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Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation
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We disclose the origin of anisotropic percolation perimeters in terms of the stochastic Loewner evolution
(SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of
multilayered and directed percolation clusters at criticality are the scaling limits of the Loewner evolution
of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between
anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series
(fractional Brownian motion) as the driving functions in the evolution process. The fact that the resulting traces
are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study
therefore reveals different perspectives for mathematical and physical interpretations of non-Markovian processes
in terms of anisotropic paths at criticality and vice versa.
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I. INTRODUCTION

The stochastic Loewner evolution (SLE) [1] has revolution-
ized our understanding of two-dimensional loopless paths, as
recognized among others by several Fields medals [2,3]. It
provides a mapping between these paths and a real valued
function, called the “driving function,” that is a random
walk if the path is a conformally invariant fractal. This
establishes a relation between the fractal dimension of the
path and the diffusion constant of the random walk. Although
several generalizations have been proposed [4–7], due to its
nature, SLE has been restricted to isotropic models [8–15].
However, anisotropic paths, namely, paths with a preferential
direction, appear quite commonly in physics. By numerically
determining the driving function of anisotropic paths, we
discover that they are consistently mapped onto correlated
random walks, meaning that the Markovian property of the
driving function is violated. More precisely, we show that the
resulting anomalous diffusion is characterized by an exponent
that is related to the degree of anisotropy. This behavior can be
subdiffusive, as it is the case for the hull of directed percolation
or superdiffusive, as found for multilayered percolation.

The chordal variety of SLE (the one we will focus on in
this paper) deals with curves γt that start at the origin and grow
towards infinity while restricting themselves to the complex
upper half plane H. The curve γt is connected to a real-valued
driving function Ut through the relation γt = g−1

t (Ut ), where
gt (z) is the solution of Loewner’s equation [20,21]

∂tgt (z) = 2

gt (z) − Ut

, g0(z) = z. (1)

In his seminal work [1], Schramm showed that if the
measure over γt displays conformal invariance and a domain
Markov property, then the only possibility is that Ut be a
Brownian motion with a single free parameter κ , the diffusion
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coefficient. This is often written as Ut = √
κBt , where Bt

is a standard Brownian motion (with a diffusion coefficient
equal to unity). The value of κ is related to the geometric
properties of γt , including its fractal dimension, which is
determined by the relation df = min (1 + κ

8 ,2) [22]. A few
lattice models have been shown to converge to SLE in the
continuum limit [1,13,23], and many more are conjectured to
do so [9,14,15,24–26]. Of particular interest is the proof that
the perimeter of a percolation cluster on a triangular lattice
follows SLE with κ = 6 as a scaling limit, allowing for a
formal computation of its critical exponents [8,27].

II. METHODS

In this paper we explore the possibility of using Loewner
evolutions to study anisotropic fractal systems, i.e., systems
with different critical exponents in each direction. These sys-
tems are not scale invariant, therefore they are not conformally
invariant either. We are particularly interested in two variants of
the percolation model that show anisotropic behavior, namely,
multilayered percolation and directed percolation (see Fig. 1).
Precisely, we generate the border of percolating clusters,
numerically compute their corresponding driving function,
and then analyze the diffusive properties of these numerical
sequences. In the general case, we expect that the mean squared
displacement of Ut behaves as

〈
U 2

t

〉 → btα, (2)

as t → ∞. In the case of traditional SLE, α = 1 and b = κ .
We found that the driving functions of anisotropic percolation
models display very distinctive anomalous diffusive behavior
(α �= 1). Finally, we show that our approach is also valid in
the opposite direction, namely, the SLE consistently leads
anomalously diffusive driving functions to traces that display
clear anisotropic scaling.

