi-
mation valid only for large enough �, (24) holds in the whole
range.

In Fig. 6 we show an example of such situations. For a fixed
value αmag we obtain composed series with different values of
αsign, and, in all cases, the resulting correlation exponent is
almost the same as αsign in agreement with Eqs. (23) and (24).
According to this, we are able to generate artificial signals
with the desired correlation exponent (controlled by αsign)
independently of the correlations in the magnitude series. As
the correlations in the magnitude are known to be related to the
nonlinear properties of the signal [5] this implies that we can
control the linear and nonlinear properties of the composed
signal (see Sec. V).
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FIG. 6. Example of composed series generated by multiplying
sign and magnitude from independent original series for αsign < 1.
(a) αmag < 1. For � large enough (� > 30) F (�) scales with α � αsign

according to Eq. (23). (b) αmag > 1. F (�) scales with α = αsign in
the whole range. Note that, contrary to Eq. (23), Eq. (24) is not an
approximation for large �. The size of the time series is 220, and the
results are averaged over 200 experiments.

B. Case αmag < 1,αsign > 1

Here we observe different behaviors at short and large scales
(Fig. 7). While for small � the correlation exponent α1 � αmag,
at large scales, the sign series takes over, and we get α2 �
αsign. The reason for this scaling crossover can be explained as
follows: Taking into account that αsign > 1, a change of sign
within a window of small size is unlikely to happen [6]; thus

0 1 2 3 4 5 6
log10(l)

0

2

4

lo
g 10

(F
)

αsign=1.30
αsign=1.34
αsign=1.40

α2=1.31αmag=0.52
α2=1.35
α2=1.42

α1=0.55
α1=0.55
α1=0.55

FIG. 7. Examples of composed series generated by multiplying
sign and magnitude from independent original series for the case
αmag < 1 and αsign > 1. We obtain a crossover � dividing the range
into two regions with different scaling: α1 � αmag for � < �c and
α2 � αsign for � > �c. The size of the time series is 220, and the results
are averaged over 200 experiments. Different F (�) have been shifted
vertically for the sake of clarity.
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the fluctuations at such scales depend only on the fluctuations
of the magnitude. On the other hand, for large enough scales,
the changes of the sign inside a single window will create
fluctuations much higher than those of the magnitude, and
thus, the correlation exponent will be close to αsign.

The position of the crossover �c between both regimes
depends on the size N of the series and can be determined
analytically taking into account that the transition between
these two regions should happen at a window size �c for
which the fluctuations due to the oscillations of both sign
and magnitude give the same contribution.

A long-range correlated series with α < 1 is stationary, so
we can write for the fluctuations in the magnitude at scale �

Fmag(�) = Amag�
αmag , (25)

where Amag is a constant. Nevertheless, for α � 1 the series is
nonstationary and the fluctuations at a given scale also depend
on N . In Appendix A we show that the fluctuations in the sign
series for α � 1 can be written as

Fsign(�) = Bsign
�αsign

Nαsign−1 , (26)

where Bsign is a constant.
Clearly, the positive power of N (αsign − 1 > 0) dividing

in Eq. (26) makes Fsign(�) < Fmag(�) at small scales while
Fsign(�) > Fmag(�) for large ones. This behavior also justifies
the fact, commented on above, that at short scales the series
scales with α1 � αsign and α2 � αmag for the larger ones.

Thus, the crossover will be located at the point �c where the
equality between (25) and (26) holds Fmag(�c) = Fsign(�c) and
then

�c = Amag

Bsign
N

αsign−1
αsign−αmag ∝ Nk, (27)

where

k = αsign − 1

αsign − αmag
. (28)

The analytical results obtained in Eqs. (27) and (28) are
in good agreement with the simulations shown in Fig. 8. It
is worth mentioning that k < 1, provided that αmag < 1. This
means that �c grows slower than the size of the system, and
thus the crossover will always be observable for long enough
series.

