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Three-dimensional nonequilibrium Potts systems with magnetic friction

Linjun Li1 and Michel Pleimling1,2,3

1Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
2Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA

3Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0405, USA
(Received 10 February 2016; revised manuscript received 2 April 2016; published 20 April 2016)

We study the nonequilibrium steady states that emerge when two interacting three-dimensional Potts blocks
slide on each other. As at equilibrium the Potts model exhibits different types of phase transitions for different
numbers q of spin states, we consider the following three cases: q = 2 (i.e., the Ising case), q = 3, and q = 9,
which at equilibrium yield, respectively, a second-order phase transition, a weak first-order transition, and a
strong first-order transition. In our study we focus on the anisotropic character of the steady states that result from
the relative motion and discuss the change in finite-size signatures when changing the number q of spin states.
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I. INTRODUCTION

Much of our knowledge on nonequilibrium steady states
results from in-depth studies of transport models [1], of driven
systems [2], as well as of reaction-diffusion systems [3]. Our
current understanding of nonequilibrium phase transitions has
also profited greatly from the investigation of model systems
[4,5]. Similar to the situation at equilibrium, nonequilibrium
phase transitions can either be continuous or discontinuous.
Furthermore, cases of strongly anisotropic phase transitions
are also encountered far from equilibrium (see, e.g., the driven
lattice gas [2,6]).

Spin models with magnetic friction and the related sheared
spin models provide interesting classes of nonequilibrium sys-
tems that possess many intriguing properties [7–18]. The term
magnetic friction is used to characterize the situation where
spin correlations between moving magnetic systems lead to en-
ergy dissipation. As a result, the system settles into a nonequi-
librium steady state. Examples include a magnetic tip moving
on a magnetic surface described as a classical Heisenberg
system [8,10,11,14,15,18] as well as bulk spin systems moving
relative to each other [7,12,13,16,17]. In Ref. [7], Kadau
et al. studied two coupled two-dimensional semi-infinite Ising
models that slide on each other. This sliding motion stabilizes
the spin structure at the boundary, yielding an enhancement
of the local magnetization in cases where equal coupling
strengths are considered everywhere in the system. Conse-
quently, the boundary layers undergo a local phase transition at
a temperature above the equilibrium bulk critical temperature.
This boundary phase transition temperature can be computed
exactly for the two-dimensional Ising model in the limiting
case of infinite relative speed [9]. In Ref. [13], two-dimensional
systems with magnetic friction composed of Potts spins with
q states (the case q = 2 being the Ising case) were considered.
This study revealed the existence of exotic nonequilibrium
boundary phase transitions for a large number of spin states q,
i.e., in situations where the equilibrium bulk system undergoes
a discontinuous transition. Indeed, depending on the strength
of the boundary couplings between the two subsystems moving
relatively to each other a change of the character of the
nonequilibrium boundary phase transition is observed, being
continuous for weak boundary couplings and discontinuous
when these couplings are strong. Hucht introduced in Ref. [9]

other Ising models with moving boundaries, including three-
dimensional geometries as well as sheared Ising systems. Later
studies of some of these Ising systems [16,17] focused on
the strongly anisotropic character of the nonequilibrium phase
transitions encountered in these systems.

In the following we extend this line of research to coupled
three-dimensional Potts blocks that slide on each other. In
three-dimensional bulk systems the Potts model displays
different types of equilibrium phase transitions as a function
of the number of states q. We study in the following
the cases q = 2 with a continuous equilibrium bulk phase
transition, q = 3 with a weak discontinuous phase transition
in the bulk system, and q = 9 where the bulk transition is
strongly discontinuous. Our aim is to develop a qualitative
understanding of the nonequilibrium steady states induced by
the sliding of the blocks and to understand how the properties
of the nonequilibrium boundary phase transitions vary when
changing the strength of the coupling between the blocks or
the speed of the relative motion.