In order to evaluate the SLE driving function of the cluster
perimeters, we used the zipper algorithm with a vertical slit
discretization [19,28]. In this method, given a lattice curve
{0,γ1,γ2, . . . ,γN }, its driving function can be recovered by
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FIG. 1. Percolation models used to generate the SLE curves.
(a) Regular percolation, where each site is occupied with the same
probability p [16]. (b) Multilayered percolation, where some rows are
occupied with probability p + � (light gray rows) and others with
p − � (dark gray rows) [17]. (c) Directed percolation is a spreading
process which starts at the bottom of the tilted lattice and can only
advance upwards with probability p [18].

applying the relations

tk = 1

4

k∑
j=1

Im{ωj }2, Utk =
k∑

j=1

Re{ωj }, (3)

where the ωk’s are determined recursively by

ωk = fk−1 ◦ fk−2 ◦ · · · ◦ f1(γk), ω1 = γ1, (4)

and fk(z),

fk(z) = i

√
−Im{ωk}2 − (z − Re{ωk})2. (5)

This algorithm, however, does not guarantee that the dis-
cretized times tk are equally distributed, even for curves of
the same length and step size. To obtain an ensemble of curves
defined for the same time sequence, we linearly interpolate
the obtained driving function at equally spaced points in
logarithmic time in the interval [1, log tf ], for some suitable
tf .

As already mentioned, we also performed the opposite
operation of computing the SLE trace from a given driving
function The process is simply the inversion of the algorithm
previously described. Given a discretized driving function
Ut = {0,Ut1 , . . . ,UtN }, the trace can be obtained by repeatedly
applying the functions

γi = g0 ◦ g1 ◦ · · · ◦ gi(0), (6)

where the mappings are also chosen to represent a vertical slit
discretization,

gi(z) = i

√
4(ti − ti−1)2 − z2 + (

Uti − Uti−1

)
. (7)

Instead of using an approximate algorithm [29], we chose
to use the one described above, as they are exact (for a given
discretization). Their complexity scales as O(N2), which can
get quite time consuming, especially for large values of κ ,
requiring a large number of points to get accurate results. We
resorted to graphic accelerator (GPU) parallelization (where
each γk is computed by a single thread) to achieve satisfactory
accuracy.

III. RESULTS AND DISCUSSION

A. Driving functions of anisotropic models

We start by testing our approach on standard isotropic
percolation, which has been extensively studied as a simple
but rather rich and illustrative model for criticality [16].
It is basically a lattice model with binary disorder, where
each site (or bond) is occupied with probability p. For a
given critical probability pc, the presence of a giant spanning
cluster is detected. In the thermodynamic limit, if p < pc,
where pc is the percolation threshold, the system never
percolates, otherwise it always does. In particular, pc = 1/2
for site percolation on the triangular lattice [16]. It has been
mathematically proven that the perimeter of the giant cluster at
the critical point [31] follows SLE with κ = 6 [8]. We perform
simulations with 104 realizations of percolation perimeters
of length 105 lattice units generated using the algorithm
described in Ref. [32] on the triangular lattice. Fixed boundary
conditions are adopted, in which every site on the left side
of the bottom row is always unoccupied and the ones on
the right side are always occupied. In Fig. 2(a) we show a
typical realization of an isotropic percolation perimeter and
the corresponding driving function, as computed using the
algorithm, Eqs. (3)–(5). Finally, from the driving functions, we
calculate their mean squared displacement 〈U 2

t 〉 as a function
of time, and find that κ = 6.27 ± 0.30 and α = 0.996 ± 0.005,
as shown in Fig. 3(a). It is worth noting the relatively large
error bar found here for the estimated value of κ . As a matter
of fact, most algorithms that are available for simulation of
SLE traces (including the zipper algorithm used in this work)
become less precise for large values of κ [29], making the
estimation process more difficult and the resulting error bars
larger.

Unlike regular percolation, where each site or bond is
occupied with probability p, in multilayered percolation this is
done with probability p ± �, where � ∈ [0, 1

2 ], and the signs
plus or minus are chosen randomly with equal probabilities
for each row of the lattice [17,33]. Here, the parameter
� represents the degree of anisotropy of the system, with
� = 0 being equivalent to isotropic (regular) percolation.
While multilayered percolation does not display conformal
invariance due to its intrinsic anisotropic scaling, it could
preserve the domain Markov property given that it preserves
other important properties of isotropic percolation such as
translation invariance and locality (that is, the cluster perimeter
depends only on the immediate neighboring sites).

We generate an ensemble of 104 multilayered percolation
perimeters of length 105 lattice units on a triangular lattice at
the critical point for different values of �. For every value of �

we found pc = 0.5 by using the cluster perimeter method [34].
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FIG. 2. Examples of cluster perimeters at the critical point of (a) isotropic percolation on a triangular lattice (pc = 0.5), (d) multilayered
percolation also on a triangular lattice (� = 0.2 and pc = 0.5), and (g) directed percolation on a square lattice (pc ≈ 0.644). A detail of each
curve in (a), (d), and (g) (pink square) can be seen in (b), (e), and (h), respectively. The driving functions obtained by applying the zipper
algorithm [19] to the curves (a), (d), and (g) are shown in (c), (f), and (i), respectively.

