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Coherent-state path integral versus coarse-grained effective stochastic equation of motion:
From reaction diffusion to stochastic sandpiles
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We derive and study two different formalisms used for nonequilibrium processes: the coherent-state path
integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path
integral and the corresponding field theory, using the annihilation process A + A → A as an example. The field
theory contains counterintuitive quartic vertices. We show how they can be interpreted in terms of a first-passage
problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically
becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite
times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise
can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the
Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic
Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an
alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained
stochastic equation of motion with real noise.
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I. INTRODUCTION

Stochastic processes are ubiquitous in nature: Think of gold
particles suspended in water, which aggregate upon collision
[1,2], a beautiful realization of the diffusion aggregation
(or annihilation) process A + A → A. Think of sand grains
rolling down a hill, or its cellular automaton representatives,
such as the Bak-Tang-Wiesenfeld [3] or the Manna sandpile
[4] models. Even simpler, think of a large number of particles
diffusing. To understand the physical properties of these
systems, several routes are open: One may start with a direct
numerical simulation of say the mentioned gold particles.
For technical reasons this study would be restricted to a
relatively small number of particles. Thus, in a second step, one
strives for a more efficient effective description. This could be
achieved by dividing the system into boxes of size �, counting
the number of particles inside each box, and trying to derive
an effective coarse-grained description for the evolution of the
number of particles inside each box. The question then arises,
how do we do this?

Let us step back and consider an example from equilibrium
statistical mechanics: In order to understand the phase transi-
tion between the ferromagnetic and the paramagnetic phases in
a ferromagnet, or the liquid-gas transition in water, one first re-
duces these phenomena to the simplest possible model, in both
cases the Ising model. The latter can be studied numerically, or
through analytic techniques. An analytic treatment may start
from the mean-field approximation, and then progress to the
construction of a coarse-grained model, also termed effective
field theory. What one learns from mean-field theory enters
into the effective field theory as the description inside a box,
usually with one or a few degrees of freedom (fields). This
construction has to be supplied with an additional coupling
between boxes, which completes the effective field theory. It
can then be analyzed with renormalization-group techniques.
The latter are expected to give the correct universal properties,
such as the divergence of the specific heat when approaching

the critical point, even though the precise location of the phase
transition temperature itself has been lost when constructing
the coarse-grained description inside a single box.

Coming back to our discussion of the aggregating gold
particles, the key point is the derivation of an effective field
theory. There are two general-purpose methods to do so, both
with their unique strengths and weaknesses: the coherent-state
path integral (CSPI) and the coarse-grained stochastic equation
of motion (CGSEM). In these notes, we will study both
techniques side by side.

The coherent-state path integral (CSPI) has proven to be
a useful tool, both for quantum many-body problems [5,6]
and in statistical mechanics [7–10]. Despite its success, e.g.,
for reaction-diffusion processes, its use led to quite some
confusion. Indeed, as we will see below, the CSPI quite
naturally introduces an imaginary noise, rendering a physical
interpretation difficult. The literature on the subject is vast
[5–15], but leaves unanswered key questions the author of
these notes asked himself. It is his intention to close this gap.

We start by giving a pedagogical introduction to the CSPI
(Sec. II). This is mostly standard, following the work by Doi
[7,8], Peliti [9], and the beautiful introduction by Cardy [10].

For concreteness, we then focus on reaction-diffusion
processes, such as the gold aggregation process discussed in
the beginning, and construct a field-theory action. This kind
of processes leads to the appearance of some surprising and
seemingly counterintuitive vertices in the field theory, which
are a consequence of the conservation of probability. We show
how they can be interpreted in terms of a first-passage problem
(Sec. III).

The field theory can then be reformulated as a stochastic
equation of motion (Sec. IV). It has an imaginary noise, which
gives rise to some puzzlement in the literature [11,16–19]. As
we will show below, contrary to real noise imaginary noise
leads to a narrowing of the probability distribution. As the
basis of the CSPI is coherent states, equivalent to Poisson
distributions, the presence of an imaginary noise tells us that
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over time the probability distribution becomes narrower than a
Poissonian distribution. Coding for such narrow distributions
with Poissonians is only possible via complex states, i.e., inter-
ference. We show, and check numerically, that the stochastic
evolution of the coherent states allows us to sample directly
the evolution of the discrete probability distribution, starting
from the initial Poisson distribution

pi(n) = e−ai
(ai)n

n!
(1)

to the final distribution

pf(n) =
〈
e−af

(af )n

n!

〉
ξ

. (2)

The average goes over end points af of trajectories of the
stochastic equation of motion, for different realizations of the
noise ξt . As we will see, this formalism breaks down when af

has diffused “too far” away from the positive real axis. This is
an intrinsic problem of the CSPI, and difficult to repair.

As mentioned above, there is a second, alternative approach
(Sec. V). To this aim, one replaces the discrete number of
particles on a given site by a continuous variable: either as
an ad hoc procedure or via coarse graining introducing the
particle density in a box of size �. Demanding that the resulting
continuous random process has the same drift and variance as
the underlying discrete process leads to an effective, coarse-
grained stochastic equation of motion (CGSEM) with drift and
real noise. As in the CSPI, its amplitude is proportional to the
square root of the drift term, with the difference that the latter
is real, while the former is imaginary. Contrary to the process
with imaginary noise in the CSPI, the real process converges
well for all times, and yields an efficient effective description.
It is at the basis of most effective stochastic field theories.
However, the stochastic equations of motion are rarely derived,
even though the procedure given below is quite generally
applicable. Most often, the stochastic equations of motion
are conjectured on symmetry grounds, more obscuring than
enlightening their origin.

We then proceed to a nontrivial example, the stochastic
Manna sandpile (Sec. VI). The rules are simple: If the number
of grains on a site exceeds one, two grains are redistributed,
or toppled, onto randomly chosen neighbors. We study this
model numerically, and show that coherent states are not an
appropriate basis for a coarse-grained, stochastic description:
On one hand, the probability distribution for Manna sandpiles
is an exponential, and not a Poissonian, as the coherent state.
On the other hand, while a Poisson distribution has one
parameter, we observe that Manna sandpiles are characterized
by two parameters. Thus, while a description in terms of a
CSPI is always possible (and at least for short times exact), it
is also plagued by the appearance of complex states, and the
corresponding convergence problems. In hindsight, passing
into the complex plane may not be surprising, as it can be
interpreted as the “trick” of the CSPI to generate a second
dynamic variable. We then turn to a more efficient description,
and construct an effective stochastic field theory. To this aim,
we define a variant of the Manna model, the range-r Manna
model: its toppling rules are modified such that grains end up
not on neighboring sites but on sites within a distance of r .
We show that it converges for r → ∞ to a mean-field model,

which we solve analytically. Using this mean-field model as a
coarse-grained description for an elementary box, we derive a
stochastic field theory for the Manna model. This field theory
is known [20–23]. The advantage of the present scheme is
that we do not have to invoke symmetry arguments, and that
our scheme fixes all parameters, restricting the classes of
models to be considered to a submanifold, which is equivalent
to the simplest dissipative dynamics of a driven disordered
manifold [24].

After the conclusion (Sec. VII), the reader will find several
appendices to which more technical details have been rele-
gated. There we also discuss a canonical change of variables
which, when applicable, allows to avoid imaginary noise.

II. THE COHERENT-STATE PATH INTEGRAL

The coherent-state path integral (CSPI) is a formalism
which evaluates exactly the evolution of probabilities for a
stochastic process. To this aim, the different configurations
of the system are represented as in quantum mechanics by
n-particle states |n〉. This allows us to write probabilities
p(n) as states, i.e., superpositions |ψ〉 := ∑∞

n=0 p(n)|n〉. The
evolution operator is then encoded into a Hamiltonian, acting
on these states. Finally, a path integral is introduced. Its
eigenstates are coherent states, i.e., eigenfunctions of the
annihilation operator to be defined below.

Having constructed an exact representation of the stochastic
process as a coherent-state path integral, the latter can be
studied with different methods: either using perturbation
theory, possibly coupled with renormalization-group methods
(Sec. III), or by rewriting it as a stochastic equation of motion
for the states |ψ〉 (Sec. IV). We will study these techniques in
turn.

A. Quantization rules

Consider a single site which can be occupied by n particles
(bosons), n = 0,1, . . . . Denote this n-particle state by

|n〉 := (â†)n|0〉, (3)

where |0〉 is the normalized vacuum state 〈0|0〉 = 1. While
â† is the creation operator, its conjugate â is the annihilation
operator, â|0〉 = 0. They have canonical commutation rules

[â,â†] = 1. (4)

The scalar product between two states is

〈n|m〉 = 〈0|ân(â†)m|0〉 = n! δnm. (5)

This is proven by commuting all â to the right, using Eq. (4).
Thus |n〉 is not normalized to 1, but to 〈n|n〉 = n!. The number
operator is n̂ := â†â, i.e.,

n̂|n〉 ≡ â†â|n〉 = n|n〉. (6)

We note for convenience that

ââ†|n〉 = (n + 1)|n〉, (7)

â2(â†)2|n〉 = (n + 1)(n + 2)|n〉, (8)

(â†)2â2|n〉 = n(n − 1)|n〉. (9)
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B. Master equation and Hamiltonian formalism

We now want to code a master equation for the occupation
probability in this formalism. Suppose the probability for
having n particles at time t is pt (n), with

∑∞
n=0 pt (n) = 1.

We associate with this probability a state

|ψt 〉 :=
∞∑

n=0

pt (n)|n〉 ≡
∞∑

n=0

pt (n)(â†)n|0〉. (10)

Consider the master equation for the probability pt (n),

∂tpt (n) = ν

2
[(n + 1)npt (n + 1) − n(n − 1)pt (n)]

+μ[(n + 1)pt (n + 1) − npt (n)]

+ κ[(n − 1)pt (n − 1) − npt (n)]. (11)

In the first process two particles meet and annihilate with rate
ν: A + A

ν−→ A. In the second process, a particle decays with
rate μ: A

μ−→ ∅. In the third process a particle “gives birth” to
two particles with rate κ: A

κ−→ A + A. Note that probability
is conserved,

∑∞
n=0 ∂tpt (n) = 0.

We now want to derive the “Hamiltonian” associated with
this master equation, in the form

∂t |ψt 〉 = H|ψt 〉. (12)

To this aim we multiply both sides of Eq. (11) with (â†)n|0〉,
and then sum over n. The factors of n are expressed using the
number operator n̂ = â†â,

∂t

∞∑
n=0

pt (n)(â†)n|0〉

= ν

2

∞∑
n=0

[pt (n + 1)â†â2â† − pt (n)(â†)2â2](â†)n|0〉

+ μ

∞∑
n=0

[pt (n + 1)ââ† − pt (n)â†â](â†)n|0〉

+ κ

∞∑
n=0

[pt (n − 1)(â†â − 1) − pt (n)â†â](â†)n|0〉.

(13)

Note that we have taken advantage of relations (7) to (9) to sim-
plify the expression. Next we use definition (10) to rewrite this
expression in terms of |ψt 〉. As an example consider the first
term on the right-hand side,

∑∞
n=0 â†â2pt (n + 1)(â†)n+1|0〉 ≡∑∞

n=0 â†â2pt (n)(â†)n|0〉 = â†â2|ψt 〉. We extended the sum to
n = 0, which is possible since the first term on the left-hand
side does not contribute, due to the preceding operators â2.

We thus arrive at

∂t |ψt 〉 = ν

2
[â†â2 − (â†)2â2]|ψt 〉 + μ[â − â†â]|ψt 〉

+ κ[(â†)2â − â†â]|ψt 〉. (14)

Using Eq. (12), this identifies the Hamiltonian

H = ν

2
[â†â2 − (â†)2â2] + μ[â − â†â] + κ[(â†)2â − â†â].

(15)
This Hamiltonian is normal-ordered; i.e., all â† stand left of
all â. It has all the terms expected from quantum mechanics,

except that for each expected term there is a second term
which does not change the particle number, and which
ensures the conservation of probability. Indeed, conservation
of probability can be written as

0 = ∂t

∞∑
n=0

pt (n) ≡ ∂t 〈0|eâ|ψt 〉

= 〈0|eâ H(â†,â)|ψt 〉
= 〈0|H(â† + 1,â) eâ|ψt 〉. (16)

For the first line we used that the 1/n! in the definition of
the exponential function cancels the normalization (5). For the
second line we used that

eλâf (â†) = f (â† + λ)eλâ, (17)

eλâ†
f (â) = f (â − λ)eλâ†

. (18)

Noting that an â† inside H, when acting to the left on 〈0|, gives
no contribution, we arrive at the constraint of conservation of
probability for the normal-ordered Hamiltonian H:

H(â†,â)|â†→1 = 0. (19)

Equation (19) is a necessary condition to ensure that (16)
holds; it is also sufficient since using (17) the state eâ|ψt 〉 ≡∑

n pt (n)(â† + 1)n|0〉 can be chosen arbitrarily. Looking back
at Eq. (15), we see that the second term inside each square
bracket is such that at â† = 1 the sum of the two terms vanishes;
thus as stated it ensures the conservation of probability.

C. Combinatorics

Let us remark that the combinatorics used in the above
processes is the basic combinatorics of choosing k out of n

particles, ( n

k
), relevant, e.g., for the meeting probability of

two particles. While this choice is canonic, situations may
arise where the combinatorics is different. If the stochastic
process was to contain factors nonpolynomial in n, then the
Hamiltonian (15) would not be as simple, and might, e.g.,
become nonanalytic in â and â+; much of the technology
developed here would no longer work. This holds especially
true for the stochastic equation of motion to be introduced
below, which relies on the fact that, via a suitable decoupling,
the Hamiltonian can be rendered linear in â†.

D. Observables

Now consider an observable O(n), which depends only on
the occupation number n. Using the same tricks as in Eq. (16),
its expectation value can be written as

〈O〉ψt
:=

∞∑
n=0

O(n)pt (n) = 〈0|eâO(â†â)|ψt 〉

≡ 〈0|O(â†â + â)eâ|ψt 〉 = 〈0|ON(â† + 1,â)eâ|ψt 〉
= 〈0|ON(1,â)eâ|ψt 〉. (20)

From the first to the second line, we used Eq. (17). In the
second line we have introduced the normal-ordered version of
the operator O, obtained by commuting all â to the right and
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all â† to the left. It is generically a function of â and â†, not
n̂ = â†â. The last line uses that â† acting to the left vanishes.

E. Coherent states

Coherent states play a key role in the path-integral formal-
ism to be developed below. We define them here, and study
some of its properties. Coherent states are constructed such
that

|φ〉 := eφâ† |0〉 ⇒ â|φ〉 = φ|φ〉. (21)

Let us start with φ real and positive. Then by definition a
coherent state has a Poisson probability distribution for n-fold
occupation,

p(n) = e−φ φn

n!
. (22)

Note that the definition (21) does not contain the factor of e−φ ;
thus it is not normalized. This is for convenience reasons; one
may think of it as a histogram.