Our paper is organized in the following way. In Sec. II we
provide a more detailed discussion of the studied geometry
as well as of the local (boundary and line) quantities used
to elucidate the properties of our nonequilibrium systems.
Section III is devoted to the numerical investigation of systems
composed of two Potts blocks that are in relative motion
with respect to each other. Using local (boundary and line)
quantities we investigate the magnetic properties of these
driven systems as a function of relative speed as well as of
the strength of the coupling between the two subsystems. We
discuss the finite-size signatures in these anisotropic systems
and elucidate how they change with the number q of spin
states. We conclude in Sec. IV.

II. MODELS

We consider in this work three-dimensional models com-
posed of two q-state Potts systems that are coupled at their
surfaces and that move along their boundaries with a constant
relative speed v. Each of the systems is characterized by a
lattice and a Hamiltonian of the form

H = −J
∑
〈r,r′〉

δ(Sr − Sr′), (1)
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where the sum is over nearest-neighbor lattice sites. The
coupling constant J is chosen to be positive. δ is the Kronecker
delta, with δ(x) = 1 if x = 0 and zero otherwise. At every
lattice site r we have a Potts spin Sr that takes on the values
Sr = 0,1, . . . ,q − 1.

A Potts system with q = 2 corresponds to the Ising model
and exhibits in the thermodynamic limit a second-order phase
transition between a disordered high temperature phase and an
ordered low temperature phase. In a three-dimensional bulk
system this transition becomes a first-order transition for q �
3. In our study we focus on three q values, q = 2, 3, and 9,
corresponding to a second-order transition, a weak first-order
transition, and a strong first-order transition, respectively.

Assuming that the surfaces are perpendicular to the z

direction and that the relative motion is in the y direction,
we couple the two Potts systems through the time-dependent
interaction term

V(t) = −Jb

∑
x1,y1

δ
(
Sr1 − Sr2(t)

)
, (2)

where r1 = (x1,y1,z1) is a lattice point in the surface layer z1

of system 1, whereas r2(t) = (x2,y2,z2) = (x1,y1 + vt,z1 + 1)
is a surface point of system 2 located above the site r1 but
shifted in the y direction by the amount vt . This interaction
term gives rise to magnetic friction and entails that the system
settles into a nonequilibrium steady state. Besides varying
the dimensions of the subsystems and the relative speed v,
we will also consider different coupling strength ratios κ =
Jb/J , where Jb is the strength of the couplings between the
subsystems, whereas J is the strength of the couplings within
the subsystems.

The geometry discussed in this paper is shown in Fig. 1.
Our system is composed of two identical blocks where the
upper block moves relative to the lower one. Typically, the
width W and height H vary between 20 and 80 lattice sites.
We investigate systems with length L up to 240 sites in order
to check for anisotropy effects resulting from the relative
motion in the y direction. As we are interested in the boundary
properties, we use periodic boundary conditions in all three
directions so that every block experiences magnetic friction at
two separate boundaries.

In order to elucidate the properties close to the boundary
separating the two subsystems we focus on local quantities.

FIG. 1. Schematic picture of two identical subsystems with
relative motion in the y direction. The two subsystems are blocks
composed of W × L × H spins, with periodic boundary conditions
in all three directions. Boundaries between the two subsystems are
indicated by the green (dark) areas.

Examples include the steady-state magnetization density in
layer z at temperature T ,

m(z,T ) =
(

q〈Nm(z,T )〉
N (z)

− 1

)/
(q − 1), (3)

and the corresponding fluctuations around the mean layer
magnetization density,

χ (z,T ) = 1

kBT N (z)
[〈Nm(z,T )2〉 − 〈Nm(z,T )〉2]. (4)

Here, 〈Nm(z,T )〉 is the average number of major-
ity spins in layer z at temperature T : 〈Nm(z,T )〉 =
max(〈N0(z,T )〉, . . . ,〈Nq−1(z,T )〉), where 〈Nk(z,T )〉 is the
average number of spins in state k in layer z. The total
number of spins in layer z is denoted by N (z), with N (z) =
W × L for the rectangular layers in the subsystems shown
in Fig. 1. Another quantity of interest is the energy density
in each layer E(z,T ) and the corresponding specific heat
C(z,T ) = dE(z,T )/dT . The boundary quantities are obtained
by averaging over all equivalent boundary layers. For the
two-block system of Fig. 1 we have four equivalent boundary
layers, located at z = 1,H,H + 1, and 2H , over which we can
average in order to determine, for example, the mean boundary
magnetization density mb or the mean boundary specific
heat Cb.