As for the standard percolation case, after calculating the
driving functions, an example of which is shown in Fig. 2(b),
we compute the corresponding mean squared displacement to
find that it exhibits characteristic superdiffusive behavior for
every value of � > 0. As can be observed in the inset of Fig. 3,
however, a long transient behavior is present for small values of
� before a distinctive power-law behavior is established. For
� = 0.4, after a short transient, the least-squares fit to the data
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FIG. 3. Mean squared displacement of the driving functions for
the three percolation models studied. The curves are the results of the
numerical procedure described in the text applied to 104 realizations
of each type of percolation model. The 95% confidence intervals
were bootstrapped over 400 resamplings [30], but, being smaller
than the symbols, are not shown. As expected, in the case of isotropic
percolation, the displacement scales linearly with time, while it shows
instead a distinctive subdiffusive behavior for directed percolation,
with an exponent α ≈ 0.67. In the case of multilayered percolation,
a clear superdiffusive behavior, with an exponent α ≈ 1.78, can
be observed for � = 0.4. The inset shows how this anomalous
diffusion regime is gradually achieved as we increase the degree
of anisotropy �.

gives a power law, 〈U 2
t 〉 = btα , with b = 10.38 ± 0.68 and

α = 1.78 ± 0.01, which extends over more than three orders
of magnitude.

Next, we investigate the diffusive behavior of driving
functions generated from directed percolation perimeters. As
defined, directed percolation is a spreading process where
a cluster can only grow along preselected directions in a
lattice, and each site is occupied with probability p [18].
Shown in Fig. 1(c) is a typical realization of a directed
percolation perimeter generated on a tilted square lattice at
the critical point, pc = 0.644 700 185(5) [35]. As multilayered
percolation, directed percolation is anisotropic and therefore
not conformally invariant. It is still undetermined whether
or not it displays a domain Markov property. Using this
simulation setup, the perimeters of the spanning clusters are
obtained here using a simple walker algorithm, as illustrated
by the red curve in the example shown in Fig. 1(c). From the
ensemble of the generated driving functions, once more the
resulting mean squared displacement displays a characteristic
anomalous behavior. Precisely, the least-squares fit to the data
in the scaling region yields subdiffusive diffusion, as shown
in Fig. 3, with a prefactor b = 3.74 ± 0.07 and an exponent
α = 0.676 ± 0.001.

B. Traces of correlated driving functions

It has been demonstrated that certain types of anisotropic
behaviors found in SLE traces can be properly associated with
driving processes described in terms of Lévy flights [5]. A
simple Kolmogorov-Smirnov test, however, shows that the
jump size distributions observed here are not consistent with
this Lévy flight hypothesis. Precisely, for both multilayered
and directed percolation we obtain p values very close to zero
(p ≈ 0.0).

These results suggest that the presence of long-range
correlations in the driving function should lead, through the
Loewner evolution process, to the anisotropic fractal traces
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TABLE I. Simulation parameters used to generate the SLE traces.
H is the Hurst exponent and b is the diffusion coefficient of the
fractional Brownian motion used as the driving function. The curves
were computed for N times ti equally spaced in the interval [0,tf ].
The resulting trace is reparametrized as a function of its length and
interpolated in M points equally spaced in the interval [0,�max].

H b tf N M �max

Ensemble 1 0.5 6.0 2 × 105 106 105 2 × 104

Ensemble 2 0.8 16.0 3 × 104 106 105 8 × 104

Ensemble 3 0.33 3.8 5 × 107 106 105 2 × 104

observed here, and vice versa. In order to test this hypothesis,
we analyze the behavior of traces driven by stochastic
processes exhibiting anomalous diffusion. We choose to use
fractional Brownian time series generated according to a given
Hurst exponent H , which is related to the diffusion exponent
by α = 2H [36].