States |φ〉 with a complex φ are possible too. Since φ

is continuous, but the number n an integer, coherent states
form an overcomplete basis, even for φ � 0. However, not all
probability distributions can be written as a superposition of
coherent states with positive weights, i.e., as

|ψ〉 =
∫ ∞

0
dφ ρ(φ)e−φ |φ〉 (23)

with ρ(φ) � 0. There are several ways out of this dilemma:
One can use negative (or complex) weights ρ(φ), states with
complex φ, or a combination of both. The formalism to be
developed below will exploit this freedom.

By definition, the adjoint state is

〈φ∗| = 〈0|eφ∗â . (24)

Equation (17) implies that the scalar product is

〈φ∗|φ〉 = eφ∗φ. (25)

Let us give an interpretation of the adjoint state: Apply 〈φ∗| to
the state |ψt 〉 defined in Eq. (10),

ρt (φ
∗) := 〈φ∗|ψt 〉 =

∞∑
n=0

pt (n)(φ∗)n. (26)

This is nothing but the generating function of the probabilities
pt (n),n = 0,1,2, . . . .

Now consider the expectation value of a normal-ordered
observable O(n̂) = ON (â†,â) in a coherent state |φ〉,

〈O〉φ := 〈0|eâON(â†,â)eφâ† |0〉
〈0|eâ 1l eφâ† |0〉

= 〈0|eφâ†ON((â† + 1),(â + φ))eâ|0〉
= ON(1,φ). (27)

We used Eqs. (17) and (18), as well as the vanishing of â acting
on the vacuum to the right, and â† to the left. To write the last
line ON needs to be normal-ordered. Also note that a factor
of eφ has canceled between the numerator and denominator of
the first line; it is necessary, since our coherent states (21) are
not normalized to unity.

In coherent states, the number of particles is not fixed. We
show in Appendix B 1 that

eλn̂ ≡ eλâ†â = : e(eλ−1)â†â : . (28)

The right-hand side is called normal-ordered and denoted by
“:” around the operators in question; it is defined by its Taylor
expansion in â† and â, and then arranging all â† to the left
and all â to the right, as if they were numbers. An example
is : (â†â)2 : defined to be (â†)2â2.

Using this relation, or directly the intermediate result
Eq. (B3) at φ∗ = 1, and the definition of an observable given
in Eq. (27) yields

〈eλn̂〉φ = e(eλ−1)φ. (29)

The generating function of connected moments is the loga-
rithm of this function,

〈eλn̂〉c
φ = (eλ − 1)φ. (30)

This means that the pth connected moment of the number
operator n is

〈n̂p〉c
φ = φ. (31)

Let us give some explicit examples:

〈n̂〉φ = φ, (32)

〈n̂2〉φ = φ(1 + φ), (33)

〈n̂3〉φ = φ(1 + 3φ + φ2), (34)

...

φ = 〈n〉φ, (35)

φ2 = 〈n̂(n̂ − 1)〉φ, (36)

φ3 = 〈n̂(n̂ − 1)(n̂ − 2)〉φ, (37)

...

The last set of relations can also be derived directly; see
Appendix B 2.

F. Many sites

We now generalize to L sites, denoted i = 1, . . . ,L, with
creation and annihilation operators â

†
i and âi for site i.

The canonical commutation relations are a generalization of
Eq. (4):

[âi ,â
†
j ] = δij . (38)

A state is then encoded as

|ψ〉 =
∞∑

n1,...,nL=0

pt (n1, . . . ,nL)(â†
1)n1 . . . (â†

L)nL |0〉. (39)

We can also construct a coherent state out of single-particle
coherent states,

|ψ〉 :=
L⊗

i=1

|φi〉. (40)
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G. Coarse graining

When constructing effective field theories, one often coarse
grains, replacing the state variables of several sites by a com-
mon effective variable. For coherent states, this is particularly
straightforward: Suppose we have two sites with coherent
states |φ1〉 and |φ2〉, and we want to know what the probability
to have n-fold occupation of the combined two sites is. We
evaluate

pcomb(n) =
n∑

n1=0

[
e−φ1

(φ1)n1

n1!

]
×

[
e−φ2

(φ2)n−n1

(n − n1)!

]

= e−(φ1+φ2) (φ1 + φ2)n

n!
. (41)

Thus, combining two coherent states leads to a coherent state
with the added weights,

|φ1〉 ⊕ |φ2〉 −→ |φ1 + φ2〉. (42)

Finally, if we are interested in the probability for n-particle
occupation of our system of size L given in Eq. (40), we get a
state

|�〉 =
∣∣∣∣∣

L∑
i=1

φi

〉
. (43)

H. Diffusion

Consider now the hopping of a particle from site i to site j , with
diffusion constant (rate) D. The corresponding Hamiltonian is
(as expected)

H = D(â†
j − â

†
i )âi . (44)

Having hopping both from i to j and from j to i with the same
rate D leads to

H = −D(â†
j − â

†
i )(âj − âi). (45)

Note that by this definition the rate to leave a site in dimension
d is 2d × D, and not D. In the continuum limit, and summing
over all nearest-neighbor sites, this becomes the Hamiltonian
of diffusion

Hdiffusion = −D

∫
x

∇â†
x∇âx . (46)

To avoid overly cumbersome notations, we have set to 1 the
lattice cutoff a, which multiplies the lattice diffusion constant
D by a factor of a2−d .

I. Resolution of unity

The path-integral representation we wish to establish is
based on the coherent states defined in Eq. (21). The key
relation which we are going to prove is the resolution of unity:

1 = i

2π

∫
dφ dφ∗e−φφ∗ |φ〉〈φ∗|. (47)

The complex-conjugate pair is φ = φx + iφy, φ∗ = φx − iφy ;
the integration measure is dφdφ∗ = 2

i
dφxdφy . Inserting these

definitions, the right-hand side of Eq. (47) can be rewritten

as ∫
dφxdφy

π
e−φφ∗

eφâ† |0〉〈0|eφ∗â

=
∞∑

n=0

∞∑
m=0

∫ 2π

0

dθ

π

∫ ∞

0
dr re−r2

rn+meiθ(n−m)

× (â†)n

n!
|0〉〈0| â

m

m!
, (48)

where in the last line we set φ := reiθ . The angular integral is
vanishing for n �= m, resulting in

∞∑
n=0

∫ ∞

0
d(r2) e−r2

r2n (â†)n

n!
|0〉〈0| â

n

n!
=

∞∑
n=0

1

n!
(â†)n|0〉〈0|ân.

(49)

Applying this expression to the state |m〉 = (â†)m|0〉, only the
term n = m in the sum contributes, and reproduces this state.
This completes the proof.

Let us mention another commonly employed trick, namely
of analytic continuation. This is most prominently employed
in conformal field theory; see, e.g., Ref. [25], to which we
refer the reader for the subtleties. The essence is that φ and
φ∗ do not have to be complex conjugates, but that one may
think of them as two independent variables, which together
span C ≡ R2. A conceptually convenient choice is φ real and
φ∗ imaginary.1

J. Evolution operator in the coherent-state formalism,
and action

We are now in a position to construct the time evolution in
the coherent-state formalism. To this aim write the evolution
operator eδtH � 1 + δtH for a small time, and evaluate it in the
coherent basis, by applying the resolution of unity (47) to both
sides of eδtH. To avoid problems with not normal-ordered terms
appearing in (H)2, and higher, we choose δt infinitesimally
small:

eδtH(â†,â) = i

2π

∫
dφt+δt dφ∗

t+δt

i

2π

∫
dφt dφ∗

t

× e−φt+δt φ
∗
t+δt−φtφ

∗
t |φt+δt 〉〈φ∗

t |
× 〈φ∗

t+δt |eδtH(â†,â)|φt 〉. (50)

We need to evaluate the matrix element in question:

〈φ∗
t+δt |eδtH(â†,â)|φt 〉
� 〈0|eφ∗

t+δt â[1 + δtH(â†,â)]eφt â
† |0〉

= eφ∗
t+δt φt 〈0|eφt â

†
[1 + δtH(â† + φ∗

t+δt ,â + φt )]e
φ∗

t+δt â|0〉.
(51)

We have used Eqs. (17) and (18) to commute the exponential
operators. All operators â are now acting on the vacuum to

1Consider the scalar product 〈n|1l|m〉 ∼ ∫
dφ dφ∗ φn(φ∗)me−φφ∗ =∫

dφ dφ∗ φn(−∂φ)me−φφ∗ = m!
∫

dφ dφ∗ φn−me−φφ∗
�(n>m). For φ

real and φ∗ purely imaginary the integral
∫

dφ∗e−φφ∗
yields δ(φ), and

the former expression vanishes except for n = m.
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the right, thus do not give a contribution. The same holds true
for â† acting to the left. Further using the normalization of the
vacuum state 〈0|0〉 = 1, we finally arrive at

〈φ∗
t+δt |eδtH(â†,â)|φt 〉 = eφ∗

t+δt φt eδtH(φ∗
t+δt ,φt ) + O(δt2). (52)

Together with Eq. (50), we identify all terms for a time step
from t to t + δt as e−St,t+δt δt , with

− St,t+δt
δt = [φ∗

t+δt − φ∗
t ]φt + H(φ∗

t+δt ,φt )δt

= φ∗
t+δt [φt − φt+δt ] + H(φ∗

t+δt ,φt )δt. (53)

The expression St,t+δt
is termed the action for the time step

from t to t + δt . The two possible forms were obtained by
grouping with either of the factors of e−φt+δt φ

∗
t+δt−φtφ

∗
t appearing

in Eq. (50). Suppose for the following that we evolve from
small to large times: Then the second line will be relevant; the
unused factor of e−φtφ

∗
t |t=ti will appear together with the initial

state φi as

e−φtφ
∗
t 〈0|eφ∗

t âeφiâ
† |0〉 = e−(φt−φi)φ∗

t , (54)

where we used Eq. (17); when integrated over φ∗
t , this

identifies φt as the initial state φi. Note that when integrating
from larger to smaller times, we would use the first line of
Eq. (53), evolving from the final state 〈φf| to smaller times;
the factor e−φ∗

t+δt φt+δt |t+δt=tf would then fix 〈φf| = 〈φt+δt |. The
formalism can thus be used both forward and backward in
time, exchanging the role of φ and φ∗.

We now consider the forward version, evolving from an
initial state |φi〉 at t = ti. In the continuous limit, the action
from time t = ti to time t = tf becomes

S[φ∗,φ] :=
∫ tf

ti

dt φ∗
t ∂tφt − H[φ∗

t ,φt ]. (55)

(Note that we replaced φ∗
t+δt → φ∗

t in the Hamiltonian
H[φ∗

t+δt ,φt ], which is valid in the small-δt limit.)
The path integral can then be written as

|ψf〉 = Te
∫ tf
ti

dtH[â†
t ,ât ]|φi〉

=
∫

D[φ]D[φ∗]e−S[φ∗,φ]
∣∣∣
φti =φi

|φtf 〉. (56)

Note that (for one time slice) the state |φtf 〉 corresponds to the
state |φt+δt 〉 in Eq. (50), thus is part of the path integral (i.e.,
integrated over). On the other hand, the state 〈φ∗

t | in Eq. (50)
corresponds to 〈φ∗

ti
|. When applied to |φi〉, and integrated over,

it yields the boundary condition φti = φi.
The time index t at the operators â and â† is introduced for

bookkeeping purposes, to define the time-ordering operator T

as Te
∫ tf
ti

dtH[â†
t ,ât ] := ∏tf ,δt=τ

t=ti
eτH[â†

t ,ât ], putting smaller times to
the right. (This is the same ordering as in the definition of the
path integral.)

The final state |ψf〉 is not a coherent state, but the
superposition of coherent states |φf〉. To formalize this better,
suppose that the initial state is also a superposition of coherent
states, each with weight ρ(φi), and normalized such that∫
φi

ρ(φi) := i
2π

∫
dφi dφ∗

i ρ(φi) = 1,

|ψi〉 =
∫

φi

ρ(φi) e−φi |φi〉. (57)

Restricting support of ρ(φi) to φi > 0 is included as a special
case, with intuitive physical interpretation. The states e−φi |φi〉
are normalized, so that together with the normalization of the
weight the state |ψi〉 is normalized. Define

A(φf|φi) :=
∫

D[φ]D[φ∗] e−S[φ∗,φ]
∣∣∣φtf =φf

φti =φi

. (58)

Then

|ψf〉 =
∫

φf

|φf〉
∫

φi

A(φf|φi) ρ(φi) e−φi . (59)

By construction, |ψf〉 is normalized; thus A(φf|φi) defines the
transition amplitude.

K. The shift φ∗
t → φ∗

t + 1

In Eq. (20) we had considered expectation values of an
observable O. Suppose we want to measure it at time tf ,
evolved from |φi〉 at time ti until time tf ,

〈Otf 〉 = e−φi〈0|eâON(â†,â)Te
∫ tf
ti

dtH[â†
t ,ât ]|φi〉. (60)

The factor of e−φi ensures that the initial state is normalized.
We remark now that 〈0|ea = 〈1|. Going to the path integral,

this can be written as〈
Otf

〉 = e−φi〈1|ON(â†,â)Te
∫ tf
ti

dtH[â†
t ,ât ]|φi〉

=
∫

φf

∫
D[φ]D[φ∗]ON(1,φf) eφf−φi e−S[φ∗,φ]

∣∣∣φtf =φf

φti =φi

.

(61)

The final scalar product yields 〈1|ON(â†,â)|φf〉 =
ON(1,φf)eφf . Note that it does not fix φ∗

tf
= 1, as it

would in absence of the operator ON(â†,â).
We now shift all variables φ∗ → φ∗ + 1, to obtain

〈Otf 〉 =
∫

D[φ]D[φ∗]ON(1,φf ) e−S ′[φ∗,φ]
∣∣∣φtf =φf

φti =φi

, (62)

S ′[φ∗,φ] :=
∫ tf

ti

dt φ∗
t ∂tφt − H′[φ∗

t ,φt ], (63)

H′[φ∗
t ,φt ] := H[φ∗

t + 1,φt ]. (64)

Note that under this shift∫ tf

ti

dt φ∗
t ∂tφt −→

∫ tf

ti

dt (φ∗
t + 1)∂tφt

= φtf − φti +
∫ tf

ti

dt φ∗
t ∂tφt . (65)

Apart from the obvious change in the argument of H this
accounts for the cancellation of the factor of eφf−φi in Eq. (61).
Cardy in his excellent lecture notes [10] calls this shift the Doi
shift. Its main advantage is that the field φ∗ has expectation
zero (at least in the final state). This is particularly useful
when interpreting the CSPI graphically, as we will see in the
next section. In addition, the formulas are simpler, and more
intuitive. Finally, it has advantages when evaluating the CSPI
via a stochastic equation of motion; see Sec. IV. To distinguish
between shifted and unshifted action, we put a prime on the
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shifted one. In the shifted variables, Eqs. (58) and (59) take
the form

A′(φf|φi) :=
∫

D[φ]D[φ∗] e−S ′[φ∗,φ]
∣∣∣φtf =φf

φti =φi

, (66)

|ψf〉 =
∫

φf

e−φf |φf〉
∫

φi

A′(φf|φi) ρ(φi). (67)

The initial state is still given by Eq. (57). If one starts from a
coherent state |φi〉, then Eq. (67) simplifies to

|ψf〉 =
∫

φf

e−φf |φf〉A′(φf|φi). (68)

III. GRAPHICAL INTERPRETATION OF THE
COHERENT-STATE PATH INTEGRAL, FIRST-PASSAGE

PROBABILITIES, AND RENORMALIZATION

Field theories of the type introduced above are often evaluated
in perturbation theory, and interpreted graphically. To this aim,
the part of the action linear in both φ and φ∗ is solved explicitly,
yielding a single-particle propagator or response function.
One then starts with n particles, draws their trajectories, and
studies how they interact via the terms nonlinear in φ and
φ∗. In this process, particles may be destroyed and created.
In the following, we show how to derive this picture from the
coherent-state path integral, based on the shifted formulation
in Eqs. (62)–(68).

