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Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
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We address the study of quasiperiodic interactions on a square lattice by using an Ising model with ferromagnetic
and antiferromagnetic exchange interactions following a quasiperiodic Fibonacci sequence in both directions of
a square lattice. We applied the Monte Carlo method, together with the Metropolis algorithm, to calculate the
thermodynamic quantities of the system. We obtained the Edwards–Anderson order parameter qEA, the magnetic
susceptibility χ , and the specific heat c in order to characterize the universality class of the phase transition. We
also use the finite size scaling method to obtain the critical temperature of the system and the critical exponents β,
γ , and ν. In the low-temperature limit we obtained a spin-glass phase with critical temperature around Tc ≈ 2.274,
and the critical exponents β, γ , and ν, indicating that the quasiperiodic order induces a change in the universality
class of the system. Also, we discovered a spin-glass ordering in a two-dimensional system which is rare and, as
far as we know, the unique example is an under-frustrated Ising model.
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I. INTRODUCTION

Since the discovery of quasicrystals by Shechtman et al.
[1], awarded with the Nobel Prize, and the pioneering work
of Merlin et al. [2] on the nonperiodic Fibonacci and Thue–
Morse GaAs-AlAs superlattices, these quasiperiodic systems
have attracted interest and hundreds of quasicrystals have
been reported and confirmed. Quasicrystals are a particular
type of solid that have a discrete point-group symmetry
not present in Bravais lattices like a C5 symmetry in two
dimensions or icosahedral symmetry in three dimensions
[3,4]. These systems can be viewed as intermediate between
full translational symmetric systems and random amorphous
solid systems [1] and possess a long-range structural order
called quasiperiodicity. Some examples of such quasiperi-
odic systems are metallic alloys [5,6], soft-matter systems
[7], supramolecular dendritic systems [8,9], and copolymers
[10,11]. Quasiperiodic crystals have some unique properties,
such as fractal spectra (in the case of exact solvable models)
and localization of electronic [12,13] and photonic [14–16]
states. Also, a model was proposed with localized spins [17]
as an alternative way to simulate disorder.

In the last 30 years since their discovery, the study of
quasicrystals significantly advanced our knowledge about the
atomic scale structure [18,19], but many questions regarding
the consequences of quasiperiodicity on physical properties,
such as electronic and magnetic properties, remain open.
One of the most interesting questions regarding magnetism
in quasicrystals, yet unanswered, is whether long-range
antiferromagnetic (AFM) order can be sustained in real
quasicrystalline systems. A large number of theoretical studies
have focused on the possibility of nontrivial ordering of
localized magnetic moments on quasilattices [20–24] and have
generally answered affirmatively. Nevertheless, to date, no
quasi-antiferromagnets have been discovered. That is not to
say that the low-temperature behavior of the known magnetic
quasicrystals is uninteresting. Quite the contrary, they continue
to offer new insights regarding the roles of topological
order and frustration, as well as the microscopic nature of

complex spin interactions in magnetic systems. This opens the
opportunity to study new models to answer the open questions.
For example, recently Tamura et al. [25] presented a theoretical
model to explain the anomalous behavior in the susceptibility
of Tb6Cd, indicating that there is a possible antiferromagnetic
phase transition. Therefore, the studies of the competing
antiferromagnetic interactions in the two-dimensional (2D)
Ising model with quasiperiodic interactions proposed here (in
2D) can give new insights in this field.

Indeed, by growth processes, one can control the amount of
disorder and go from a long-range structural order situation to
a quenched disorder [26,27] or, alternatively, to a quasiperiodic
order by modifying the exchange strengths and signals.
Quasiperiodic models, as far as we know, were not investigated
in a systematic way. We are aware of a study of mean-field
results of an Ising magnet with quasiperiodic interactions [28].
So, the main goal of this work is to obtain the thermodynamic
properties of a Ising model in two dimensions with positive
and negative exchange interactions with the same strength,
ordered by a Fibonacci sequence in both directions of a square
lattice.

This paper is organized as follows: In Sec. II we de-
scribe the model and the Hamiltonian, the results for the
Edwards–Anderson order parameter qEA [29], the magnetic
susceptibility χ , the specific heat, and the critical behavior of
the system are given in Sec. III, and, finally, we present some
conclusions and general comments in Sec. IV.