We generated the drive Ut as a fractional Brownian motion
with Hurst exponent H and diffusion constant b in N time
steps ti uniformly spaced in the interval [0,tf ]. In order to
simulate fractional Brownian motions with reasonable control
over the diffusive constant b, the Davies-Harte algorithm was
used [37]. The γti were computed from Uti using Eq. (6).
We then interpolated the trace γ (�) (the same γti as before,
but parametrized by its length instead of the Loewner time)
in M equally spaced points �i ∈ [0,�max]. This interpolation

step was necessary because the zipper algorithm generates
discretized traces with highly nonuniform step sizes |γi −
γi−1|. Although this does not diminish the intrinsic error of
the algorithm, it makes the analysis easier to perform. In order
to study whether the scaling is isotropic or anisotropic, the root
mean squared estimation of the displacement of the trace was
computed in each direction, that is,

FX(i��) =
√√√√ 1

M − i

M−i∑
j=0

[X(�j+i) − X(�j )]2, (8)

where X(�) = Re{γ (�)}. Analogously, FY (i��) is defined
taking instead Y (�) = Im{γ (�)}.

Our numerical scheme was applied to three sets of times
series, each with 100 realizations generated to reproduce the
corresponding properties (in terms of H , b, and tf ) of the
driving functions originated from the isotropic and anisotropic
percolation traces previously investigated. More precisely, the
first set of time series corresponds to uncorrelated Brownian
motion, the second to correlated or persistent, and the third is
anticorrelated or antipersistent [38]. The remaining parameters
(N , M , and �max) are chosen to ensure the accuracy of our
results. The precise values of all parameters adopted in the
simulations are reported in Table I. Figure 4 shows that the
traces evolved from these time series have similar behavior
to their corresponding percolation models, in the sense that
a clear anisotropy can be observed in the correlated and

FIG. 4. Root mean squared estimations of the displacements in the X and Y directions of SLE traces driven by long-range power-law
correlated time series (fractional Brownian motion). In (a), (c), and (e) we show typical realizations of uncorrelated, correlated, and anticorrelated
driving functions, respectively. The simulation parameters (H , b, and tf ) were chosen based on the results shown in Fig. 3 (see Table I for
the numerical values). Good agreement is observed between the uncorrelated result (b) and isotropic percolation (inset on the bottom), as
is expected. The correlated trails (d) are also compatible with multilayered percolation (inset on the bottom). In the anticorrelated case (f),
the same kind of anisotropy present in the directed percolation is observed (inset on the bottom). These results support our hypothesis that
long-term correlations in the driving functions, i.e., the presence of anomalous diffusion, are responsible for the anisotropic behavior of the
traces. The insets on the top of (b), (d), and (f) show examples of the traces generated from the simulations with the corresponding driving
function shown in (a), (c), and (e), respectively.
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anticorrelated simulations, while the uncorrelated one displays
isotropic behavior, as expected.

IV. CONCLUSIONS

In summary, our numerical analysis offers compelling
evidence that a variation of the stochastic Loewner evolution,
obtained by taking as the driving function a stochastic
process with anomalous diffusion, may be the scaling limit
of anisotropic critical models. In particular, we looked at
two anisotropic variants of percolation: directed percolation
and multilayered percolation. The former was found to be
associated with subdiffusive driving functions, while the latter
are superdiffusive. We also tested the inverse relation, finding
that driving functions with anomalous diffusion do indeed
generate traces with anisotropic features. This possibility
opens questions, such as how the critical exponents of SLE
traces depend on the addition of long-term correlations to the
driving function. Moreover, it would be interesting to know

if one can obtain exponents of actual physical models with
such a generalized theory. While some form of anisotropy
was analytically verified in systems driven by Lévy flights [5],
the extension of the theoretical framework developed there to
non-Markovian processes, such as the fractional Brownian
motions investigated here, is surely not evident, at least
in a straightforward manner. We expect that the further
developments of this variant of SLE may provide some insight
into the critical behavior of anisotropic systems, the same way
the original SLE was to isotropic systems.
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[20] K. Löwner, Math. Ann. 89, 103 (1923).
[21] G. F. Lawler, Conformally Invariant Processes in the Plane,

Mathematical Surveys and Monographs Vol. 114 (American
Mathematical Society, Providence, 2005).

[22] V. Beffara, Ann. Probab. 36, 1421 (2008).
[23] S. Smirnov, in Proceedings of the International Congress of

Mathematicians, Madrid, Spain, 2006, edited by M. Sanz-Solé,
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