A. The initial condition

Start with a general initial state |φi,x〉 := e
∫
x
φi,x â

†
x |0〉. Let us

create p particles, at positions x1 to xp. In the operator picture,
this is encoded by

â†
x1

. . . â†
xp

|0〉 = δ

δφi,x1

. . .
δ

δφi,xp

|φi,x〉
∣∣∣
φi,x=0

. (69)

Applying the path-integral formalism developed in Secs. II J
and II K, we obtain a field theory with action S ′, depending
on the two fields φ and φ∗. In Eq. (54) we had derived the
factor for the first time slice, on which we still have to shift
φ∗ → φ∗ + 1; this has further to be multiplied by the factor of
e− ∫

x
φi,x from the normalization; writing both factors explicitly,

this results in

e− ∫
x
(φx,ti −φi,x )(φ∗

x,ti +1) × e
∫
x
−φi,x .

Note the cancellation for the terms proportional to φi,x ; using
Eq. (69), an initial condition with p particles at positions
specified above is thus transferred to the path integral as

â†
x1

. . . â†
xp

|0〉 −→ φ∗
x1,ti

. . . φ∗
xp,ti

(70)

and

φi,x = 0. (71)

Graphically, we draw a particle emanating from position x at
time t as a dot at that position in space-time, from which an
arrow starts,

x,t
. (72)

B. The propagator

Consider diffusion as given by the Hamiltonian in Eq. (46).
According to Eq. (55) the action is

S ′
0[φ,φ∗] =

∫
x,t

φ∗
x,t ∂tφx,t + D∇φ∗

x,t∇φx,t . (73)

This yields the propagator, alias Green’s or response function
(in Fourier space),

=
〈
φk,t′φ

∗
−k,t

〉
= Θ(t′ − t) e−D(t′−t)k2

. (74)

Transforming back to real space, this is

= Gt′−t
x′−x := 〈

φx′,t′φ
∗
x,t

〉 = Θ(t′ − t)
e
− (x−x′)2

4D(t′−t)√
4πD(t′ − t)

.

(75)
It is solution of the partial differential equation(

∂t ′ − D∇2
x ′
)
Gt ′−t

x ′−x = δ(x − x ′)δ(t − t ′). (76)

Probability is conserved, i.e.,
∫
x ′ G

t ′−t
x ′−x = 1.

C. The interactions

To be specific, consider the annihilation process with
rate ν,

A + A
ν−→ A. (77)

The Hamiltonian of this process was derived in Eq. (15),

Hν[â†,a] = ν

2
[â†â2 − (â†)2â2]. (78)

The corresponding term in the shifted action is

S ′
ν [φ∗, φ] = −

∑
x

∫
t

Hν [φ∗
x,t + 1, φx,t]

=
ν

2

∑
x

∫
t

φ∗
x,t + 1

)
φ∗

x,tφ
2
x,t

=
ν

2

∑
x

∫
t .

+ (79)

Note that both terms have the same sign. Passing to the
continuum yields

S ′
ν[φ∗,φ] = νδd

2

∫
x,t

(φ∗
x,t + 1)φ∗

x,tφ
2
x,t . (80)

Since we wish the total number of particles to be
∑

x φx,t →∫
x
φx,t , in the discrete version φx,t is the number of particles

on site x, whereas in the continuum version it is the density of
particles, resulting in the additional factor of δd in the action.
Alternatively, we could keep φx,t the number of particles in a
box of size δ. To avoid these problems, which are not essential
for our discussion, we set δ → 1, except when specified
otherwise.

D. Perturbation theory

Suppose two particles start at time t = 0 at positions x1 and
x2. We want to know the probability p1(tf) to find only one of
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them at time tf . Our formalism gives the following perturbative
expansion:

p1(tf) = ν − ν2 + ν3 − ... . (81)

The lower two points are fixed at time t = 0 and at positions
x1 and x2. The intermediate times and positions (symbolized
by black dots) are integrated over. Let us call tf the final time.

Naively, one would expect the probability to be given by a
path integral, propagating one particle from x1 at time t = 0,
and the other particle from x2 at the same time to a common
position x at time t , and then propagation of a single particle
to time tf . Integrating over x, one thus naively expects that

p1(tf)
?= ν

∫ tf

0
dt

∫
x,y

G
tf−t
x−yG

t
y−x1

Gt
y−x2

= ν

∫ tf

0
dt

∫
y

Gt
y−x1

Gt
y−x2

. (82)

This is but the first diagram in Eq. (81). The question is, where
do the remaining terms come from?

E. Interpretation of the “strange” quartic vertex in terms
of a first-passage problem

Let us try to construct the probability of annihilation
without making reference to the formalism derived above. This
is very enlightening, since it will not only re-derive the action
(79), but also shed light on necessary ultraviolet cutoffs of the
field theory, and their physical interpretation. This procedure
is equivalent to renormalization.

Consider two particles propagating. We draw their positions
xi(t) for discrete times t = nτ,n ∈ N, represented graphically
as

2

t

x
1

. (83)

Starting at t = 0 at positions x1(0) = x1 and x2(0) = x2, we
want to know the probability p1(τ ) that the two particles meet,
or more precisely are within a distance δ/2 at time t1 = τ :

p1(τ) = x

1 2

=
∫

x,x′
Gτ

x−x1
Gτ

x′−x2
Θ(|x − x′| < δ/2).

(84)

Note that since G(τ,x − x1) is not a probability, but a
probability density, we have to say how close they have to come
so that we consider them to “meet”; the probability that the two
particles are exactly at the same position is actually zero. With
this prescription the above expression is a probability density,
as is G(t,x). To simplify our treatment, we will approximate

this by (d is the dimension)

p1(τ) = x

1 2

≈ δd

∫
x

Gτ
x−x1

Gτ
x−x2

. (85)

Let us now calculate the probability that the two particles
meet in the second time step: Particle 1 propagates from x1

at t = 0 to x ′ at time τ , and then to x at time t = 2τ . The
second particle has intermediate position x ′′. Thus (with the
same approximation as above) we obtain

x
x’ x’’

1 2

= δd

∫
x,x′,x′′

Gτ
x−x′Gτ

x′−x1
Gτ

x−x′′Gτ
x′′−x2

.

(86)
Now we use that the Green’s functions obey the composition
property ∫

x ′
Gτ

x−x ′G
τ
x ′−x1

= G2τ
x−x1

. (87)

This allows to rewrite this contribution as

x
x’ x’’

1 2

= x

1 2

. (88)

However, this is not the complete result: The particles could
already have met in the first time step, at time t = τ .
Subtracting this contribution, we have

p1(2τ) = x
x′ x′′

1 2

−
x′
x

1 2

. (89)

Note that one cannot simply subtract the probability to have
met at t = τ ,

p1(2τ) �= x
x′ x′′

1 2

− x

1 2

. (90)

Let us now calculate the probability to meet for the first time
at t = 3τ ,

p1(3τ) =
x

1 2

−
x

1 2

−
x

1 2

+

1 2

x

.
(91)

We subtracted the configurations where the particles met at
times t = τ and t = 2τ ; however this subtracts twice the
configuration where the particles met at time t = τ and at
time t = 2τ , which have to be added at the end.

Note that once the two particles have met, a single one will
continue propagating (not drawn here). We can therefore read
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off the action which yields the above perturbation expansion,

S ′[φ∗,φ] =
∫ tf

ti

dt dx φ∗
x,t ∂tφx,t + D∇φ∗

x,t∇φx,t

+ δd

2

∑
t=nτ

∫
x

(φ∗
x,t + 1)φ∗

x,tφ
2
x,t . (92)

Converting the sum over integer n into an integral,
∑

t=nτ →
1
τ

∫ tf
ti

dt , and comparing to Eqs. (73) and (79), we identify the
rate ν as

ν = 1

τ
. (93)

It is now clear what the quartic vertex is doing: It converts the
problem of a meeting of the two particles to the problem of a
meeting for the first time, a first passage problem.

One can try to resum explicitly the perturbation series. As
we set up the framework, it is well defined for small ν and finite
τ . Under these circumstances, resummation is rather tedious,
and the author of the present notes has decided to eliminate
the corresponding calculations in order to keep the material
readable.

We can, however, deduce the result in the limit of τ → 0
and ν → ∞: One first realizes that the distance between the
two particles is again a random walk with a diffusion constant
2D instead of D. It can thus be described by an action

Srel[φ,φ∗] =
∫

x,t

φ∗
x,t ∂tφx,t + 2D∇φ∗

x,t∇φx,t . (94)

Second, the field φ(x,t) is only defined for x � 0, and zero
for x = 0: when the two particles meet, a single particle will
propagate from that point on, and their relative position will
be zero. This is known as Dirichlet boundary conditions, and
can be solved with the method of images [26]. In dimension
d = 1, this leads to

Gt ′−t
x ′,x := 〈φx ′,t ′φ

∗
x,t 〉 = �(t ′ − t)

e
− (x−x′ )2

8D(t ′−t) − e
− (x+x′)2

8D(t ′−t)

√
8πD(t ′ − t)

. (95)

Here x is the difference in position at the start, and x ′ the
distance in position at the end. Note the difference from
Eq. (75). Integrating over x ′ from zero to infinity, we obtain
the probability that the two particles did not meet up to time t ,
knowing that they started at distance x at time 0,

psurvive(x,t) = erf

(
x√
8Dt

)
. (96)

The probability p1(t) given in Eq. (81) then is

p1(tf) = 1 − psurvive(x,tf). (97)

This can be generalized to higher dimensions.

IV. STOCHASTIC EQUATION OF MOTION FOR
THE COHERENT-STATE PATH INTEGRAL

A. General formulation

We established in Eq. (66) that the transition amplitude
between the coherent states |φi〉 and |φf〉 is given by

A′(φf|φi) =
∫

D[φ]D[φ∗] e−S ′[φ∗,φ]
∣∣∣φtf =φf

φti =φi

. (98)

Note that we use the shifted action, thus shifted fields φ∗, since
then both φ and φ∗ have zero expectation values, rendering all
following considerations simpler.

Suppose now that the shifted Hamiltonian and thus the
shifted action have only linear and quadratic terms in φ∗

t ; a
term independent of φ∗ is absent due to the conservation of
probability, Eq. (19),

H′[φ∗
t ,φt ] = φ∗

t L[φt ] + 1
2 (φ∗

t )2B[φt ]. (99)

First consider B[φt ] = 0, i.e., only a term linear in φ∗
t . Then

the saddle point obtained by variation with respect to φ∗ gives
the exact solution to the path integral, encoded in the equation
of motion, of φt

∂tφt = L[φt ], φti = φi, (100)

A′(φf|φi) = δ(φf − φtf ). (101)

Quite amazingly, an explicit solution for a nonlinear path
integral has been given.

This simple solution is no longer possible if B[φt ] �= 0.
To nevertheless use an equation of motion, we introduce
a Gaussian random variable, i.e., white noise, ξt , to write
e

1
2 B[φt ](φ∗

t )2
as an expectation value over the noise,

e
1
2

∫
t
B[φt ](φ∗

t )2 = 〈
e
∫
t
φ∗

t

√
B[φt ]ξt

〉
ξ

(102)

〈ξt ξt ′ 〉ξ = δ(t − t ′). (103)

Note that if B[φt ] is negative, then the noise is imaginary. The
sign of the root is irrelevant, since ξt is statistically invariant
under ξt → −ξt . With the noise, the equation of motion (100)
changes to

∂tφt = L[φt ] +
√
B[φt ]ξt , (104)

φti = φi. (105)

The interpretation is as follows: The transition amplitude
A′(φf|φi) can be sampled by simulating the Langevin equation
(104), with initial condition (105) and noise (103),

A′(φf|φi) = 〈δ(φf − φtf )〉ξ . (106)

According to Eq. (62) an observable O has then expectation
at time tf :

〈Otf 〉 = 〈ON(1,φtf )〉ξ . (107)

This is an intuitive result, with some caveats: First, we
recall the replacement of â† → 1. Second, ON(â†,â) is the
normal-ordered version of the operator, e.g., is n̂2 = (â†â)2 =
(â†)2â2 + â†â, so that 〈n̂2

tf
〉 = 〈φ2

t + φt 〉ξ ; see Eq. (33).
In Appendix B 3 we give a formal proof of this relation,

based uniquely on the CSPI. The formalism produces two
terms, a linear term proportional to δ

δâx
O(1,â), and a quadratic

term proportional to δ
δâx

δ
δây

O(1,â). These two terms can then
be interpreted as drift and diffusion terms in the Itô formalism.
This gives an independent derivation of the process (104) and
the relation (107).

If
√
B[φt ] is real, one may think of equation (104) as

describing what is “going on” in the system. This is not
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the case if B[φt ] is negative, thus
√
B[φt ] purely imaginary:

Then generically, states sampled by the path integral are
“nonphysical” in the sense that they do not correspond to a
probability density, even though the transition amplitude is
given by Eq. (106). We will come back to this question in
Sec. IV G: There we will show that in the case of imaginary
noise, the formalism works for short times, but breaks down
for longer times.

In Sec. V we will propose a different physically motivated
treatment, leading to a coarse-grained effective stochastic
equation of motion with a real noise.

B. Example: Diffusion

Let us start with simple diffusion, with Hamiltonian

H′[â†,â] := H[â† + 1,â] = −D

∫
x

∇â†
x∇âx . (108)

Note that the shift has no effect since only ∇â
†
x appears. This

implies the action, already given in Eq. (73),

S ′[φ∗,φ] =
∫

x,t

φ∗
x,t ∂tφx,t + D∇φ∗

x,t∇φx,t . (109)

Variation with respect to φ∗ leads to the equation of motion

∂tφx,t = D∇2φx,t . (110)

This is a very simple and actually quite remarkable equation:
While diffusion is a noisy process, leading to fluctuations of
the number of particles on a given site, Eq. (110) is a an
exact, noiseless equation. It tells us how the distribution of the
number of particles on a given site evolves with time.