C. Case αsign > 1,αmag > 1

In this case F (�) might also present a crossover, although it
will be difficult to observe in practice. To better understand the
behavior of F (�) in this regime we follow a procedure similar
to that described in the previous section. As well as in the
previous section, αsign > 1, and we have for the fluctuations in
the sign

Fsign(�) = Bsign
�αsign

Nαsign−1 . (29)

Now, in addition, the magnitude series is also nonstationary
(αmag > 1), and, from the definition of fractional Brownian
motion, the variance of the series grows as N2(αmag−1). This
means that, in order to keep the series with unit standard
deviation, the generation procedure (Sec. II C) carries out an

104 105 106 107

N

102

103

l c

αsign=1.25, αmag= 0.52
Fit to power law

(a)

1.1 1.2 1.3 1.4 1.5
αsign

0.2

0.3

0.4

0.5

Ex
po

ne
nt

  k

Experimental data
Fit  to:  (αsign-1)/(αsign - αmag)

(b)

FIG. 8. Position of the crossover �c as a function of the size of the
series N . (a) To check that � grows as a power law of the system size
N (27), we generate series with αsign = 1.25 and αmag = 0.52 and
sizes in the range [213,224]. For each size we obtain F (�), average
over 1000 series, and determine the position of the crossover �c by
fitting F (�) to the derivative of a sigmoid [31]. This procedure also
gives α1 and α2. The fit of the curve �c vs N (open red circles) to
a power law (solid blue line) gives an exponent k = 0.345 close to
the value 0.342 predicted by (28). (b) We repeat the experiment for
different values of αsign in the range [1,1.5] and obtain k for each
one. Finally, we fit the curve of k vs αsign (closed red circles) to (28)
(dashed blue line). The value obtained for αmag = 0.52 coincides with
the actual value used for the simulations.

implicit division of the series by the factor Nαmag−1 [32], and
thus we will obtain for the fluctuations of the magnitude:

Fmag(�) = Bmag
�αmag

Nαmag−1 . (30)

Again, the position of the crossover will be given by the
value �c for which the fluctuations in the magnitude and sign
reach the same value:

Bmag
�

αmag
c

Nαmag−1 = Bsign
�

αsign
c

Nαsign−1 , (31)

�c = N

(
Bmag

Bsign

) 1
αsign−αmag ∝ N. (32)

This means that the position of the crossover grows propor-
tionally to the size of the series.

Here is important to point out that the normalization
described above results in a reduction of the fluctuations at
short scales [32]. This reduction becomes more evident as α

increases, and thus, at short scales (� � �c), the fluctuations
are governed by the smallest exponent α1 = min{αmag,αsign},
while at large scales (� � �c) the correlation exponent will be
given by α2 = max{αmag,αsign}.
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αmag=1.05   α=1.08
αmag=1.16   α=1.19
αmag=1.27   α=1.30

αsign=1.45

FIG. 9. Example of composed series generated by multiplying
sign and magnitude from independent original series for αmag > 1
and αsign > 1. In this region we do not observe crossover (see text).
(a) Example of series with αsign < αmag. The exponent of correlation
of the composed series reaches the value αsign (min{αmag,αsign}) for
each series. (b) Example of series with αsign > αmag. The correlations
in the composed series are mainly controlled by those in the
magnitude, although the exponent of correlation is slightly higher.
This effect becomes more noticeable as the difference between
both magnitude and sign exponents of correlation decreases because
in these cases, the crossover is less sharp, thus there is a small
contribution of the regime after the transition.

In order to find out the values of �c we have systematically
generated pairs of correlated series of signs and magnitudes
with αmag ∈ (1,2) and αsign ∈ (1,1.5), and for each of them we
obtain αmag,αsign,Bmag, and Bsign and evaluate �c by using (32).
We find two different regions (Fig. 9):

(i) αmag � αsign. In this case, in all experiments we obtain
�c > N , implying that the crossover is not reachable.

(ii) αmag < αsign. Here in a few situations we obtain �c � N

although the values of Fmag(�) and Fsign(�) are too close to
display a clear crossover. In addition, only values of �c �
N/10 can be observed in practice because DFA is computed,
as usual, up to N/10 [17].

In conclusion, we barely observe crossovers within this
region, and the composed series will show a single scal-
ing in the whole range, the correlation exponent being
α = α1 � min{αmag,αsign}.