In order to probe for possible anisotropy effects resulting
from the relative motion of the coupled subsystems, we also
consider in the boundary layers the average line magnetiza-
tions in x and y directions, defined as

mx(y0,T ) =
(

q〈Nx
m(y0,T )〉
Nx

− 1

)/
(q − 1), (5)

my(x0,T ) =
(

q
〈
N

y
m(x0,T )

〉
Ny

− 1

)/
(q − 1), (6)

where 〈Nx
m(y0,T )〉 (respectively, 〈Ny

m(x0,T )〉) is the average
number of majority spins in column y0 (respectively, row x0) in
the boundary layer at temperature T , whereas Nx (respectively,
Ny) is the total number of spins in each column (respectively,
row). For the rectangular layers of the subsystems in Fig. 1
we have that Nx = W and Ny = L. As our systems are
translationally invariant in x and y directions, the choice of
column y0 and row x0 is not important.

These magnetic properties are computed in Monte Carlo
simulations where we follow previous work and implement
the relative motion between the two subsystems by combining
single-spin updates and shifts of a subsystem as a whole. For
the single-spin updates we use the standard heat-bath algo-
rithm. In order to simulate a system where one subsystem slides
with speed v with respect to the other, we shift this subsystem
by one lattice constant after N/v random single-spin updates,
where N is the total number of spins in the system. One time
step, therefore, consists of N proposed single-spin updates and
v translations. Note that in the implementation we do not shift
the subsystem that slides, but instead only rewire the couplings
at the boundary, as this involves much fewer computational
operations.
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FIG. 2. Boundary magnetization density as a function of temperature T for two Potts blocks that are either both at rest (v = 0) or where
one of the blocks is moving with respect to the other with speed v = 10. Data for different small values of the coupling strength ratio κ are
shown. For κ = 0 the two blocks are uncoupled, whereas for κ = 1 the couplings at the boundary have the same strength as the couplings
inside the bulk. The number of states are (a) q = 2, (b) q = 3, and (c) q = 9. Every block is composed of 80 × 80 × 80 spins. The data result
from averaging over at least ten independent runs, and error bars are smaller than the symbol sizes.

III. SLIDING POTTS BLOCKS

In this section we study the magnetic properties of three-
dimensional Potts spin blocks sliding past each other. Results
for these systems are scarce, and the only previous result that
directly relates to our study is the calculation of the shift
of the critical temperature for the case of two Ising blocks
with couplings of only one strength (i.e., Jb = J = 1) moving
with infinite relative speed. Indeed, in that case the critical
temperature of the nonequilibrium system can be expressed as
a function of the zero-field equilibrium susceptibility [9]. From

the eighth-order high temperature series for the equilibrium
susceptibility one finds in Potts units the critical temperature
Tc = 2.40(5) [9], substantially larger than the critical temper-
ature Tc = 2.256 of the three-dimensional equilibrium Ising
model.