As a test, let us check that it keeps the total-particle-number
distribution fixed. Equation (43) implies that at, say t = ti, the
total-particle-number distribution is given by the coherent state

|�〉 =
∣∣∣∣
∫

x

φx,ti

〉
. (111)

Since for periodic boundary conditions
∫
x
∂tφx,t =

D
∫
x
∇2φx,t = 0, the state |�〉 does not change over time.

In particular, this implies particle-number conservation.

C. Example: Reaction diffusion

Consider the reaction-diffusion process A + A
ν−→ A with

(shifted) action defined by Eqs. (73) and (79):

S ′[φ∗,φ] =
∫

x,t

{
φ∗

x,t ∂tφx,t + D∇φ∗
x,t∇φx,t

+ ν

2

[
φ∗

x,tφ
2
x,t + (φ∗

x,t )
2φ2

x,t

]}
. (112)

The corresponding equations of motion and noise are

∂tφx,t = −ν

2
φ2

x,t + D∇2φx,t + i
√

νφx,t ξx,t , (113)

〈ξx,t ξx ′,t ′ 〉 = δ(t − t ′)δ(x − x ′). (114)

This noise is imaginary. It has puzzled many researchers
whether this is unavoidable [11,16,17,19], or could even be
beneficial [18]. We will come back to this question later.

D. Dual formulation: Equation of motion for φ∗
t

Note that one can define the dual process of Eq. (104) by
exchanging in the dynamical action the roles of φ and φ∗:
Suppose the Hamiltonian can be written in the form

H[φ∗
t ,φt ] = L∗[φ∗

t ]φt + 1
2B

∗[φ∗
t ](φt )

2. (115)

The path integral for the generating function at time tf then
becomes

ρf(φ
∗) := 〈eφ∗φtf 〉

=
∫

D[φ]D[φ∗]eφ∗φtf −
∫
t
φ∗

t ∂t φt−H[φ∗
t ,φt ]

∣∣∣φ∗=φ∗
tf

φti =φi

.

(116)

Note that this equation is written in terms of the unshifted
Hamiltonian. Contrary to Eq. (61) it is normalized, since the
leftmost state is not 〈0|ea = 〈1|. Integrating

∫
t
φ∗

t ∂tφt by part,
and noting that the boundary term changes in the exponential
φ∗φtf → φ∗

ti
φi, yields

ρf(φ
∗) =

∫
D[φ]D[φ∗]eφ∗

ti φi+
∫
t
φt ∂t φ

∗
t +H[φ∗

t ,φt ]
∣∣∣φ∗=φ∗

tf

φti =φi

. (117)

This path integral is sampled by the stochastic process

− ∂tφ
∗
t = L∗[φ∗

t ] +
√
B∗[φ∗

t ]ξt , (118)

φ∗
tf

= φ∗. (119)

It evolves the (dual) state φ∗
t from tf to ti, backward in time, as

is suggested by the sign of Eq. (118).
Consider now B∗ ≡ 0, such that the evolution becomes

deterministic, −∂tφ
∗
t = L∗[φ∗

t ]. Denote by �t,tf : φ∗ = φ∗
f →

φ∗
t this time evolution, i.e.,

φ∗
t = �t,tf (φ

∗). (120)

Note that �t,tf (0) = 0 and �t,tf (1) = 1.
As a concrete example, consider the branching process,

including a possible annihilation A → 0:

A
λn−→ nA. (121)

Then

H[â†,â] =
∑

n

λn[(â†)nâ − â†â]

≡ f (â†)â − f (1)â†â, (122)

where we defined f (x) := ∑
n λnx

n. The equation of motion
(118) then becomes (there is no Doi shift)

−∂tφ
∗
t = f (φ∗

t ) − f (1)φ∗
t , φ∗

tf
= φ∗. (123)

To be explicit, choose λ2 = 1, and all other λi = 0. We have
to solve (backward in time) the equation ∂tφ

∗
t = φ∗

t − (φ∗
t )2.

It has solution φ∗
t = 1/[1 − etf−t (1 − 1/φ∗)]. The function �

then reads

�tf ,t (x) = x

x + etf−t (1 − x)
. (124)

Using Eq. (117), this yields the generating function, evaluated
at t = ti,

ρf (φ
∗) = ρi(�tf ,ti (φ

∗)). (125)
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This is a classical result; see, e.g., [9,27]. Suppose one starts
with a single particle at time t = 0; then ρi(φ∗) = φ∗, and the
above becomes

ρf(φ
∗) = φ∗

φ∗ + etf−ti (1 − φ∗)
. (126)

The probability to have n particles at time tf is given by the
nth series coefficient, namely

pn(tf) = eti−tf (1 − eti−tf )n−1, n � 1. (127)

This is a rather simple expression.
We could also try to solve the problem by varying with

respect to φ∗, inducing the stochastic equation of motion

∂tφt = φt + i
√

2φtξt . (128)

This equation talks about the evolution of the state |φt 〉, which
will become complex. We will discuss in the next section how
this can be interpreted. Compared to the latter approach, the
solution (126) is much more elegant and explicit.

E. Testing the coherent-state path integral

Consider the annihilation equation (77),

A + A
ν−→ A, (129)

with stochastic equation of motion (113). For simplicity, we
concentrate on a single site,2

∂tφt = −ν

2
φ2

t + i
√

νφtξt , (130)

〈ξt ξt ′ 〉 = δ(t − t ′). (131)

Let us use as initial distribution coherent state |φi〉, i.e., a
Poisson distribution with parameter φi,

pi(n) = e−φi
φn

i

n!
. (132)

There are two ways to study this process.

F. Direct simulation of the reaction process

Let us start by directly simulating the reaction process
(129): First, use the probability distribution (132) to obtain
an integer n (the occupation number at t = ti), and then evolve
Eq. (129) for a time T = tf − ti. The latter is best done by
remarking that if at a given time t there are n particles, the
probability that they have not decayed up to time t + δt (with
arbitrary δt) is

psurvive
n (δt) = exp

(
− n(n − 1)

2
νδt

)
. (133)

Thus one can draw a random number rn ∈ [0,1], sampling the
decay probability; solving rn = psurvive

n (δt) for δt then yields

δtn := − 2

n(n − 1)
ln rn, tn :=

∑
i�n

δti , t1 := ∞. (134)

2A complementary study was performed in [18] for the process
A + A � 0.

FIG. 1. Results for the process (129), using ai = 15, tf − ti = 0.2,
and ν = 1. Blue diamonds: Direct numerical simulation with 5 × 105

samples (partially hidden behind red dots). The blue dashed line is
a guide for the eye. The statistical error bars are smaller than this
linewidth. Red dots: Integration of the stochastic equation of motion,
using Re[Pcs

f (n)] from Eq. (136), for 5 × 104 samples, δt = 10−3. The
orange dotted lines are Re[Pcs

f (n)] ± |Im[Pcs
f (n)]|, defined for all real

n, which is an estimate of the error. Both simulations ran about 100 s.
Within these errors, the agreement is excellent. The dot-dashed gray
line is a Poisson distribution with af = 6, which would be the result
of Eq. (130) in the absence of noise. Taking into account the drift
term νat/2 induced by the noise in Eq. (129) (see Appendix C) leads
to a = 6.43, (black, dotted). The real distribution is centered around
this value, but is much narrower than a Poisson distribution.

The tn (with n decreasing) are a series of times when one of
the n particles decays. Thus the number nf of particles at tf is
given by

nf : tnf � tf − ti < tnf−1. (135)

Repeating this procedure, one obtains a histogram for the final
number of particles, and an associated normalized probability
distribution pDS

f (n), where DS stands for “direct simulation.”
The result, for φi = 15, tf − ti = 0.2, and ν = 1, is presented in
Fig. 1 (blue diamonds, partially hidden behind the red circles).

Alternatively, one can numerically integrate the master
equation (11) (with μ = κ = 0) using pi(n) given by Eq. (132)
for n � nmax = 3φ, and setting p(n) → 0 for n > nmax. This
is the fastest and most precise solution.

G. Integration of the stochastic equation of motion (130)

Integrating the stochastic equation of motion (130) for
different noise realizations ξt , and with initial condition
φti = φi, one obtains a (complex) result for φf = φtf . One then
measures the final distribution, as an average over all noise
realizations,

pSEM
f (n) :=

〈
e−φf

φn
f

n!

〉
ξ

. (136)

The result is again shown in Fig. 1 (red circles). One
sees several things: First, the agreement between the direct
numerical simulation of the decay process (blue diamonds,
and blue dashed line as guide for the eye) and the stochastic
equation of motion (red dots, and orange dashed lines, with
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FIG. 2. 5000 samples for the result of the integration of Eq. (130),
with ν = 1,tf − ti = 0.2,φi = 15. These samples lie approximately
on a circle of size φf = 6.43. For larger times, the samples extend
further around the circle.

error estimate) is quite good. This confirms that Eq. (136) is
indeed applicable, even though the final states φf are complex.

Second, the final distribution is much narrower than a
Poisson distribution: both the Poissonian obtained for φ = 6
[gray dashed line, result of integrating Eq. (130), dropping the
noise term], plotted in Fig. 1, or the one including a drift term
νφt/2 in Eq. (130) (black dashed line; see Appendix C for
discussion). Having a distribution narrower than a Poissonian
is possible only with imaginary noise, which leads to a
diffusion of the phase of φt ; see Fig. 2. In contrast, real noise
leads to a widening of the distribution. We study this in more
detail below.

Third, using the stochastic equation of motion has its limits:
Indeed, already for tf − ti = 0.5, the stochastic equation of
motion gets appreciable error bars, even with a large number
s of samples, and for tf − ti = 1 convergence is no longer
assured. We tried an improved algorithm as follows: Instead
of starting s “particles” at φ(ti) = φi, and evolving them until
time tf , whenever one of these particles gets too large a phase
(which promises to give a large value in e−φf ), we “split” the
particle in two, each of which carries half of the weight (the
original weight is w = 1/s) of its “father.” If the phase is still
too large, we split it again, propagating two particles with
half the weight each. This procedure is repeated recursively.
We have not been able to find parameters to improve the
precision at constant execution time. We suspect that when
splitting points, it becomes more probable that “bad regions”
are reached, and while the weight of the corresponding points
is reduced, the probability that they appear is increased. This
is illustrated in Fig. 3. We also note that for the toy model
studied in Appendix C 2 (pure phase) this problem is present.
This indicates that the convergence problem is severe, and
no algorithm to overcome it has been found yet. We refer

FIG. 3. Result of the integration of Eq. (130), with ν = 1,

tf − ti = 0.5, φi = 15. The black circle has radius φf = 3.6614,
obtained by integrating the drift term ∂tφt = −φ2

t + φt + t/2. The
color codes the number of splittings, from yellow over green, cyan,
blue, magenta to red. (Thus a red point has 2−5 times the weight of a
yellow point.)

the reader to [18,19,28] for a more detailed discussion of the
problems and partially successful attempts at their solution.

H. Integrating a stochastic equation of motion with
multiplicative noise: Real vs imaginary noise

Let us integrate the following stochastic equations of
motion:

∂tat = ξtat − 1
2at , (137)

∂tat = iξ ′
t at + 1

2at . (138)

They are constructed such that 〈|at |〉 does not change with
time; see Appendix C. In Fig. 4 one sees that, as expected, a
real noise leads to a broadening of the distribution (green dots),
whereas an imaginary noise leads to a narrowing of the latter
(blue diamonds). For imaginary noise, the phase portrait looks
similar to Fig. 2. As one can easily observe in a numerical
simulation, this leads to problems for larger times, since then
af can become imaginary, and both an

f and the factor of e−af

will lead to strong interference between the different samples,
and to large fluctuations of the such obtained averages.

Analytic solutions for both processes are given in Appen-
dices C 1 (real noise) and C 2 (imaginary noise).

I. Integrating a stochastic equation of motion with
multiplicative noise: “Canceling” real and imaginary noises

It is instructive to consider an equation of motion with two
noises,

∂tat = ξtat + iξ ′
t at . (139)
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FIG. 4. Result for pCGSEM
f (n) in Eq. (136), after integrating

Eqs. (137) (real noise, green circles) and (138) (imaginary noise,
blue diamonds) for ai = 15, tf − ti = 0.025. One sees that real noise
leads to a broadening of the distribution, while imaginary noise leads
to a narrowing.

Writing the effective action and averaging over the noises ξt

and ξ ′
t yields an exact cancelation of the terms generated in

the dynamic action: 1
2

∫
t
[a∗

t at ]2 generated from the average
over ξt cancels with − 1

2

∫
t
[a∗

t at ]2 generated from the average
over ξ ′

t . Nevertheless, our equation of motion does not
vanish. This is possible only since the coherent states are
overcomplete; i.e., we do not need the states |a〉 with complex
a to code all possible states. This might allow us to define
a projection algorithm, which eliminates the states with
complex a.

Let us check this cancellation. To do so write

at = a0e
φt ; (140)

this implies

∂tφt = ξt + iξ ′
t . (141)

For details see Appendix C. Note that there is no drift term
(as compared to the purely real or purely imaginary cases).
The probability to find φ = φx + iφy at time t is given by the
diffusion propagator,

Pt (φ,φ∗)dφxdφy = e− φφ∗
2t

2πt
dφxdφy. (142)

This implies

Pt (a,a∗)daxday =
∣∣∣∣∂(φx,φy)

∂(ax,ay)

∣∣∣∣Pt (φ,φ∗)daxday

� 1

2πaa∗t
exp

(
−

ln
(

a
a0

)
ln

(
a∗
a0

)
2t

)
daxday.

(143)

The approximation is due to the fact that the larger φy in
Eq. (142) are not summed over; for pedagogical reasons
we content ourselves with this approximation. Let us now
take Eq. (143), and try to integrate over a. Writing a =

(x + iy)ai,a
∗ = (x − iy)ai, we get∫

Pt (a,a∗)e(ax+iay )â†
daxday

�
∫

dx dy

2πt
e(x+iy)ai â

†
e− (x−1)2+y2

2t

= eaiâ
†
. (144)

This result says that real and imaginary noise have canceled;
thus the superposition of all states gives back the original
coherent state. This is of course what one expects, knowing
that the two terms in the effective action cancel.

V. ALTERNATIVE STOCHASTIC MODELING:
AN EQUATION OF MOTION WITH REAL NOISE

A. Stochastic noise as a consequence of the discreteness
of the states

In Sec. IV F, we have simulated directly the random
process A + A

ν−→ A. Each simulation run gave one possible
realization of the process, in the form of an integer-valued
monotonically decreasing function n(t). Averaging over these
runs, one samples the final distribution Pf (n), or, equivalently,
moments of nf . Let us now start with a fixed number of particles
instead of a coherent state, n(ti) = ni. We then want to ask the
question: Is there a continuous random process n̂(t) which has
the same statistics as n(t)?