Another conclusion we can extract from this case is that
it is not possible to generate series with an exponent of
correlation greater than α = 1.5 when composing series by
means of independent magnitudes and signs. We try to obtain
the greatest possible exponent for composed series, by using
αin = 2 for the magnitude (αmag � 1.9) and αin = 2 for the

1.2 1.4 1.6 1.8
α

0.0

0.5

1.0

FIG. 10. Distribution of exponents of series obtained with αmag �
1.9 and αsign � 1.5. The size of the series is 220, and results are
averaged over 105 series.

sign (αsign � 1.5). Then we compose each pair of magnitude
and sign series, obtain α of the composed series, and represent
the distribution. The results (Fig. 10) show a distribution with
a sharp peak at α = 1.5 (min{αmag,αsign}) in agreement with
what we explained previously. By visual inspection, the few
series we have observed with α > 1.5 correspond to situations
where the scaling of the composed series is not very good,
together with those few situations where the crossover is
observable. Last, Table I summarizes the results obtained in
this section.

V. MULTIFRACTAL PROPERTIES OF COMPOSED SERIES

In the previous section we studied only linear correlations
of the composed series. However, it has been reported [4,5]
that series with correlated magnitude (αmag > 0.5) and uncor-
related sign (αsign = 0.5) also present nonlinear correlations
(multifractal properties). Thus, in this section we analyze the
multifractal properties of the composed series.

However, our results for composed series presented in
Sec. IV indicate the existence of crossovers in the scaling at �c

whenever αsign > 1. Such behavior could lead to the existence
of two different multifractal spectra below and above �c.
Furthermore, it is not even guaranteed that �c = const for the
different moments of order q, thus precluding a straightforward
calculation of both spectra.

For this reason, we restrict ourselves to the regime αsign < 1
where, first, the composed time series posses single scaling
and, second, the linear correlations in the composed time
series are directly controlled by the sign series (α = αsign).
In addition, we have observed that when αmag > 1.2, there
are numerical instabilities when calculating the multifractal
spectra of composed series. Then we study here the multifractal

TABLE I. Results obtained for composition of independent
magnitudes and signs.

αsign αmag α Crossover

<1 [0.5,2] αsign No
>1 <1 � < �c α1 = αmag �c ∝ Nk

� > �c α2 = αsign k = αsign−1
αsign−αmag

>1 >1 min{αmag,αsign} Not observable
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FIG. 11. (a) Relation between �ζ and αmag of composed series
by means of independent magnitudes and signs. �ζ increases linearly
with αmag when the magnitude series leave the uncorrelated regime
(αmag > 0.5), whereas αsign does not play an important role in the
value of �ζ . Series are 218 long, and results are averaged over an
ensemble of 50 series. (b) Example of multifractal spectra of 218 long
series with αmag = 0.95 and αsign in the interval [0.5,1]. To obtain the
multifractral spectra, the MFDFA analysis (5) has been carried out
for moments q ∈ [−5,5]. Despite varying αsign, �ζ is practically the
same for all cases. Spectra are centered in ζmax � αsign. (c) Relation
between αsign and ζmax for the multifractal spectra obtained in (b).
The data were linearly fitted with slope 0.95.

properties of composed time series with αmag and αsign in the
intervals [0.5,1.2] and [0.5,1] respectively.

Specifically, we calculate the multifractal spectrum for each
composed series using MFDFA (see Sec. II B) and study
systematically two properties: the width of the multifractal
spectrum, �ζ , and the location of its center, ζmax.

Concerning the properties of the spectral width, we observe
that �ζ depends only on αmag, and it is practically independent
of the αsign value. Both properties are shown in Fig. 11(a),
where we also notice that the dependence of �ζ on αmag is
essentially linear. This is an interesting property: given an input
αmag value in the composition, we control directly the strength
of the nonlinearities of the composed time, since such strength
is quantified by �ζ .

We also study how the linear correlations present in the
composed series, which are controlled by αsign (α = αsign),
affect the location of the center of the multifractal spectrum,
ζmax. We observe that, for a fixed αmag value (and then for
constant �ζ ), the whole multifractal spectrum is displaced
proportionally to the αsign value [see Fig. 11(b)]. Indeed, if we
calculate numerically the location of the center of the spectrum,
ζmax, we obtain a very good linear dependence of ζmax on αsign

[Fig. 11(c)], with slope � 1.
In conclusion, the multifractal properties of composed

time series obtained by multiplying independent magnitude
and signs are completely controlled by only two parameters,
the correlation exponents αsign and αmag. While the first one

controls the linear correlations of the composed series (α)
and the location of the center of the multifractal spectrum
(ζmax), the second quantifies the width of the spectrum (�ζ )
and then the strength of the nonlinearities in the composed
series. Obviously this procedure can be used as an algorithm
for the generation of complex artificial time series possessing
not only prescribed linear long-range correlations (as FFM)
but also controlled multifractal properties.