On general grounds, the phase transition in our system is
expected to be strongly anisotropic, similar to what is observed
in related cases [16,17]. In what follows, we indeed discuss
the anisotropic properties close to the phase transition, and
this in cases where the bulk transition is either continuous or
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FIG. 3. (a)–(c) Boundary magnetization density mb and (d)–(f) boundary specific heat Cb as a function of temperature T for two Potts
blocks that are either both at rest (v = 0) or where one of the blocks is moving with respect to the other with speed v = 10. Data for different
large values of the coupling strength ratio κ are shown. The number of states are (a, d) q = 2, (b, e) q = 3, and (c, f) q = 9. The relative motion
stabilizes the ordering of the boundary which results in an additional shift of the local transition temperature. This is clearly visible in the data
for q = 2 and q = 3. Every block is composed of 80 × 80 × 80 spins. The data result from averaging over at least ten independent runs, and
error bars are smaller than the symbol sizes.
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discontinuous. We limit ourselves to a qualitative discussion,
leaving a more quantitative study (which requires for the cases
of large number of states q resources not currently available
to us) for a later time.

Figure 2 shows for systems composed of blocks with
80 × 80 × 80 spins the temperature-dependent boundary mag-
netization density mb(T ) for a variety of cases with vanishing
or small coupling strength ratios κ . The full lines correspond
to equilibrium situations, whereas the symbols give values
in nonequilibrium steady states. For κ = 0 (black lines) the
two subsystems are uncoupled, and mb is then the surface
magnetization of an equilibrium system with open boundary
conditions. For all values of q the surface magnetization
vanishes continuously with increasing temperature, and this
even so for q � 3 the equilibrium bulk transition is discontin-
uous. This surface-induced disordering effect is well known
for systems with free surfaces where the bulk undergoes a
discontinuous transition [19–24]. For κ = 1 and v = 0 we
recover the bulk equilibrium system with a discontinuous
phase transition for q � 3, i.e., there is a critical value of
κ between 0 and 1 at which the character of the equilibrium
boundary transition changes; see Fig. 2.

Only minor differences between the equilibrium and
nonequilibrium cases with v = 10 can be seen in Fig. 2
for 0 < κ � 1. A closer look reveals for q = 2 and κ = 1
that the symbols lie systematically above the equilibrium
results, in agreement with the predicted shift of the critical
temperature [9]. The same holds true for q = 3, whereas
for q = 9 equilibrium and nonequilibrium data are identical
within error bars. For the Ising case the data are compatible
with the expected shift of Tc [9], but seem to indicate a
much smaller increase than that obtained by Hucht for the
case v = ∞ from (admittedly rather short) high-temperature
series for the equilibrium susceptibility. The reader, however,
should note that a square boundary layer is not the most
appropriate geometry close to the phase transition. As we
argue below, anisotropic samples are much better suited in
order to obtain quantitatively correct data in the vicinity of the
strongly anisotropic phase transition.

In a previous study of the two-dimensional Potts system
with q = 9 states where two halves of the system slide on top
of each other [13], a change of the character of the boundary
transition as a function of κ was also observed: for small
values of κ the boundary phase transition is continuous and
takes place at the bulk transition temperature, whereas for large
values of κ the transition is discontinuous and the transition
temperature is shifted to values larger than the bulk transition
temperature. However, in this case the ordering of the boundary
(which is a one-dimensional object) at a temperature above the
bulk transition temperature is a purely nonequilibrium effect as
in equilibrium a one-dimensional spin system with short-range
interactions does not support long-range order.

When further increasing the strength of the coupling
between the subsystems, the trends already visible in Fig. 2
persist and become very pronounced. This is illustrated in
Fig. 3 through the temperature dependence of the boundary
magnetization density mb(T ) as well as of the boundary
specific heat Cb(T ). We note that for all values of q and
κ > 1 the phase transition temperature is larger than that of
the perfect equilibrium bulk system with v = 0 and κ = 1.

FIG. 4. Snapshots of one of the boundaries of a system formed
by two blocks with 20 × L × 10 spins. The speed is v = 10 and the
ratio of coupling strengths is κ = 9. (a)–(d) q = 2 and T = 3, (e)–(h)
q = 3 and T = 2.45, (i)–(l) q = 9 and T = 1.55. The length of the
sample is (a) L = 20, (b) L = 40, (c) L = 80, and (d) L = 160, and
similarly for the other two values of q. The different colors correspond
to the different states of the spins.