Let us consider a little more general problem: Let nt be
the number of particles at time t . With rate r+ the number of
particles increases by one, and with rate r− it decreases by one.
This implies that after one time step, as long as r±δt are small,

〈nt+δt − nt 〉 = (r+ − r−)δt, (145)

〈(nt+δt − nt )
2〉 = (r+ + r−)δt. (146)

The following continuous random process n̂t has the same first
two moments as nt ,

dn̂t = (r+ − r−)dt + √
r+ + r− ξtdt, (147)

〈ξt ξt ′ 〉 = δ(t − t ′). (148)

This procedure can be modified to include higher cumulants
of nt+δt − nt , leading to more complicated noise correlations.
Results along these lines were obtained in Ref. [29] by
considering cumulants generated in the effective field theory.

B. Example: The reaction-annihilation process

In the case of the reaction-annihilation process, the rate
r+ = 0, and r− = ν

2 n̂t (n̂t − 1); the latter, in principle, is only
defined on integer n̂t , but we will use it for all n̂t . Thus the
best we can do to replace the discrete stochastic process with
a continuous one is to write

dn̂t

dt
= −ν

2
n̂t (n̂t − 1) +

√
ν

2
n̂t (n̂t − 1) ξt . (149)

Using ni = 15 and ν = 1, we have shown two typical trajecto-
ries in Fig. 5, one for the process nt (red, with jumps), and one
for the process n̂t (blue-gray, rough). While by construction
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FIG. 5. One trajectory each for process nt , i.e., a direct numerical
simulation of A + A → A (red, with jumps) and n̂t , Eq. (149) (blue-
gray, continuous, rough). The rate is ν = 1. We have chosen two
trajectories which look “similar.” Note that n̂t is not monotonically
decreasing.

both processes have (almost) the same first two moments,
clearly n̂t looks different: It is continuous, which nt is not,
and it can increase in time, which nt cannot. One can also
compare the distribution for tf − ti = 0.5; see Fig. 6. While
the distribution of nf is discrete (blue diamonds), that for
n̂f is continuous (cyan). Rounding nf to the nearest integer
gives a different distribution (red). We have also drawn (black
lines) the size of the boxes which would produce p(n) from
p(n̂). Clearly, there are differences. On the other hand, it
is also evident that these differences will diminish when
increasing ni.

2 4 6 8
n

0.1

0.2

0.3

0.4

P(n)

FIG. 6. Result of a numerical simulation, starting with ni = 15
particles, and evolving for tf − ti = 0.025. Blue diamonds: Direct
numerical simulation of the process A + A → A with rate ν = 1.
Cyan: Distribution of the continuous random walk (149). Red: The
latter distribution, when rounding nf to the nearest integer. Black
boxes: The size of the boxes in the n direction to obtain the result
of the direct numerical simulation of the process A + A → A. Both
processes have first moment 3.511 ± 0.001, and second connected
moment 1 ± 0.05; the third connected moments already differ quite
substantially, 0.75 versus 0.2.

FIG. 7. A coarse-grained lattice with box size � = 4. The yellow
box contains n = 4 particles.

C. Diffusion

We now derive the effective stochastic equation of motion
for diffusion, i.e., hopping of grains from site i to site i ± 1
with rate D. We cannot directly write an equation of the form
(147) for the particle number n̂i on site i, since it does not
respect the conservation of the number of particles. The latter
is realized by introducing the current Ji+ 1

2 ,t : A positive current
Ji+ 1

2 ,t = 1 represents a particle hopping from site i to i + 1. A
negative current Ji+ 1

2 ,t = −1 corresponds to a particle hopping
from site i + 1 to site i. Each hopping has a rate D; the rate
for a given particle to leave a site is the coordination number
2d times D. We thus arrive at the rate equations (with the hat
again denoting the variables of the continuous process)

dn̂i,t = (
Ĵi− 1

2 ,t − Ĵi+ 1
2 ,t

)
dt, (150)

Ĵi+ 1
2 ,t = D(n̂i,t − n̂i+1,t )+

√
D(n̂i,t + n̂i+1,t ) ηi+ 1

2 ,t . (151)

The white noise has correlations〈
ηi+ 1

2 ,t

〉 = 0,
〈
ηi+ 1

2 ,t ηj+ 1
2 ,t ′

〉 = δi,j δ(t − t ′). (152)

To perform the continuum limit, let us introduce the density
of particles inside a box B�(x) centered at x and of linear size
�, as well as the (d-dimensional) current,

ρ(x,t) :=
∑

i∈B�(x)

n̂i,t

�d
, J (x,t) :=

∑
i∈B�(x)

Ĵi+1/2,t

�d
, (153)

which (in first approximation) is independent of the size of
the box (see Fig. 7). (We dropped the hat for convenience
of notation.) In terms of ρ, the stochastic equations become3

3These equations are standard, undisputed, and appear frequently
in the literature; see, e.g., [30]. They are a special case of Eq. (17) of
[31], itself equivalent to Eq. (4) of [17].

042117-14



COHERENT-STATE PATH INTEGRAL VERSUS COARSE- . . . PHYSICAL REVIEW E 93, 042117 (2016)

(generalized to d dimensions)

∂tρ(x,t) = −∇ �J (x,t), (154)

�J (x,t) = −D∇ρ(x,t) +
√

2Dρ(x,t) �η(x,t), (155)

〈ηi(x,t)ηj (x ′,t ′)〉 = δij δd (x − x ′)δ(t − t ′). (156)

Note that there is no �-dependent factor either for the current
or the noise term. Combining the first two equations yields

∂tρ(x,t) = D∇2ρ(x,t) + ∇[
√

2Dρ(x,t)�η(x,t)]. (157)

Let us step back and analyze the above findings; for simplicity
of notation we again set d = 1. First of all, the diffusion
process is constructed such that particles do not interact. A
given particle will be on a chosen site with probability 1/L,
where L is the system size. If N = n̄L is the total number of
particles, and n̄ the mean particle number per site, then the
probability to find n particles on a given site is

p(n) =
(

N

n

)(
1

L

)n(
1 − 1

L

)N−n

� e−n̄ (n̄)n

n!
. (158)

The last relation is valid in the limit of L large. We recuperate
our old friend, the normalized coherent state e−φ|φ〉, with
φ = n̄. Note that in the CSPI, the analog of Eq. (157) is given
by Eq. (110), namely

∂tφ(x,t) = D∇2φ(x,t). (159)

Since the CSPI works with coherent states, it does not need
the noise of Eq. (157). What diffuses is the “weight” φ(x,t) of
the coherent state, which is the mean particle number per site,
termed n̄ above. Thus in the CSPI, both mean and variance
of the number of grains on a site tends to n̄. We checked
with a numerical simulation that Eq. (157) indeed leads to a
distribution of grains per site with mean and variance n̄.

D. An effective stochastic field theory of the reaction process

Let us now construct an effective field theory of the
reaction-diffusion process. Consider a lattice of size Ld , with
particles on it, which can hop from one site to a neighboring
one with rate D. To simplify our considerations, let us suppose
that we take the limit of ν → ∞: if a particle jumps on an
occupied site, only one of them survives. To construct an
effective field theory, we introduce boxes of size �. Each of
these boxes contains n(x,t) particles at time t .

With rate D, a particle hops. Thus the probability with
which a particle in a given box will hop is D nx,t δt ; that it will
land on an occupied site and thus annihilate is

δann(x,t) � D n(x,t)δt × n(x,t) − 1

�d
. (160)

The second factor is an approximation which neglects the
correlations inside the box. If the particle had hopped out of
its box, then the second factor should involve the density in the
neighboring box; writing the density in the same box is another
approximation. Last but not least, if the box is sufficiently
large, then one can replace n(x,t) − 1 → n(x,t).

To perform the continuum limit, we use the density ρ(x,t)
defined in Eq. (153). The equation of motion of this density

then becomes

∂tρ(x,t) = −Dρ(x,t)2 +
√

Dρ(x,t)ξ (x,t)

+ D∇2ρ(x,t) + ∇[
√

2D ρ(x,t)�η(x,t)], (161)

〈ξ (x,t)ξ (x ′,t ′)〉 = δ(t − t ′)δd (x − x ′), (162)

〈ηi(x,t)ηj (x ′,t ′)〉 = δij δ(t − t ′)δd (x − x ′), (163)

〈ξ (x,t)〉 = 〈ηi(x,t)〉 = 〈ξ (x,t)ηi(x ′,t ′)〉 = 0. (164)

Note that all factors of δt and � have disappeared, absorbed
into a nontrivial dimension of ξ (x,t) and �η(x,t). Note that
the diffusive noise is usually dropped. The reason is that the
coarse-grained density ρ(x,t) varies smoothly, thus

∇[
√

2D ρ(x,t)�η(x,t)] �
√

2D ρ(x,t)∇�η(x,t). (165)

Integrating the letter over a box of size � will yield η(x,t)
on the boundary, making it less relevant by a factor of 1/�.
It is customarily dropped as subdominant. Thus the effective
stochastic description of the annihilation-diffusion process is

∂tρ(x,t) = −Dρ(x,t)2 +
√

Dρ(x,t)ξ (x,t)+D∇2ρ(x,t).
(166)

E. Comparison between the coherent-state path integral and
the effective coarse-grained stochastic equation of motion

Let us rewrite the equations of motion for the effective field
theory for the annihilation-diffusion process, first in coherent
states, and second in the coarse-grained stochastic-equation-
of-motion formalism, choosing similar conventions. First, the
stochastic equation of motion for the coherent-state formalism
reads

∂tφx,t = −ν

2
φ2

x,t + i
√

νφx,t ξx,t + D∇2φx,t , (167)

〈ξx,t 〉 = 0, 〈ξx,t ξx ′,t ′ 〉 = δ(t − t ′)δd (x − x ′). (168)

Second, the coarse-grained stochastic equation of motion reads
(we dropped the noise from diffusion)

∂tρx,t = −ν

2
ρ2

x,t +
√

ν

2
ρx,t ξx,t + D∇2ρx,t , (169)

〈ξx,t 〉 = 0, 〈ξx,t ξx ′,t ′ 〉 = δ(t − t ′)δd (x − x ′). (170)

Let us summarize our findings, based on what we have done
so far:

(1) Both equations look rather similar.
(2) In the formulation with a coherent state φx,t , the noise

ξx,t is imaginary. This indicates that the distribution becomes
narrower than a coherent state.

(3) In the formulation with the effective density ρx,t ,
which starts with a sharp distribution, the latter widens by
the presence of the real noise ξx,t .

(4) The noises are both proportional to
√

ν, the rate, times
the state variable; they differ by a factor of i

√
2.

(5) In the coherent-state formulation, perturbation theory
can be interpreted in terms of particle trajectories and first-
meeting probabilities; see Sec. III. This interpretation is not
possible for the coarse-grained stochastic equation of motion.
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(6) The coarse-grained stochastic equation of motion in
principle has an additional noise term; see the last term of
Eq. (161). This term becomes relevant if we coarse-grain with
very small boxes, but is irrelevant for large boxes: Since it
is a total derivative, its integral over a volume element is a
boundary (surface) term, down by a factor of 1/�, with � the
box size.

F. Other approaches

As we saw above, the appearance of an imaginary, or
more generally complex, noise and its physical interpretation
are puzzling. This is reflected in the literature; see, e.g.,
[11,16–19]. One basic reason is that in the CSPI the variables
are coherent states, i.e., (rather broad) distributions instead
of sharp δ distributions. The second reason is that they are
microscopic, not coarse-grained, variables. We then discussed
a physically motivated approach based on coarse-grained
variables. In the field-theoretic context, these questions were
considered in [29], and more specifically for branching
annihilation in [32] (see also [11], Sec. 9.2).

An alternative approach is to search a change of variables
for the coherent states. A beautiful proposal was made in
Ref. [17]. This approach can be interpreted as rewriting
creation and annihilation operators of the CSPI on each site as

â† = eρ̂†
, â = e−ρ̂†

ρ̂. (171)

The operator ρ̂ is the particle-number operator (and not a
particle annihilation operator as â). A derivation of the basic
equations and its consequences are discussed in Appendix F.
As can be seen from the transformation (171), if the process
does not respect particle-number conservation, we obtain
additional factors of e±ρ̂†

; these terms are nonlinear in ρ̂†,
and cannot simply be decoupled with the help of a Gaussian
noise. The situation may be different if particle numbers are
conserved. We come back to this question in Sec. VI F.

VI. A PHENOMENOLOGICAL DERIVATION OF THE
STOCHASTIC FIELD THEORY FOR THE MANNA MODEL

In this section, we apply our considerations to a nontrivial
example, the stochastic Manna model. We will see that our
formalism permits a systematic derivation of the effective
stochastic equations of motion. While the result is known
in the literature [20–23], it was there derived by symmetry
principles, which are not always convincing. Furthermore,
they leave undetermined all coefficients. While many of them
can be eliminated by rescaling, our derivation will “land” on a
particular line of parameter space, characterized by the absence
of additional memory terms; see Sec. VI D.

A. Basic definitions

The Manna sandpile was introduced in 1991 by Manna [4]
as a stochastic version of the Bak-Tang-Wiesenfeld (BTW)
sandpile [3]. It is defined as follows.

Manna model. Randomly throw grains on a lattice. If the
height at one point is greater or equal to two, then with rate 1
move two grains from this site to randomly chosen neighboring
sites. Both grains may end up on the same site.

We start by analyzing the phase diagram. We denote by ai

the fraction of sites with i grains. It satisfies the sum rule4∑
i

ai = 1. (172)

In these variables, the number of grains n per site can be written
as

n :=
∑

i

ai i. (173)

The empty sites are

e := a0. (174)

The fraction of active sites is

a :=
∑
i�2

ai. (175)

We also define the (weighted) activity as

ρ :=
∑
i�2

ai(i − 1). (176)

Note that ρ satisfies the sum rule

n − ρ + e = 1. (177)

In order to take full advantage of this definition, one may
change the toppling rules of the Manna model to those of the
weighted Manna model.

Weighted Manna model. If a site contains i � 2 grains,
randomly move these grains to neighboring sites with rate
(i − 1).

In Fig. 8 (thick lines), we show a numerical simulation of
the Manna model in a 2-dimensional system of size L × L,
with L = 150. There is a phase transition at n = nc = 0.702.
Close to nc, the fraction of doubly occupied sites a2 grows
linearly with n − nc, and higher occupancy is small. Indeed,
we checked numerically that for n > nc the probability pi

to find i grains on a site decays exponentially with i, i.e.,
pi ∼ exp(−αni), where αn depends on n; see Fig. 9. This is
to be contrasted with the initial condition, where we randomly
distribute n × L2 grains on the lattice of size L × L, and
which yields a Poisson distribution, the coherent state |n〉,
for the number of grains on each site; see inset of Fig. 9 (left).
This result suggests that coherent states may not be the best
representation for this system. It further implies that close to
the transition, ρ ≈ a, and we expect that the weighted Manna
model and the original Manna model have the same critical
behavior. We come back to this question below.