VI. CONCLUSIONS

We have presented a systematic study of the correlation
properties of the decomposition of artificial long-range power-
law linearly correlated time series into their magnitude and
sign series as well as the correlation properties, including
nonlinear ones, of the composed series obtained as products
of independent magnitude and sign series.

Regarding the decomposition problem, we have studied the
correlations of the magnitude and sign of a variety of fractional
Gaussian noises and fractional Brownian motions generated
by means of the Fourier Filtering Method, one of the most
widely used to generate artificial linear correlated series. The
results are summarized in Fig. 3. In addition, we have obtained
analytical expressions for the correlation exponent of the sign
series αsign [Eq. (16)]. In particular, we show that αsign � 3/2
independently of the correlations of the original series. These
results, together with those obtained here numerically for the
magnitude shown in Fig. 3 (also in agreement with Kalisky
et al. [5] for the square of the series), will be of great help
in order to model surrogate time series. For example, the
sign series obtained from the decomposition are often used
to generate correlated binary series in the study of DNA
sequences [13,25,30] or disordered binary solids [33] as well
as to generate distributions of first-passage times of correlated
series [6]. It is also worth mentioning that, following the results
shown in Sec. III, it is clear that long-range anticorrelated
binary sequences cannot be obtained using this method, a
drawback shared with other methods [26–28].

Apart from the utility of the decomposition to generate
surrogate series, the comparison of the results obtained here for
artificial linear series with those obtained from real data would
help to unveil the existence of coupling in the mechanisms
responsible for the magnitude and sign of the increments or
to discard it. This information is instrumental for the study of
the underlying processes generating complex nonlinear time
series such as those obtained from physiological systems.

By means of the composition, we studied the correlations
in series obtained as the product of independent series of
correlated magnitudes and signs.

First, we explore the linear correlations as measured by
the DFA exponent and find that, only for those composed
series with αsign < 1, we obtain a scale-free behavior, i.e.,
a fit to a single power law of F (�) in the whole range.
In addition, the correlation exponent of the composition is
given by αsign independently of αmag. On the other hand, for
αsign � 1, we observe clear crossovers for αmag < 1 whose
position, �c, can be obtained analytically [Eq. (27)]. Here the
composed signal scales with α1 � αmag for � < �c whereas for
� > �c it scales with α2 � αsign. For αmag � 1 we show that
the crossovers, although theoretically predicted, are difficult
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to detect in practice and the composed signal approximately
scales with a single exponent given by α1 = min{αmag,αsign}.
As a consequence of this and taking into account that αsign �
3/2, the composition cannot produce signals with correlation
exponents above 3/2. Results are summarized in Table I.

Finally, we analyze the nonlinear properties of the com-
posed signals by means of MFDFA in the region αsign < 1. As
a measure of the nonlinearity in the signal we use the width of
the multifractal exponent (�ζ ) and show that it grows almost
linearly with αmag, thus indicating that the nonlinear properties
of the composed signals are controlled by the correlations in
the magnitude. In addition, we also find that �ζ is independent
of αsign. This last result is interesting because it means that we
can generate surrogate signals for which we can fix both the
linear correlations (αsign) and the strength of the nonlinearity
(�ζ ).
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APPENDIX A: FLUCTUATIONS OF THE SIGN OF
NONSTATIONARY SERIES (α � 1)

Let us consider a long-range fractal correlated series with
α � 1 (fBM), if we denote as x the size of a segment without
changes of sign inside it (i.e., segments of constant sign, or
simply “segments”), it is known [6] that the distribution of
x follows a power law with exponent α − 3, which, once
normalized, can be written as

p(x) = (2 − α)N2−α

N2−α − 1
xα−3. (A1)

The mean value 〈x〉 of the constant-sign segments will be given
by

〈x〉 =
∫ N

1
p(x) dx =

(
2 − α

α − 1

)
N − N2−α

N2−α − 1
, (A2)

and the mean number of such segments inside a series of length
N :

n = N

〈x〉 =
(

α − 1

2 − α

)
N2−α − 1

1 − N1−α
. (A3)

When evaluating the fluctuations at a given window size
�, only the portion of the signal covered by segments with
x < � will give a nonzero contribution: for the remainder of
the signal the full window of size � will be located inside a
segment of constant sign, and then without internal fluctuation
and its contribution to Fsign(�) will be zero [34].