This shift is readily understood for the equilibrium case (full
lines) as the boundary region with a strong coupling between
the subsystems behaves like a two-dimensional object that
orders at a higher temperature than the bulk. The sliding
motion further enhances this tendency for increased ordering,
and for q = 2 and q = 3 an additional increase of the
boundary transition temperature, that results from the motion,
is observed (see the symbols and dashed lines in Fig. 3). For
very large values of q, see the case q = 9 in Figs. 3(c) and
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FIG. 5. Line magnetization densities in x (filled squares) and y

(open circles) directions for a system with q = 9, κ = 9, and v = 10
composed of blocks containing 20 × 160 × 10 spins. A typical spin
configuration for that system at T = 1.55 is shown in Fig. 4(l).
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3(f), the relative motion only results in very minor changes
with respect to the equilibrium situation.

Looking at boundary quantities like those in Figs. 2 and
3 does not provide a comprehensive view of our systems,
as they do not reveal the anisotropy effects induced by the
relative motion of the blocks. Figure 4 shows some typical
spin configurations in the boundary layer for systems with
large boundary couplings and different aspect ratios, taken
at temperatures close to the boundary phase transition. We
focus in the following on the q = 9 states case shown in
Fig. 4(i)–4(l), but the same effects are observed for other
number of spin states; see the figure. Starting with a square
boundary in Fig. 4(i), we double from panel to panel the
length of the boundary in direction of the relative motion until
the aspect ratio is 8 for Fig. 4(l). The motion of the blocks
induces additional correlations in the sliding direction, and one
therefore expects anisotropy effects to show up as direction-
dependent correlation lengths and, in the ordered phase,
anisotropically shaped ordered domains. For the example
shown in Figs. 4(i)–4(l), the anisotropy effects in systems with
small aspect ratios take the form of almost completely ordered
lines in the direction of motion (horizontal or y direction),
whereas in the direction perpendicular to the motion (vertical
or x direction) the spins are much more disordered. Even so we
are close to the phase transition, the smallness of the horizontal
dimension yields as an artifact a very large line magnetization.
Increasing the length of the system in that direction allows
to capture better and better the fluctuations and yields for
the largest length shown in Fig. 4(l) configurations with a
comparable level of order in both directions. This is illustrated
in Fig. 5, where we compare the line magnetization densities in

the different directions for the system with blocks containing
20 × 160 × 10 spins.

Figure 6 shows some quantitative data for the line magne-
tization densities mx and my [see Eqs. (5) and (6)] for q = 2
and q = 9, with κ = 9. In order to compare finite-size effects,
we consider square boundaries with L × L spins, L ranging
from 20 to 160. The data for q = 2 in the first row show the
expected finite-size behavior of the line magnetization close
to an anisotropic critical point: in the direction of motion
fluctuations are more strongly constrained, which yields a
higher level of ordering as witnessed by the larger line mag-
netization density my (open symbols). Increasing the system
size allows us to capture better and better the fluctuations, and
the two densities get increasingly comparable. An interesting
additional effect shows up when considering the system with
a discontinuous bulk transition as it is the case for q = 9; see
second row of Fig. 6. As seen in Fig. 3(c), the boundary transi-
tion is also discontinuous in that case for large values of κ , as
evidenced by the discontinuity in the boundary magnetization.
However, for the smaller systems only the line magnetization
mx in direction perpendicular to the motion (filled squares)
displays a discontinuous character. The line magnetization
my in direction of the motion shows a smooth behavior, see
Fig. 6(d), reminiscent of that observed in Fig. 6(a) for q = 2,
where the boundary transition is continuous. It is only for larger
systems that also my starts to reveal a large jump indicating the
discontinuous character of the transition in the thermodynamic
limit.