B. MF solution

In order to make analytical progress, we now study the
topple-away or mean-field solution of the stochastic Manna
sandpile, which we can solve analytically.

Mean-field Manna model. If a site contains two or more
grains, move these grains to any randomly chosen other site of
the system.

4Note that ai has nothing to do with the operator âi used earlier.
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FIG. 8. Thick lines: The order parameters of the Manna model,
as a function of n, the average number of grains per site, obtained
from a numerical simulation of the stochastic Manna model on a grid
of size 150 × 150 with periodic boundary conditions. We randomly
update a site for 107 iterations, and then update the histogram 500
times every 105 iterations. Plotted are the fractions of sites that
are unoccupied (black), singly occupied (blue), double occupied
(green), triple occupied (yellow), and quadruple occupied (orange).
The activity ρ = ∑

i>1 ai(i − 1) is plotted in purple. No data were
calculated for n < 0.5, where a0 = e = 1 − n,a1 = n, and ai>2 = 0
(inactive phase). Note that before the transition, a0 = 1 − n and
a1 = n. The transition is at n = nc = 0.702. Thin lines: The MF
phase diagram, as given by Eqs. (181) and following for n � 1

2 , and
by Eqs. (184) and following for n � 1

2 . We checked the latter with a
direct numerical simulation.

The rate equations are, setting for convenience a−1 := 0,

∂tai = −ai�(i � 2) + ai+2 + 2

⎡
⎣∑

j�2

aj

⎤
⎦(ai−1 − ai).

(178)They can be rewritten as

∂tai = −ai�(i � 2) + ai+2 + 2(1 − a0 − a1)(ai−1 − ai).

(179)

We are interested in the steady state ∂tai = 0. One can
solve these equations by introducing a generating function.
An alternative solution consists in realizing that for i � 2,
Eq. (179) admits a steady-state solution of the form

ai = a2κ
i−2, i > 2. (180)

This reduces the number of independent equations ∂tai = 0
in Eq. (179) from infinity to three. Furthermore, there are the
equations

∑∞
i=0 ai = 1 and

∑∞
i=0 i ai = n. Thus there are 5

equations for the 4 variables a0,a1,a2, and κ . The reason we
apparently have one redundant equation is due to the fact that
we already used the normalization condition (172) to go from
Eq. (178) to Eq. (179).

These equations have two solutions: For 0 < n < 1, there
is always the solution for the inactive or absorbing state,

a0 = 1 − n, (181)

a1 = n, (182)

ai�2 = 0. (183)

For n > 1/2, there is a second nontrivial solution:

a0 = 1

1 + 2n
, (184)

ai>0 = 4n
(

2n−1
2n+1

)i

4n2 − 1
. (185)

(Note that a2/a1 has the same geometric progression as ai+1/ai

for i > 2, which we did not suppose in our ansatz.) Thus
the probability to find i > 0 grains on a site is given by the
exponential distribution

p(i) = 4n

4n2 − 1
exp(−iαn), αn = log

(
2n + 1

2n − 1

)
. (186)

Using these two solutions, we get the mean-field (MF) phase
diagram plotted in Fig. 8 (thin lines). This has to be compared
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FIG. 9. Left: (Unnormalized) histogram after many topplings for n = 2; the probability that a site has i grains decays as e−0.585i , for all
i � 1. Inset: The initial distribution, a Poissonian. Right: The exponential decay coefficient α as a function of n. The dots are from a numerical
simulation. The dashed red line is the MF result (214). The green dashed line is a fit corresponding to α ≈ 2

3 ln[(n + nc)/(n − nc)]. Inset:
Blowup of main plot.
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with the simulation of the Manna model on the same figure
(thick lines). One sees that for n � 2, the MF solution and
simulation are becoming almost indistinguishable. We have
also checked with simulations that the Manna model has a
similar exponentially decaying distribution of grains per site,
with a decay constant α plotted on the right of Fig. 9.

A similar MF analysis can be performed for the weighted
Manna model and the Abelian sandpile model (ASM); this is
discussed in Appendix D.

There is a series of models which interpolates between the
Manna model and its MF version: the range-r Manna model,
where grains are not deposited on a random neighbor, but on
any site within a distance r . In Appendix E it is discussed how
this model converges for large r to the MF Manna model.

C. The complete effective equations of motion
for the Manna model

In this section, we will give the effective equations of
motion for the Manna model. Let us start from the mean-field
equations for ρ(t) and n(t). For simplicity of expressions,
we use the weighted Manna model. The physics close to
the transition should not depend on it. Let us start from the
hierarchy of MF equations (D1), similar to Eq. (179) for the
Manna model, and which can be rewritten as

∂tai = (1 − i)ai�(i � 2) + (i + 1)ai+2 + 2ρ(ai−1 − ai).

(187)

For convenience, let us write explicitly the rate equation for
the fraction of empty sites e ≡ a0,

∂te = a2 − 2ρe. (188)

The first term, the gain r+ = a2, comes from the sites with two
grains, toppling away, and leaving an empty site. The second
term, the loss term, is the rate at which one of the toppling
grains lands on an empty site, r− = 2ρe.

We now follow the formalism developed in Sec. V A,
Eqs. (145)–(148). This yields

∂te = ρ(1 − 2e) +
√

a2 + 2ρe ξ̄t , (189)

where 〈ξ̄t ξ̄t ′ 〉 = δ(t − t ′)/ld , and l is the size of the box which
we consider. Now remark that close to the transition, a2 ≈ ρ.
Inserting this into the above equation, we arrive at

∂te ≈ ρ(1 − 2e) + √
ρ
√

1 + 2e ξ̄t . (190)

Due to Eq. (177), the combination n − ρ + e = 1, and since
n is conserved this implies ∂te ≡ ∂tρ. It is customary to write
Eq. (190) for ∂tρ, instead of ∂te. Next we approximate

√
1 + 2e

by the value of e at the transition, i.e., e → eMF
c = 1

2 ; see the
mean-field phase diagram in Fig. 8. We thus arrive at

∂tρ ≈ (2n − 1)ρ − 2ρ2 +
√

2ρ ξ̄t . (191)

Note that this equation gives back nMF
c = 1

2 , and as a conse-
quence of the conservation law n − ρ + e = 1 also eMF

c = 1
2 ,

used above in the simplification of the noise term.
Finally, let us suppose we have not a single box of size �,

but a lattice of boxes, labeled by a d-dimensional label x. Each
toppling event moves two grains from a site to the neighboring

sites, equivalent to a current

J (x,t) = −D∇ρ(x,t) +
√

2Dρ(x,t)ξ (x,t) (192)

with diffusion constant D = 2 × 1
2d

= 1
d

. The first factor of 2
is due to the fact that two grains topple. The factor of 1

2d
is due

to the fact that each grain can topple in any of the 2d directions;
thus the rate D per direction is 1

2d
, resulting in D = 1/d. As

discussed above, we will drop the noise term as subdominant.
This current changes both the activity ρ(x,t), as the

number of grains n(x,t), resulting in ∂tρ(x,t) = ∂tn(x,t) =
−∇J (x,t). It does not couple to the density of empty
sites. Using the sum rule (177) n − ρ + e = 1, implies the
consistency relation ∂tρ(x,t) ≡ ∂tn(x,t) + ∂te(x,t) for the
current; this confirms that both ρ(x,t) and n(x,t) must couple
to the same current.

Thus, we finally arrive at the following set of equations:

∂tρ(x,t) = 1

d
∇2ρ(x,t) + [2n(x,t) − 1]ρ(x,t)

− 2ρ(x,t)2 +
√

2ρ(x,t) ξ (x,t), (193)

∂tn(x,t) = 1

d
∇2ρ(x,t), (194)

〈ξ (x,t)ξ (x ′,t ′)〉 = δd (x − x ′)δ(t − t ′). (195)

This is known as the conserved directed percolation class.
Instead of writing coupled equations for ρ(x,t) and n(x,t), we
can also write coupled equations for e(x,t) and ρ(x,t):

∂te(x,t) = [1 − 2e(x,t)]ρ(x,t) +
√

2ρ(x,t) ξ (x,t), (196)

∂tρ(x,t) = 1

d
∇2ρ(x,t) + ∂te(x,t). (197)

The above equations for ρ and n were obtained in the
literature [20–23] by means of symmetry principles, but never
properly derived. Evoking symmetry principles also leaves all
coefficients undefined, and does not ensure that Eq. (196) is
valid on a single site, i.e., is free of spatial derivatives. This
locality will prove essential in the next section.

D. Excursion: Mapping to disordered elastic manifolds

In [24] it had been proposed to use these equations as
a basis for mapping the effective field theory of the Manna
model derived above onto driven disordered elastic systems.
The identifications are

ρ(x,t) = ∂tu(x,t) the velocity of the interface, (198)

e(x,t) = F(x,t) the force acting on the interface. (199)

The second equation (197) is the time derivative of the equation
of motion of an interface, subject to a random force F(x,t),

∂tu(x,t) = 1

d
∇2u(x,t) + F(x,t). (200)

Since ρ(x,t) is positive, u(x,t) is for each x monotonically
increasing. Instead of parametrizing F(x,t) by space x and
time t , it can be written as a function of space x and
interface position u(x,t). Setting F(x,t) → F (x,u(x,t)), the
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first equation (196) becomes

∂tF(x,t) → ∂tF (x,u(x,t))

= ∂uF (x,u(x,t))∂tu(x,t)

= [1 − 2F (x,u(x,t))]∂tu(x,t)

+
√

2∂tu(x,t)ξ (x,t). (201)

For each x, this equation is equivalent to the Ornstein-
Uhlenbeck [33] process F (x,u), defined by

∂uF (x,u) = 1 − 2F (x,u) +
√

2 ξ (x,u), (202)

〈ξ (x,u)ξ (x ′,u′)〉 = δd (x − x ′)δ(u − u′). (203)

It is a Gaussian Markovian process with mean 〈F (x,u)〉 = 1/2,
and variance in the steady state of〈[

F (x,u) − 1
2

][
F (x ′,u′) − 1

2

]〉 = 1
2δd (x ′ − x ′)e−2|u−u′|.

(204)
Writing the equation of motion (200) as

∂tu(x,t) = 1

d
∇2u(x,t) + F (x,u(x,t)), (205)

it can be interpreted as the motion of an interface with position
u(x,t), subject to a disorder force F (x,u(x,t)). The latter is
δ-correlated in the x direction, and short-ranged correlated in
the u direction. In other words, this is a disordered elastic
manifold subject to random-field disorder. It can be treated via
field theory. The latter relies on functional RG (see [34] for an
introduction) for the renormalized version of the force-force
correlator (204). Functional RG is nowadays well developed,
and predicts not only a plethora of critical exponents [35] but
also size, velocity, and duration distributions [36], as well as
the shape of avalanches [37].

Also note that Eq. (193) has a quite peculiar symmetry,
namely the factor of 2 in front of both n(x,t)ρ(x,t) and
−ρ(x,t)2. As a consequence, Eq. (196) does not contain
a term ∼ρ2(x,t), which would spoil the simple mapping
presented above. The absence of this term cannot be induced
on symmetry arguments only. How this additional term, if
present, can be treated is discussed in Ref. [24].

E. Coherent states for the Manna model?

In the last section, we derived an effective field theory for
the stochastic Manna model, in the coarse-grained stochastic-
equation-of-motion formalism (CGSEM). The reader might
wonder why we did not try to use the CSPI formalism. Well, we
tried, and here we will share the rather disappointing outcome:
One starts from the discrete Hamiltonian, with rate 1, and for
simplicity in dimension d = 1

HManna[â†,â] =
∑

i

[
1

4
(â†

i+1 + â
†
i−1)2 − (â†

i )2

]
â2

i . (206)

The first term, proportional to (â†
i+1 + â

†
i−1)2â2

i , checks
whether there are two or more grains on site i, and then
moves two grains to randomly chosen neighbors. The last term
−(â†

i )2â2
i is responsible for the conservation of probability.

One can show that this is equivalent to the stochastic equation

of motion

∂tat,j = ∇2a2
t,j+

1√
2

(ηt,j−1at,j−1+ηt,j+1at,j+1)+
√

2iξt,j at,j

(207)

with noise 〈ηt,j ηt ′,j ′ 〉 = 〈ξt,j ξt ′,j ′ 〉 = δ(t − t ′)δj,j ′ and
〈ηt,j ξt ′,j ′ 〉 = 0. Note that the first (diffusive) term comes from
the shift â

†
i → â

†
i + 1, to be done before decoupling the path

integral with noise terms.
This equation is quite ugly: Not only does it have two

multiplicative noises; one of them is imaginary, inducing the
convergence problems mentioned in Sec. IV G.

As we do not know how to proceed from here, let us try to
address this question on a more abstract level: Could coherent
states indeed help us? Let us also state our prerogative, namely
that one wants to derive an effective field theory for a local
field. First of all, one has to realize that what the coherent
state does is to rewrite the number of grains on a given site as a
superposition of Poisson distributions (also known as coherent
states) on this site. This complicates matters; after all, we want
an effective variable which gives us some intuition.

Let us take a step back and look at the derivation of the
field theory of the Ising model. One realizes that there one
needs coarse graining. What we have done in the preceding
section was to construct coarse-grained effective variables for
a block of � × � sites. As for Ising, this necessitates making
approximations inside a block. We did this, supposing that
we are close to the transition, and that we can use the MF
approximation for the block.

But maybe this block can be described by a coherent state?
From Fig. 9 we see that the distribution inside a block is,
at least approximately, an exponential, represented by (we
normalized)

|a0,β〉 = a0|0〉 + (1 − a0)(1 − β)

1 − βâ† â†|0〉. (208)

This implies n = 1−a0
1−β

and ρ = 1−a0
1−β

β; in the example of Fig. 9,

a0 ≈ 0.195, β ≈ e−0.585, n = 2, and ρ ≈ 1.115. This has to
be contrasted to a coherent state, with on average n̄ particles
(also normalized),

|n̄〉 = en̄(â†−1)|0〉. (209)

This state has a0 = e−n̄, possesses n̄ particles, and activity
ρ = n̄ + e−n̄ − 1. There are two problems: First of all, the
tail is different; this should not be an issue close to the
transition, where triple and higher occupancy are unimportant.
The second and more fundamental problem is that while the
state (208) has two independent parameters, the coherent state
(209) has only one. Still, the coherent-state functional integral
will correctly propagate a state. More precisely, it will calculate
a transition probability from an initial state to a final state,
after decomposition into a coherent-state representation. It
will do so by passing through complex intermediate states.
The imaginary part of these complex variables provides the
second, “missing” variable. Thus thinking of a single (real)
coherent state per site is not appropriate.