II. MODEL AND SIMULATIONS

The most widely used model in the description of magnetic
systems is the Ising model [30] which is given by the
Hamiltonian

H = −
∑
〈i,j〉

JijSiSj . (1)

Here, Si and Sj are the spin on sites i and j , respectively
and their values can be ±1. Jij is the exchange interaction
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FIG. 1. Example of a lattice with quasiperiodic symmetry fol-
lowing the Fibonacci sequence. The red and blue lines stand for
exchange interaction strengths JA = 1 (ferromagnetic) and JB =
−1 (antiferromagnetic), respectively. We used the Fibonacci letter
sequence, which is obtained from the substitution rules A → AB

and B → A which means that, from one stage of the construction
of the aperiodic sequence to the next, all letters A are replaced by
AB and all letters B are replaced by A. Starting with the letter A,
by repetitive applications of the substitution rule we can obtain the
successive iterations of the Fibonacci sequence. The horizontal bonds
follow a Fibonacci sequence in the vertical direction and similarly for
the vertical bonds.

strength between first-neighbor spins Si and Sj . The exchange
constant can assume the values JA = 1 and JB = −1 in a
particular spatial direction according to the respective letter
in an aperiodic letter sequence. When Jij is positive, we
have a ferromagnetic interaction, conversely we have an
antiferromagnetic interaction.

We used the Fibonacci letter sequence obtained from
the substitution rules A → AB and B → A, which means
that from one stage of the construction of the aperiodic
sequence to the next, all letters A are replaced by AB and
all letters B are replaced by A. Starting with the letter A,
by repetitive applications of the substitution rule we can
obtain the successive iterations of the Fibonacci sequence.
The exchange strengths follow the Fibonacci sequence at the
two spatial directions of the square lattice. An example of
such a lattice is shown in Fig. 1. To introduce competing
interactions we considered the horizontal bonds following a
Fibonacci sequence in the vertical direction and similarly for
the vertical bonds.

These alternating ferromagnetic and antiferromagnetic
interactions can generate competition between the spin in-
teractions, and this has been studied both experimentally and
theoretically. We can obtain spin-glass phases in these systems
as shown by experimental evidence [10] for Mn and Fe

impurities diluted in Cu and Au, inducing an effective cou-
pling giving origin to the Ruderman–Kittel–Kasuya–Yosida
interaction [9].

Theoretically, these systems with competitive interactions
were investigated by using the Edwards–Anderson (EA) model
[29]. It is worth mentioning that the EA model originally
considered a Gaussian distribution of strengths Jij in a d-
dimensional lattice with nearest-neighbor interactions similar
to the Ising model. The most important result of this model
is the presence of a spontaneous symmetry breaking leading
to an ordered phase in the low-temperature limit, called the
spin-glass phase. In a spin-glass phase the spin at a particular
site has a nonzero mean value mi = 〈Si〉; however, the total
magnetization is zero.

We generated an initial random spin configuration Si =
±1 in a square lattice and used the Metropolis algorithm for
the Monte Carlo method (MCM) [31] to generate the steady-
state configurations. In this way, we determined the EA order
parameter 〈qEA〉 [29], the susceptibility χ , the specific heat
c, and Binder cumulant gL [32], defined by the following
relations:

qEA = 1

N

∑
i,j

S2
i,j , (2)

χ = N
(〈
q2

EA

〉 − 〈qEA〉2
)
/T , (3)

c = N (〈H 2〉 − 〈H 〉2)/T 2, (4)

gL = 1

2

(
3 −

〈
q4

EA

〉
〈
q2

EA

〉2
)

, (5)

respectively. Here 〈· · · 〉 stands for a thermal average over suffi-
ciently many independent steady-state-system configurations
and L and T are the lattice size and the absolute temperature,
respectively. We used the following values of the lattice size
L: 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, and 610, which are
the first Fibonacci numbers. The total number of spins for each
lattice size is L2.