As discussed previously, the data shown in Fig. 2 for κ = 1
seem to indicate for the Ising case a rather small shift of
the critical temperature compared to the equilibrium case.
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FIG. 6. Line magnetization densities in x (filled squares) and y (open circles) directions for κ = 9. (a)–(c) q = 2 and (d)–(f) q = 9. The
sizes of the blocks, which move with relative speed v = 10, are L × L × 20, with (a, d) L = 20, (b, e) L = 40, and (c, f) L = 160. The data
result from averaging over at least ten independent runs. Error bars are only shown when the error is larger than the symbol size.
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FIG. 7. Boundary magnetization densities for the Ising model as
a function of temperature. (a) Shift of the boundary magnetization
density as a function of the speed v in systems composed of
blocks containing 20 × 20 × 20 spins. (b) Boundary magnetiza-
tion densities for anisotropically shaped samples with 40 × L ×
20 spins in each block that move with relative speed v = ∞.
Based on all our data, we estimate the critical temperature to be
Tc = 2.34(2).

We have another look at this in Fig. 7, where we consider
samples moving with different speeds as well as different
anisotropic shapes. We here consider also the case v = ∞,
where for the update of a boundary spin, located at, say, the
top of the lower block at site r1 = (x1,y1,H ), we connect
this spin via the coupling term, Eq. (2), to a randomly
selected spin with the same x coordinate but located in the
neighboring boundary layer [9], i.e., this second spin has
the coordinates r2 = (x1,y2,H + 1) with 1 � y2 � L. Figure
7(a) illustrates the shift of the magnetization densities due
to the relative motion for blocks composed of 20 × 20 × 20
spins. As shown in Fig. 7(b), strong finite-size effects do not
allow to obtain reliable estimates of the critical temperature
for small values of the aspect ratio. For larger aspect ratios
these effects vanish. Based on our data we obtain the estimate
Tc = 2.34(2) for the Ising model with v = ∞. We have a rather
good agreement with the estimate Tc = 2.40(5) obtained by
Hucht [9], especially when taking into account that for the
equilibrium three-dimensional Ising model the known series
for the zero-field susceptibility, used in Ref. [9], are rather
short (only up to eighth order).

As already mentioned at the beginning of this section,
our main interest here is to understand qualitatively the
characteristic features of the boundary transition in the Potts
model and to compare cases where the bulk transition is
continuous with those where this transition is discontinuous.
Studying in detail the properties of the strongly anisotropic
nonequilibrium critical point that shows up in the former case is
beyond the current work and would need additional extensive
numerical simulations. In any case, we do not anticipate a
behavior that differs markedly from that revealed in related
Ising systems in two space dimensions [16,17].

IV. CONCLUSION

In this work we studied the magnetic properties of three-
dimensional Potts systems where two coupled blocks are

shifted against each other with some speed v. Because of this
shift, the system settles into a nonequilibrium steady state.
Increasing the temperature then yields a nonequilibrium phase
transition between an ordered low-temperature phase and a
disordered high-temperature phase.

Depending on the number of spin states q, the temperature-
driven phase transition in the equilibrium three-dimensional
Potts system can be either continuous (for q < 3) or dis-
continuous (for q � 3). In our investigation we considered
the different situations q = 2 (Ising case), q = 3 (weakly
discontinuous), and q = 9 (strongly discontinuous). Our study
revealed some common features that are independent of the
value of q, but also showed the existence of marked differences
between the different cases. Whereas for small numbers of spin
states (q = 2 and q = 3) the transition temperature between
the disordered and ordered phases is shifted to higher values
due to the relative motion of the blocks, no such shift is
observed for large values of q. On the other hand, intriguing
finite-size effects are encountered for large q values where in
smaller samples the discontinuous character of the boundary
phase transition is not showing up in the seemingly continuous
variation of the line magnetization in the direction of the
relative motion.