One could also try to work with coherent states for the
number of empty, once, twice, or triple, . . . occupied sites
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inside a box. This would yield a state of the form

|a0,a1,a2, . . . 〉 := e�2(a0â
†
0+a1â

†
1+a2â

†
2+... )|0〉, (210)

where the â
†
i create an i times occupied site. If

∑
i ai = 1,

the expectation of the number of sites will still be �2, but it
will be a fluctuating variable, with variance �. While this is
probably acceptable, the author does not see what would be
gained in terms of simplicity of derivation, knowing that all the
approximations necessary for the MF treatment of Sec. VI B
would have to be made as well.

Coherent states as a basis for a stochastic description of the
Manna model have also been proposed by Pastor-Satorras [20],
based on the field theory of Wijland-Oerding-Hilhorst [38].
The idea there was to introduce two species A and B, where
B particles are associated with the activity, and can diffuse
with rate D, whereas A particles are stationary. The particle
number in the Manna model is associated with the total number
of A and B particles. The rate equations proposed to mimic

the Manna model are B
k1−→ A and A + B

k2−→ B + B. This
yields a Hamiltonian

H[â†,â,b̂†,b̂] =
∫

x

Db̂†∇2b̂ + k1(â† − b̂†)b̂

+ k2[(b̂†)2b̂â − b̂†â†b̂â]. (211)

This theory was then analyzed in terms of shifted fields, see
Eq. (1.15) of [38], which somehow obscures the analysis. What
was not realized is that the proposed stochastic interpretation
necessitates an imaginary noise. This can be seen from the fact
that the terms quadratic in â† and b̂† are of the form

H[â†,â,b̂†,b̂] = k2

∫
x

(â†,b̂†)

(
0 − 1

2− 1
2 1

)(
â†

b̂†

)
âb̂

+ linear terms in â†,b̂†. (212)

The matrix has both a positive eigenvalue corresponding to
a real noise as well as a negative eigenvalue corresponding
to an imaginary noise, as is the case for Eq. (207). From our
above considerations this is not surprising. It shows once more
that the CSPI formalism does not yield stochastic equations
of motion with a purely real noise. Remark that the equations
of Sec. VI C are recovered within the same approximations,
when applying the CGSEM formalism developed here to the
two-species model.

Finally, let us mention another peculiarity of the Manna
Hamiltonian in Eq. (206): The rate for a site with n � 2 grains
to topple is proportional to n(n − 1); this is dictated by the
demand to have a Hamiltonian as simple as possible. The
original Manna model has a constant rate, while the weighted
Manna model we defined above has a rate proportional to
n − 1. While this should be no problem at the transition, it
imposes a specific rate not present in the original formulation,
a rate found in pairing (or meeting) probabilities of n

particles in a box. The latter is indeed the framework in
which the combinatorics of the coherent-state path integral
is appropriate.

F. A canonical transformation for the Manna model?

Some efforts were spent to find exact representations of
a stochastic process, without using the CSPI formalism. The
hope was that such a reformulation could be interpreted as
a stochastic process with real noise. In Sec. V F we discuss,
and in Appendix F we rederive, the proposal of Ref. [17].
This approach can be interpreted as rewriting creation and
annihilation operators of the CSPI on each site as

â† = eρ̂†
, â = e−ρ̂†

ρ̂. (213)

Applying this transformation to the Manna Hamiltonian (206)
yields

Hρ

Manna[ρ̂†,ρ̂] = 1

4

∫
x

(eρ̂
†
i+1−ρ̂

†
i + eρ̂

†
i−1−ρ̂

†
i )2ρ̂i(ρ̂i − 1). (214)

Taking the continuum limit, and dropping higher-order terms
in the lattice cutoff, one arrives at

Hρ,cont
Manna[ρ̂†,ρ̂] �

∫
x

{
[∇ρ̂†(x)]2+∇2ρ̂†(x)

}
ρ̂(x)[ρ̂(x) − 1].

(215)
The action Sρ

Manna = ∫
x,t

ρ∗(x,t)∂tρ(x,t) − H[ρ∗,ρ] allows
for an interpretation as a stochastic equation of motion with a
real noise ηi(x,t),

∂tρ(x,t) � ∇2{ρ(x,t)[ρ(x,t) − 1]}
+

√
2 ∇[�η(x,t)

√
ρ(x,t)[ρ(x,t) − 1]], (216)

〈ηi(x,t)ηj (x ′,t ′)〉 = δij δd (x − x ′)δ(t − t ′). (217)

This equation is very similar to the linear diffusion equation
(157), except that on the right-hand side the particle number ρ

has been replaced by ρ(ρ − 1).
The question remains whether passing from Eq. (214) to

(215) is justified. In the path integral, ρ̂ is the number of
particles. As a discrete number, ρ̂ strongly fluctuates between
nearest neighbors, and one expects ρ̂† to do the same. Thus
the approximation from Eq. (214) to (215) is probably not
justified. One should first construct coarse-grained variables,
which would probably lead to a stochastic equation of motion
different from Eq. (216). We leave exploitation of these ideas
for future research.

VII. CONCLUSION

In this article, we started with the coherent-state path
integral (CSPI) for stochastic systems, which we then refor-
mulated as a stochastic equation of motion. We showed how
the evolution of the probability distribution can be followed,
despite the appearance of imaginary noise. Limitations of this
formalism were discussed, especially its (at least practical)
breakdown at finite times. We also showed how some of the
appearing vertices can be interpreted as transforming a simple
diffusion probability into a first-meeting probability.

We then constructed a complementary formalism, based
on an effective coarse-grained stochastic equation of motion
(CGSEM) for a continuous variable. Demanding that drift
and variance for the underlying discrete system be correctly
reproduced by the CGSEM fixes the latter continuous process
uniquely.
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We should stress again that while both the CSPI and the
CGSEM formalism share some common features, they should
not be confounded: It is tempting to derive stochastic equations
of motion in the CSPI formalism, and then to interpret the
coherent state |φ〉, i.e., a Poisson distribution with expectation
φ, by the state φ itself, equivalent to a δ distribution at
φ, as is used in the CGSEM formalism [20]. We remarked
on the example of the reaction process A + A → A, that
starting from a Poisson distribution, the probability distribution
becomes narrower than a Poissonian, which in the CSPI is
only possible with complex coherent states, thus imaginary
noise in the equation of motion. On the other hand, the
probability distribution becomes broader than a δ distribution,
necessitating a real noise in the CGSEM. Both noises have, up
to a factor of

√
2, the same strength.

We concluded our considerations by analyzing the stochas-
tic Manna model, and gave a straightforward derivation of
its effective stochastic field theory. Our procedure, based
on coarse graining, fixes all amplitudes, including the noise
strength. Compared to earlier derivations, this derivation is
simple and transparent; that it fixes all constants is an additional
advantage. It also ensures the simplest mapping on disordered
elastic manifolds.

We hope that our work helps to clarify the origin and inter-
pretation of stochastic field theories, and that the techniques
presented here are more broadly useful.

Note added in proof. Recently we found that rate equations
similar to Eqs. (178) and following were proposed in the
literature for a closely related process, the conserved threshold
transfer process; see [12], page 229, recursively citing [39],
[40], and [41]. We have found an application to neither the
Manna model nor the solution (185) and following.
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APPENDIX A: FERMIONIC COHERENT-STATE
PATH INTEGRAL

The coherent-state path integral can also be applied to
fermionic degrees of freedom, i.e., to states which can only
be unoccupied, or simply occupied. This can be done via the
coherent-state path integral with Grassmann numbers. Here
we only write down the basic equations.

We introduce fermion creation and annihilation operators
with

{c,c†} = 1, {c,c} = {c†,c†} = 0. (A1)

The states are

|1〉 = c†|0〉, c|0〉 = 0. (A2)

This implies

〈1|1〉 = 〈0|cc†|0〉 = 〈0|{c,c†}|0〉 = 〈0|0〉 = 1. (A3)

Coherent states

|ψ〉 = eψc† |0〉 = (1 + ψc†)|0〉, (A4)

〈ψ | = 〈0|ecψ∗ = 〈0|(1 + cψ∗), (A5)

〈ψ∗|ψ〉 = 1 + ψ∗ψ. (A6)

Resolution of unity∫
dψ∗dψ |ψ〉〈ψ∗|e−ψ∗ψ = 1. (A7)

This relation can be checked by applying it to |0〉 and to ψ ′|1〉.

APPENDIX B: PROOFS OF SOME RELATIONS
USED IN THE MAIN TEXT

1. Proof of Eq. (28)

Equation (28) reads

eλn̂ ≡ eλâ†â = : e(eλ−1)â†â : . (B1)

The proof of this equation consists of two steps: Applying the
left-hand side of Eq. (B1) to a coherent state yields

eλâ†âeφâ† |0〉 =
∞∑

n=0

eλâ†â φn(â†)n

n!
|0〉

=
∞∑

n=0

eλ n φn(â†)n

n!
|0〉

= eeλφâ† |0〉. (B2)

Thus

〈φ∗|eλâ†â|φ〉 = 〈0|eφ∗âeeλφâ† |0〉 = eeλφ∗φ. (B3)

On the other hand,

〈φ∗| : e(eλ−1)â†â : |φ〉

=
∞∑

n=0

〈0|eφ∗â(eλ − 1)n
(â†)nân

n!
eφâ† |0〉

=
∞∑

n=0

〈0|eφ∗â(eλ − 1)n
(φ∗φ)n

n!
eφâ† |0〉 = eeλφ∗φ. (B4)

This proves relation (B1).

2. A different derivation of Eq. (35)

The set of relations (35) and following can also be derived
from

φp = φp〈0|eâ|φ〉e−φ = 〈0|eââpeφâ† |0〉e−φ

= 〈0|(â† + 1)peââpeφâ† |0〉e−φ

= 〈0|eâ(â†)pâpeφâ† |0〉e−φ

= 〈0|eâ(n̂ − p + 1) . . . (n̂ − 1)n̂ eφâ† |0〉e−φ. (B5)
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3. Formal derivation of the evolution of expectation
values in the coherent-state path integral

Consider the expectation value (60) at time tf :

〈Otf 〉 = e−φi〈0|eâO(â†,â)Te
∫ tf
ti

dt H[â†
t ,ât ]|φi〉. (B6)

We are interested in its temporal evolution. At a slightly smaller
time, the observable O had expectation

〈Otf−δt 〉 = e−φi〈0|eâeδtH[â†,â]O(â†,â)Te
∫ tf −δt

ti
dt H[â†

t ,ât ]|φi〉.
(B7)

Note that we have been able to add the factor eδtH[â†,â] ∧=
eδtH[â†

tf
,âtf ] since H[â†,â], when applied to the left to 〈0|eâ

vanishes; see Sec. II B. Thus the time derivative of the
expectation value of an operator is given by its commutator
with H[â†,a],

d

dtf
〈Otf 〉 = 〈[O(â†,â),H[â†,â]]〉, (B8)

where the expectation is as in Eq. (B6). To simplify the
calculations, we show that if O[â†,â] is normal-ordered,
O[â†,â] ≡ ON[â†,â], thenO[â†,â] can be replaced byO[1,â];
indeed, Eq. (B8) is proportional to

〈0|eâ{O(â†,â)H[â†,â] − H[â†,â]O(â†,â)} . . .

= 〈0|eâ{O(1,â)H[â†,â] − H[â†,â]O(1,â)} . . . (B9)

since 〈0|eâO(â†,â) = 〈0|eâO(1,â), and 〈0|eâH[â†,â] = 0.
Thus

d

dtf

〈
Otf

〉 = 〈[O(1,â),H[â†,â]]〉. (B10)

Next, the commutator can be calculated by remarking that

[O(1,â),H[â†,â]] = W(O(1,â),H[â†,â]). (B11)

The operator W denotes all possible Wick contractions
between O(1,a) and H[â†,a]. To proceed we suppose that
the Hamiltonian has only a linear and quadratic term in â†,
i.e.,

H[â†,â] =
∫

x

â†
xLx[â] + 1

2

∫
x,y

â†
x â

†
yBx,y[â], (B12)

with Bxy[â] = Byx[â]. Then the commutator will be

[O(1,â),H[â†,â]] =
∫

x

δ

δâ
†
x

H[â†,â]
δ

δâx

O(1,â)

+ 1

2

∫
x,y

δ

δâ
†
x

δ

δâ
†
y

H[â†,â]

× δ

δâx

δ

δây

O(1,â). (B13)

As a consequence, the expectation (B10) evaluates to

d

dtf
〈Otf 〉 =

〈∫
x

(
Lx[â] +

∫
y

Bx,y[â]

)
δ

δâx

O(1,â)

〉

+ 1

2

〈∫
x,y

Bx,y[â]
δ

δâx

δ

δây

O(1,â)

〉
. (B14)

We can give an interpretation in terms of a stochastic process
φt defined by

∂tφx,t = Lx[φ] +
∫

y

Bx,y[φ] + ξx,t , (B15)

〈ξx,t ξx ′,t ′ 〉 = δ(t − t ′)Bx,x ′ [φ], (B16)

Otf = O(1,φtf ). (B17)

Indeed, applying the Itô formalism (see, e.g., [42]) to the
expectation 〈Otf 〉ξ yields Eq. (B14). Comparing Eq. (B15) to
Eq. (104), we note that the drift term also contains a term linear
in B. The reason is that to arrive at Eq. (104) the shifted Hamil-
tonian had been used. Indeed, this is accounted for by shifting
in Eq. (B12) â† → â† + 1,Lx → Lx + ∫

y
Bx,y , while Bx,y

remains unchanged. Thus Eqs. (104) and (B15) are equivalent.

APPENDIX C: STOCHASTIC EQUATIONS OF MOTION
WITH PURELY MULTIPLICATIVE NOISE

The terms in the action which cause us trouble are of the
form

δS[a∗,a] = 1

2

∫
t

(a∗
t )2a2

t . (C1)

Decoupling with a noise ξt , with 〈ξt 〉 = 0,〈ξt ξ
′
t 〉 = δ(t − t ′),

we have

e−δS[a∗,a] = 〈ei
∫
t
a∗

t at ξt 〉ξ . (C2)

Thus the equation of motion will have a term of the form

∂tat = iat ξt + · · · . (C3)

This is a multiplicative noise. In the following, we will solve
this equation, dropping all further terms, both for a real noise,
and for an imaginary noise. To reserve the notation φt for the
phase, we noted this variable at ; it reminds the coherent-state
variable â.