The thermodynamic properties are functions of the temper-
ature T and they obey the following finite size scaling (FSS)
relations [33]:

qEA = L−β/νfq(ϑ), (6)

χ = Lγ/νfχ (ϑ), (7)

c = Lα/νfc(ϑ), (8)

where β, γ , α, and ν are the usual critical exponents and fi(ϑ)
are the FSS functions with

ϑ = L1/ν |T − Tc| (9)

being the scaling variable. Therefore, from the lattice-size
dependence of the EA parameter qEA and the susceptibility
χ we obtained the critical-exponent ratios β/ν and γ /ν,
respectively. Following the scaling-variable dependence, we
expect that the susceptibility maxima Tχ scales with the system
size L as

Tχ = Tc + bL−1/ν, (10)
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FIG. 2. Edwards–Anderson order parameter qEA versus tempera-
ture T for different lattice sizes L and periodic boundary conditions.
The values of L obey the Fibonacci sequence. For some lattice sizes
we observe the presence of plateaus on qEA which are a finite-size
effect. These plateaus are absent for open boundary conditions or
higher lattice sizes. Therefore, in all other results presented in this
work we use only open boundary conditions.

where b ≈ 1. Therefore, the susceptibility maxima Tχ as a
function of system size L can be used to evaluate the exponent
−1/ν.

We used 1 × 106 MCM steps to make the system reach the
steady state and the independent steady-state system config-
urations are estimated in the next 1 × 105 MCM steps. One
MCM step is accomplished when all N spins are investigated
if they flip or not. We carried out 103 independent steady-
state configurations to calculate the needed thermodynamic
averages.

III. RESULTS AND DISCUSSION

We investigated first the influence of lattice boundary
conditions on thermodynamic properties. We show the EA
order parameter qEA given by Eq. (2) as a function of
temperature T in Fig. 2 for periodic boundary conditions.
We observe the presence of plateaus on qEA which are a
finite-system-size effect. These plateaus are absent in open
boundary conditions in all lattice sizes and in the high-lattice-
size limit we do not observe these plateaus for either boundary
conditions. Therefore, in all other results presented in this work
we use only open boundary conditions.

To study the critical behavior of the system we evaluated
the Binder cumulant gL given by Eq. (5) in order to obtain the
critical temperature. We show the Binder cumulant in Fig. 3.
The critical temperature Tc is estimated as the point where
the curves for different size lattices intercept each other. We
obtained Tc ≈ 2.274.

The correspondent behavior of the EA parameter qEA versus
temperature T is presented in Fig. 4. The qEA dependence
suggests the presence of a second-order phase transition
in the system. The phase transition occurs at the critical
temperature Tc ≈ 2.274. The critical behavior given by Eq. (6)
of the EA order parameter is shown in Fig. 5. The slope of
the curve corresponds to the exponent ratio β/ν = 0.40 (2).
The exponent ratio differs from the pure model and this change
of the universality class is induced by the quasiperiodic order.

It is well known that, if the model has a continuous transition
in its full translational symmetric version, the influence of
random interactions on their critical behavior is summarized by
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FIG. 3. Binder cumulant gL versus temperature T for different
lattice sizes L. The values of L obey the Fibonacci sequence.
We estimated the critical temperature Tc ≈ 2.274 by averaging the
numerical values of the temperatures where the curves intersect each
other. We have, for this model, a phase transition from a paramagnetic
phase to a spin-glass phase by decreasing the temperature.

the Harris criterion [34], which establishes that, if 2 − dν < 0
where d is the spatial dimensionality, the quenched disorder
will not change the critical behavior of the system and it is
said to be irrelevant. However, the Harris criterion is not valid
at the random system criticality [35] where φ < α for the
random model, as known from perturbative expansions where
φ = 2 − dν is the crossover exponent. For the pure model, the
equality φ = α is restored.

By the inequality involving α and φ, it is possible, at least
in theory, to have a model with α positive and φ negative, in a
way the random system will have the same critical behavior as
the pure model. However, there are no systems reported with
such behavior as far as we know. In our case, we have φ = 0,
as we show later. In this way, we can expect a different critical
behavior and different exponents from the Ising 2D exponents.

The Luck criterion for the quasiperiodic ordered model,
analogous to the Harris criterion for the random disordered
model, establishes that, if the φ exponent is positive, the
critical behavior of the quasiperiodic model differs from the
fully translational symmetric model and the disorder is called
relevant. Conversely, if φ is negative, the critical behavior is the
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FIG. 4. The EA order parameter qEA as a function of temperature
T for different lattice sizes L. The values of L obey the Fibonacci
sequence. The curves suggest a second-order phase transition.
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FIG. 5. Critical behavior of qEA at T = Tc as a function of lattice
size L obtained from Eq. (6). Alongside the qEA points we show the
error bars on the same scale. The curve slope gives the exponent
ratio β/ν = 0.40 (2). This exponent ratio differs from that of the
pure model and this change in universality class is induced by the
quasiperiodic order.

same of the pure model and the disorder is called irrelevant.
On the marginal case φ = 0 we obtained a change of the
universality class of the model as observed, for example,
in mean-field results for an Ising model in a hypercubic
lattice [28].