Common to all the cases is the emergence of additional
correlations in the direction of relative motion. As a result the
phase transition temperature is shifted to higher values in cases
where the coupling between the subsystems is not too weak.
The value of the shift depends on the value of the relative
speed. Another consequence of these additional correlations
is the strongly anisotropic character of the phase transition. In
computer simulations this entails rather complicated finite-size
effects that necessitate anisotropically shaped samples in order
to capture the typical fluctuations close to the phase transition.
These finite-size effects show up in different forms, depending
on the value of q. For example, for large q and small lengths in
the direction of the motion the line magnetization density my ,
which results from averaging along the direction of motion,
displays a smooth behavior. Only after increasing the size of
the sample in that direction (i.e., increasing the aspect ratio)
does the discontinuous character of the transition show up also
in this quantity.

The present study is clearly not exhaustive and many
possible future research directions can be envisioned. For
example, interesting open questions remain for the equilibrium
case v = 0. Indeed, for coupling strength ratios κ �= 1 we
are dealing with a three-dimensional bulk system with a
planar defect. Defects have been shown to yield intriguing
local critical phenomena in bulk systems undergoing a phase
transition (see Ref. [25] for a review of some of these
phenomena). However, most of these studies have been
restricted to two-dimensional systems (see Refs. [26–29] for
some examples), where analytical approaches are possible,
whereas in three dimensions not much is known beyond
mean-field level considerations. This investigation of the static
local critical properties could be augmented by an investigation
of relaxation processes, similarly to what has been done previ-
ously for two-dimensional systems with defects [30]. Similar
issues can be studied for nonequilibrium cases with v > 0.
However, in that situation we expect as further complication
to have to deal with a strongly anisotropic critical behavior
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with direction dependent correlation length exponents, similar
to what has been observed in Ref. [16] for the special case
of two planar Ising models that are moved relative to each
other.
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[30] M. Pleimling and F. Iglói, Phys. Rev. B 71, 094424 (2005).