1. Integrating a stochastic equation of motion with purely
multiplicative noise: Real case

To start, consider the easier case of a real noise

∂tat = ξtat . (C4)

We can make the ansatz

at = a0e
φt . (C5)

This leads to

∂tφt = ξt − 1
2 . (C6)

Note the drift term; using Itô calculus with dBt = ξtdt , the
latter equation reads

dφt = dBt − 1
2dt. (C7)

We infer, as claimed,

dat = a0deφt

= a0e
φt

[
dφt + 1

2dφ2
t + · · · ]

= a0e
φt

[
dBt − 1

2dt + 1
2dB2

t + · · · ]
= atdBt . (C8)
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Therefore, for arbitrary λ, the generating function is〈(
at

a0

)λ〉
= 〈eλφt 〉 = 〈

eλ
∫ t

0 dτ (ξτ − 1
2 )
〉 = eλ(λ−1)t/2. (C9)

The probability is obtained by inverse-Laplace transforming,

P ( ln(a/a0),t) =
∫

dλ

2π
〈eiλ[ln(a/a0)−ln(at /a0)]〉

=
∫

dλ

2π
eiλ ln(a/a0)−λ(λ+i)t/2

= e− [ln(a/a0)+t/2]2

2t√
2πt

. (C10)

This leads to the probability as a function of a,

P (a,t) = d ln(a/a0)

da
P ( ln(a/a0),t) = e− [ln(a/a0)+t/2]2

2t√
2πta

. (C11)

Integrating
∫
a
anP (a,t) we find〈

an
t

〉 = an
0en(n−1)t/2. (C12)

This yields, as it should,

∂t

〈
an

t

〉 = n(n − 1)

2

〈
an

t

〉
. (C13)

2. Integrating a stochastic equation of motion with purely
multiplicative noise: Imaginary case

For an imaginary noise as in Eq. (C3), we start from

∂tat = iξtat . (C14)

We make the ansatz

at = a0e
iφt+t/2. (C15)

This leads to

∂tφt = ξt . (C16)

Note the drift term, analogous to the one in Eq. (C7), but with
opposite sign. The probability to find φ is then given by

P (φ,t) = e− φ2

2t√
2πt

. (C17)

The generating function for at , and its complex conjugate a∗
t ,

or more precisely for their logarithms, reads

Z(λ,λ∗) = 〈
aλ∗

t (a∗
t )λ

〉 = (
a0e

t/2
)λ+λ∗

e−(λ+λ∗)2t/2. (C18)

In Sec. IV G, we had seen that the probability for n-particle
occupation is still given by the normalized coherent state. Even
though here we are only dealing with a toy version of the real
equation of motion, namely Eq. (C14), we can still study the
same observable. This will shed light on the convergence issues
noted in Sec. IV G.

pn(t) =
〈
e−at

an
t

n!

〉
at

=
∞∑

k=0

(−1)k
〈
an+k

t

k! n!

〉
at

=
∞∑

k=0

(−1)k

n!k!
(a0e

t/2)n+ke−(n+k)2t/2. (C19)

For large times t , this converges towards p0(t) → 1 − a0,

p1(t) → a0, pn>2 → 0, which is no longer a probability for
a0 > 1. Another option is to write the above expectation as an
integral over P (φ,t),

pn(t) =
∫ ∞

−∞
dφ

e− φ2

2t√
2πt

e−a0e
iφ+t/2 (a0e

iφ+t/2)n

n!
. (C20)

When the time t becomes large, the integral starts to oscillate.
As an example, for a0 = 2 it can no longer be done for t � 5.

Using (C17), we can also study the probability distribution
for the real part

ar = a + a∗

2
. (C21)

Defining b := e−t/2ar/a0, this is

P b
r (b,t) = 1√

2πt(1 − b2)

×
∞∑

n=−∞

[
e− [acos(b)+2πn]2

2t + e− [acos(b)−2πn]2

2t

]

= ϑ3
( acos(b)

2 ,e−t/2
) + ϑ3

( acos(b)
2 ,e−t/2

)
√

2πt(1 − b2)
. (C22)

For small times, it is dominated by the term n = 0,

P b
r (b,t) ≈ P b,app

r (b,t) :=
√

2 e− acos(b)2

2t√
πt(1 − b2)

. (C23)

Note that

P a
r (ar,t) = e−t/2

a0
P b

r

(
are

−t/2

a0
,t

)
. (C24)

We checked this result numerically; see Fig. 10.

−6 −4 −2 2 4 6
ar

0.1

0.2

0.3

0.4

0.5

0.6

P(ar )

FIG. 10. The probability (C24) (red dashed), compared to a direct
simulation of Eq. (C14) with 104 samples, δt = 10−4, t = 2, a0 = 2
(blue); the thin vertical red lines delimit the domain of the analytic
solution. Some simulation points lie outside, due to a finite δt .
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FIG. 11. Left: MF phase diagram of the weighted Manna model (wMM) (thick lines), compared to the MF phase diagram of the standard
Manna model (thin lines). Right: The distribution of ai for the wMM as a function of i (red points), for n = 0.8. The blue dashed line and
green points are a Poisson distribution with 2.286e−0.989i/ i!.

APPENDIX D: MF SOLUTIONS FOR THE WEIGHTED
MANNA MODEL AND THE ABELIAN SANDPILE MODEL

1. MF solution for the weighted Manna model

The MF rate equations for the weighted Manna model are

∂tai = −(i − 1)ai�(i � 2) + (i + 1)ai+2

+ 2

⎡
⎣∑

j�2

aj (j − 1)

⎤
⎦(ai−1 − ai). (D1)

To give an analytic solution of this set of equations is left as
a challenge to the reader. On the left of Fig. 11, we show the
result of a numerical integration of the rate equations, starting
from a Poisson distribution with on average n grains per site.
As can be seen from the right of Fig. 11, the tail of the ensuing
distribution remarkably no longer is an exponential, but close
to a Poissonian. This can be seen from Eq. (D1): Setting

ai → a2(2ρ)i−2

i!
, (D2)

the leading term in i is canceled. Indeed, the numerical solution
confirms that this is approximately true; more precisely,

ai2ρ

(i+1)ai+1
→ 1 for i large. (In practice, one can get the first

20 . . . 50 coefficients, depending on n.)

2. MF solution for the 2D-ASM model

As a further excursion, consider the 2-dimensional Abelian
sandpile model (ASM), which moves four grains to the four
nearest neighbors, if the height at a given sites reaches or
exceeds four. Its MF rate equations are

∂tai = −ai�(i � 4) + ai+4 + 4

⎡
⎣∑

j�4

aj

⎤
⎦(ai−1 − ai). (D3)

Using
∑

i ai = 1, one can eliminate the infinite sum in the
square bracket. Let us again suppose geometric progression,
this time for i > 4,

ai = a4κ
i−4, i > 4. (D4)

Solving as for the Manna model the 5 first equations, as well as
the constraints (172) and (173), we obtain a nontrivial solution,
with non-negative coefficients, for n � 3

2 ,

a0 = 1

4n − 2
, (D5)

a1 = 2(n − 1)

(1 − 2n)2
, (D6)

a2 = 12(n − 2)n + 13

2(2n − 1)3
, (D7)

ai = 4(n − 1)[4(n − 2)n + 5]

(1 − 2n)4

[
2n − 3

2n − 1

]i−3

, i � 3. (D8)

This is depicted in Fig. 12. For n < 3
2 , any set of positive ai ,

such that ai = 0 for i > 3, and which satisfy the constraints∑
i ai = 1 and

∑
i iai = n, is possible. Which solution is

picked is given by the initial conditions. Integrating the rate
equations (D3) starting from a Poissonian distribution with
expectation n leads to the solid lines drawn in Fig. 12. This
reproduces the solution (D5)–(D8) for n > nc ≈ 1.542. We
have checked these analytical predictions by a direct numerical
solution; see dots in Fig. 12.

Note that the same analysis can be done for an ASM on
a lattice of coordination number n; the most interesting such
case is n = 3, e.g., the 2-dimensional honeycomb lattice. The
MF equations of motion then read

∂tai = −ai�(i � n) + ai+n + n

⎡
⎣∑

j�n

aj

⎤
⎦(ai−1 − ai). (D9)

APPENDIX E: THE TOPPLE-AWAY MANNA MODEL,
ITS CONVERGENCE TO MF, AND LIMIT

OF LARGE DIMENSIONS

The question arises as to how one can go from the standard
Manna model with nearest-neighbor topplings to its mean-field
variant. There is indeed a series of models which does this
interpolation. To this aim, define the following:

The topple-away Manna model of range r . If on a site (i,j )
there are two grains, do twice: Randomly pick a site (i ′,j ′) with

042117-24



COHERENT-STATE PATH INTEGRAL VERSUS COARSE- . . . PHYSICAL REVIEW E 93, 042117 (2016)

FIG. 12. Main plot: The phase diagram for the MF version of the
2d-ASM. The branch starting at n = 1.5 and ai,i�3 = 1

4 is the MF
solution, Eqs. (D5) and following. The branch starting at n = 0 was
obtained by a direct numerical integration of the rate equation (D3),
setting to zero all ai,i>100, and waiting until a steady state is reached.
The dots are the result of a direct MC simulation of the MF-ASM
model, starting from a Poisson distribution; we randomly distributed
n times size 2 grains on a lattice of size 150. Note that Eq. (D3)
allows us to predict the state reached by Monte Carlo. Also note
that the branch with ai,i�4 = 0, which exists up to n � 3, remains
attractive beyond n = 3

2 (see inset, solid lines). The dashed lines are
the solution (D5) and following.

|i − i ′| � r,|j − j ′| � r , and move a grain from site (i,j ) to
site (i ′,j ′). (We exclude the origin; two grains may end up on
the same site.)

We can show via a numerical simulation that this variant
converges to the MF Manna model for r → ∞; in practice for
r = 15, one is already very close. In Fig. 13 we show how
nc (below which there is no active phase) decreases with the
range r; in fact, we find numerically that

nc ≈ 1

2
+ 0.1612

r
. (E1)

In Fig. 14 (solid lines) we show how for r = 6 the phase
diagram is already close to the MF model (thin lines).
Intuitively, this is not surprising: When increasing the number
of sites onto which an active site can depose its grains during a

10.05.02.0 20.03.01.5 15.07.0
r

0.010

0.100

0.050

0.020

0.030

0.015

0.150

0.070

nc 0.5

FIG. 13. A log-log plot of nc − 0.5 as a function of the range r .
The shown line is a power-law fit nc − 0.5 = 0.168069/r .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
n0.0

0.2

0.4

0.6

0.8

1.0
ai

FIG. 14. The phase diagram for r = 6. The transition is at nc =
0.517. Figure to be compared to Fig. 8. The thin underlying lines are
the MF solution, the thin dotted lines the unstable solution.

toppling event, these “neighboring” sites are better and better
described by a MF approach.

It is also intuitively clear that the same phenomenon takes
place in high dimension d. Indeed, for d = ∞, each active
grain has 2d neighbors, and supposing the state can locally
be described by the number of grains and the activity, the
assumptions in the derivation of MF theory become valid in
the large-d limit.

APPENDIX F: CHANGING VARIABLES IN THE CSPI

In Ref. [17] the authors propose an alternative exact
path-integral representation for stochastic systems, and show
its equivalence to the CSPI formalism.5 Their idea is to start
from a rate equation for the particle number ρ on a site.
Suppose in a time step δt the particle number changes with
probability p(ρ)δt by a fixed amount δρ. To write down
the path integral for a time slice δt , the change ρ(t + δt) =
ρ(t) + δρ is enforced by an integral over the auxiliary field
ρ∗,

∫
ρ∗ e−ρ∗[ρ(t+δt)−ρ(t)−δρ]. Averaging this quantity over the

random process results in the action for a time slice,∫
ρ∗

e−δS[ρ∗,ρ] =
∫

ρ∗
e−ρ∗[ρ(t+δt)−ρ(t)]〈eρ∗δρ〉

=
∫

ρ∗
e−ρ∗[ρ(t+δt)−ρ(t)]

× [1 + p(ρ)δt(eρ∗δρ−1) + · · · ]. (F1)

Taking δt small, and concatenating many such slices, yields
the path integral

∫
D[ρ]D[ρ∗]e−S[ρ∗,ρ], with action

S[ρ∗,ρ] =
∫

t

ρ∗(t)∂tρ(t) − Hρ[ρ∗(t),ρ(t)], (F2)

Hρ[ρ∗,ρ] = p(ρ)(eρ∗δρ − 1). (F3)

5The reader of Ref. [17] may benefit from the following remarks:
(i) The sum in Eq. (2) contains both the pairs (i,j ) and (j,i). (ii) The
unit vector eij points from j to i. (iii) There is no factor of 2 in the
definition of γ after Eq. (3). (iv) In Eq. (6) μ and ν are exchanged.
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Consider now the examples discussed in Sec. II B. There was
pair annihilation with probability p(ρ) = ν

2 ρ(ρ − 1) and δρ =
−2, decay with rate μρ and δρ = −1, and finally particle
creation (branching) with rate κρ and δρ = 1. Promoting the
fields to operators ρ → ρ̂ and ρ∗ → ρ̂†, the corresponding
Hamiltonian reads

Hρ = ν

2
[e−2ρ̂†−1]ρ̂(ρ̂ − 1) + μ[e−ρ̂†−1]ρ̂ + κ[eρ̂†−1]ρ̂.

(F4)

We recall that as in Sec. II J the Hamiltonian is written in
normal-ordered form, which is required in order to pass from
the path integral to the operator formalism, and back. By
construction, the commutation relations are canonical,

[ρ̂,ρ̂†] = 1. (F5)

Let us compare (F4) to our Hamiltonian (15) for the same
processes, reproduced here for convenience,

H = ν

2
[â†â2 − (â†)2â2] + μ[â − â†â] + κ[(â†)2â − â†â].

(F6)

Demanding that H != Hρ uniquely identifies, already for
ν = 0, the operator identities

â† = eρ̂†
, â = e−ρ̂†

ρ̂. (F7)

A few checks are in order: First, the commutation relations
[â,â†] = 1 and [ρ̂,ρ̂†] = 1 are compatible. Since the trans-
formation (F7) is canonical, i.e., has Jacobian one, the path
integrals also map onto each other.

Finally, the term proportional to ν is correctly reproduced;
it is the only term which requires the commutation relations,
and for which normal ordering is important.

We finally note that the Hamiltonian (46) for hopping, in
the continuous limit, H = −D∇â†∇â, maps onto

Hρ =
∫

−D∇ρ̂†∇ρ̂ + D(∇ρ̂†)2ρ̂. (F8)

This expression can directly be derived from the equivalent of
Eq. (F1) for diffusion [17]. Decoupling the term quadratic in
ρ̂† with a noise yields Eq. (157). That these two equations
are equivalent is nontrivial: the formalism used to derive
Eq. (157) works with coarse-grained fields, whereas ρ̂ above
is a microscopic field. The reason for this equivalence is that
when coarse-graining Eq. (157), its linear structure allows
passing coarse graining through to the fields.
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[11] U. C. Täuber, Critical Dynamics: A Field Theory Ap-
proach to Equilibrium and Non-Equilibrium Scaling Behavior
(Cambridge University Press, 2014).

[12] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium
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