In order to evaluate the portion of the signal covered by
segments with x < �, first we evaluate the probability that a
given segment is smaller than �:

P (x < �) =
∫ �

1
p(x) dx = 1 − N2−α − �2−α

�2−α[N2−α − 1]
, (A4)

the average size of those segments,

〈x<�〉 =
∫ �

1 x p(x) dx

P (x < �)
=

(
2 − α

α − 1

)
�α−1 − 1

1 − �α−2
, (A5)

and the fraction of the series covered by segments with x < �:

f (x < �) = nP (x < �) 〈x<�〉
N

= �α−1 − 1

Nα−1 − 1
� �α−1

Nα−1
.

(A6)

If we denote by i the number of 1’s in a window of size � it
is straightforward to obtain that the variance of the window is
given by

var(i,�) = 4i

�
− 4i2

�2
. (A7)

Taking into account that for N large enough we will find all
possible values of i ∈ {1,2, . . . ,� − 1}, we can assume that
the averaged variance in windows of size � located within
segments with x < � will be

var(�) = f (x < �)〈var(i,�)〉i

= �α−1

Nα−1

1

� − 1

(
2

3
� − 2

3�

)
∝

(
�

N

)α−1

, (A8)

and the average standard deviation inside windows of size �

σ (�) =
√

var(�) ∝
(

�

N

) α−1
2

. (A9)

Fsign(�) measures the rms fluctuations of the integrated signal
with respect to � and then

Fsign(�) ∝ σ (�) � ∝ �
1
2 (α+1)

N
1
2 (α−1)

= �αsign

Nαsign−1 , (A10)

where αsign = 1
2 (α + 1) is the DFA exponent of the sign series

for 1 � α < 2.
For higher values of α equations from (A1) to (A3) are

no longer valid [6] and now the number of segments, n, is
constant and independent of N . For a given window length �,
only n out of N/� windows will contribute with nonvanishing
variance, and thus we can write

var(�) = n�

N
〈var(i,�)〉i

= n�

N

1

� − 1

(
2

3
� − 2

3�

)
∝ �

N
, (A11)

Fsign(�) ∝ �
3
2

N
1
2

= �αsign

Nαsign−1 , (A12)

where αsign = 3
2 is the DFA exponent of the sign series for

α � 2.
Note that both results [Eqs. (A10) and (A12)], agree with

the fact that the fluctuations in a nonstationary series should
depend on the size of the series, N .

APPENDIX B: AUTOCORRELATION FUNCTION
OF A TIME SERIES WITH UNCOUPLED

MAGNITUDE AND SIGN

The autocorrelation function of a time series {xi} at distance
�, normally distributed with zero mean and unit standard
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deviation, is given by

C(�) = 〈xixi+�〉 − 〈xi〉〈xi+�〉
σ 2

= 〈xixi+�〉, (B1)

where 〈·〉 denotes average over the series. Obviously we can
write

C(�) = 〈sgn(xi)|xi |sgn(xi+�)|xi+�|〉, (B2)

C(�) = 〈sgn(xi)sgn(xi+�)|xixi+�|〉, (B3)

where sgn(·) denotes the sign function. If we consider that
magnitude and sign are not coupled (i.e., they are independent
random variables) we can assume that

C(�) = 〈sgn(xi)sgn(xi+�)〉〈|xixi+�|〉, (B4)

C(�) = Csign(�)〈|xixi+�|〉, (B5)

where Csign(�) is the autocorrelation function at distance � of
the sign time series. On the other hand, we can write for the
autocorrelation function of the magnitude time series:

Cmag(�) = 〈|xixi+�|〉 − 〈|xi |〉〈|xi+�|〉
〈|xi |2〉 − 〈|xi |〉2

, (B6)

and, taking into account that {xi} are normally distributed with
zero mean and unit variance, it follows that

〈|xi |〉 =
√

2

π
and 〈|xi |2〉 = 1. (B7)

Replacing in Eq. (B6) we get

〈|xixi+�|〉 = (π − 2)Cmag(�) + 2

π
, (B8)

and finally replacing 〈|xixi+�|〉 in Eq. (B4):

C(�) = Csign(�)
(π − 2)Cmag(�) + 2

π
. (B9)
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