042122-7

http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1088/0034-4885/74/11/116601
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1103/PhysRevLett.101.137205
http://dx.doi.org/10.1103/PhysRevLett.101.137205
http://dx.doi.org/10.1103/PhysRevLett.101.137205
http://dx.doi.org/10.1103/PhysRevLett.101.137205
http://dx.doi.org/10.1103/PhysRevB.77.174426
http://dx.doi.org/10.1103/PhysRevB.77.174426
http://dx.doi.org/10.1103/PhysRevB.77.174426
http://dx.doi.org/10.1103/PhysRevB.77.174426
http://dx.doi.org/10.1103/PhysRevE.80.061138
http://dx.doi.org/10.1103/PhysRevE.80.061138
http://dx.doi.org/10.1103/PhysRevE.80.061138
http://dx.doi.org/10.1103/PhysRevE.80.061138
http://dx.doi.org/10.1209/0295-5075/87/26002
http://dx.doi.org/10.1209/0295-5075/87/26002
http://dx.doi.org/10.1209/0295-5075/87/26002
http://dx.doi.org/10.1209/0295-5075/87/26002
http://dx.doi.org/10.1109/TMAG.2009.2023623
http://dx.doi.org/10.1109/TMAG.2009.2023623
http://dx.doi.org/10.1109/TMAG.2009.2023623
http://dx.doi.org/10.1109/TMAG.2009.2023623
http://dx.doi.org/10.1088/1742-5468/2011/04/P04009
http://dx.doi.org/10.1088/1742-5468/2011/04/P04009
http://dx.doi.org/10.1088/1742-5468/2011/04/P04009
http://dx.doi.org/10.1103/PhysRevE.83.041110
http://dx.doi.org/10.1103/PhysRevE.83.041110
http://dx.doi.org/10.1103/PhysRevE.83.041110
http://dx.doi.org/10.1103/PhysRevE.83.041110
http://dx.doi.org/10.1209/0295-5075/95/17010
http://dx.doi.org/10.1209/0295-5075/95/17010
http://dx.doi.org/10.1209/0295-5075/95/17010
http://dx.doi.org/10.1209/0295-5075/95/17010
http://dx.doi.org/10.1103/PhysRevB.84.212301
http://dx.doi.org/10.1103/PhysRevB.84.212301
http://dx.doi.org/10.1103/PhysRevB.84.212301
http://dx.doi.org/10.1103/PhysRevB.84.212301
http://dx.doi.org/10.1103/PhysRevE.85.051120
http://dx.doi.org/10.1103/PhysRevE.85.051120
http://dx.doi.org/10.1103/PhysRevE.85.051120
http://dx.doi.org/10.1103/PhysRevE.85.051120
http://dx.doi.org/10.1209/0295-5075/100/20003
http://dx.doi.org/10.1209/0295-5075/100/20003
http://dx.doi.org/10.1209/0295-5075/100/20003
http://dx.doi.org/10.1209/0295-5075/100/20003
http://dx.doi.org/10.1209/0295-5075/103/57004
http://dx.doi.org/10.1209/0295-5075/103/57004
http://dx.doi.org/10.1209/0295-5075/103/57004
http://dx.doi.org/10.1209/0295-5075/103/57004
http://dx.doi.org/10.1103/PhysRevLett.49.1575
http://dx.doi.org/10.1103/PhysRevLett.49.1575
http://dx.doi.org/10.1103/PhysRevLett.49.1575
http://dx.doi.org/10.1103/PhysRevLett.49.1575
http://dx.doi.org/10.1007/BF01308770
http://dx.doi.org/10.1007/BF01308770
http://dx.doi.org/10.1007/BF01308770
http://dx.doi.org/10.1007/BF01308770
http://dx.doi.org/10.1103/PhysRevB.53.8937
http://dx.doi.org/10.1103/PhysRevB.53.8937
http://dx.doi.org/10.1103/PhysRevB.53.8937
http://dx.doi.org/10.1103/PhysRevB.53.8937
http://dx.doi.org/10.1103/PhysRevB.59.3783
http://dx.doi.org/10.1103/PhysRevB.59.3783
http://dx.doi.org/10.1103/PhysRevB.59.3783
http://dx.doi.org/10.1103/PhysRevB.59.3783
http://dx.doi.org/10.1103/PhysRevB.61.15077
http://dx.doi.org/10.1103/PhysRevB.61.15077
http://dx.doi.org/10.1103/PhysRevB.61.15077
http://dx.doi.org/10.1103/PhysRevB.61.15077
http://dx.doi.org/10.1103/PhysRevB.88.214426
http://dx.doi.org/10.1103/PhysRevB.88.214426
http://dx.doi.org/10.1103/PhysRevB.88.214426
http://dx.doi.org/10.1103/PhysRevB.88.214426
http://dx.doi.org/10.1080/00018739300101544
http://dx.doi.org/10.1080/00018739300101544
http://dx.doi.org/10.1080/00018739300101544
http://dx.doi.org/10.1080/00018739300101544
http://dx.doi.org/10.1103/PhysRevLett.47.1188
http://dx.doi.org/10.1103/PhysRevLett.47.1188
http://dx.doi.org/10.1103/PhysRevLett.47.1188
http://dx.doi.org/10.1103/PhysRevLett.47.1188
http://dx.doi.org/10.1103/PhysRevLett.65.1773
http://dx.doi.org/10.1103/PhysRevLett.65.1773
http://dx.doi.org/10.1103/PhysRevLett.65.1773
http://dx.doi.org/10.1103/PhysRevLett.65.1773
http://dx.doi.org/10.1103/PhysRevB.47.3404
http://dx.doi.org/10.1103/PhysRevB.47.3404
http://dx.doi.org/10.1103/PhysRevB.47.3404
http://dx.doi.org/10.1103/PhysRevB.47.3404
http://dx.doi.org/10.1103/PhysRevB.71.094424
http://dx.doi.org/10.1103/PhysRevB.71.094424
http://dx.doi.org/10.1103/PhysRevB.71.094424
http://dx.doi.org/10.1103/PhysRevB.71.094424