To obtain an explicit expression for the crossover exponent,
we can follow Refs. [36–38] to express the total number
of exchange interactions and the fluctuations between the
frequencies of the ferromagnetic and antiferromagnetic inter-
actions between the n-esimal generation of the lattice and the
semi-infinite lattice scales with the total length of the system
L as

J ∝ N ∝ L, (11)

	J ∝ 	N ∝ Lω, (12)

where ω and J are, respectively, the geometrical wandering
exponent of the lattice and the total exchange strength. The
critical temperature Tc is proportional to J , so we can write

δt = 	J

J
∼ Lω−1, (13)

where t = (T − Tc)/Tc is the reduced temperature and δt

stands for the fluctuations on the reduced temperature when we
introduce the aperiodicity. Combining Eq. (13) with the scaling
form L ∼ ε ∼ t−ν for the pure model (ε is the correlation
length), we have

δt

t
= t−1−ν(ω−1), (14)

and by using the expression δt
t

∼ t−φ , we obtain the crossover
exponent

φ = 1 + ν(ω − 1), (15)

which is the same expression obtained in Ref. [36]. In our case,
ν = 1 for the uniform model.

To evaluate the crossover exponent, we need the wandering
exponent for our lattice. To accomplish this task we note that
the 2D lattice showed in Fig. 1 can be generated by the geo-
metric recursive substitutions of the lattice monomers shown

FIG. 6. Starting from the lattice monomer in panel (a), we
can obtain the successive generations of the lattice in Fig. 1 by
applying the recursive geometrical substitutions presented in panels
(a)–(d) which are formally equivalent to the respective substitution
rules (AA) → (AA)(AB)(BA)(BB), (AB) → (AA)(BA), (BA) →
(AA)(AB), and (BB) → (AA). In panel (e) we show the first three
generations of our lattice by applying the geometrical substitution
rules presented in panels (a)–(d).
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FIG. 7. The susceptibility χ as function of temperature T for
different lattice sizes L. The values of L obey the Fibonacci
sequence. The susceptibility diverges at Tc in the large-lattice-size
limit, suggesting a second-order phase transition.
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FIG. 8. Critical behavior of χ at T = Tc as a function of lattice
size L obtained from Eq. (7). Alongside the χ points we show the
error bars on the same scale. The curve slope gives the exponent ratio
γ /ν = 1.25 (2), differing from the pure Ising 2D case.

in Fig. 6, starting with the monomer shown in Fig. 6(a). The
recursive geometrical substitutions are formally equivalent to
the substitution rules (AA) → (AA)(AB)(BA)(BB), (AB) →
(AA)(BA), (BA) → (AA)(AB), and (BB) → (AA). There-
fore, we can write the following substitution matrix for the
substitution rules:

M =

⎛
⎜⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎠. (16)

The substitution matrix connects the number of the four pos-
sible letter pairs between the n + 1 and n-esimal generations
of the lattice. The above substitution rules are analogous to
four-letter inflation rules. The M eigenvalues are given by
λ1 = ϕ2, λ2 = λ3 = −1, and λ4 = 1/ϕ2, where ϕ = 1+√

5
2 is

the golden ratio. The wandering exponent is given by the
following expression [37]:

ω = ln |λ2|
ln (λ1)

, (17)

where λ1 and λ2 are the leading and the next-to-leading
eigenvalues (in moduli) of the substitution matrix M. By
using the eigenvalues of M we evaluated ω = 0 and from
Eq. (15) we obtained φ = 0. Therefore, our lattice has marginal
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FIG. 9. Critical behavior of susceptibility maxima temperatures
Tχ as function of lattice size L obtained from Eq. (10). The curve
slope gives the exponent 1/ν = 0.84 (2), differing from the pure Ising
2D case.
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FIG. 10. Specific heat c as function of temperature T for different
lattice sizes L. The values of L obey the Fibonacci sequence. When
increasing the lattice size we observe a crescent maxima, suggesting
a logarithmic divergence or a negative-exponent divergence at the
critical temperature Tc ≈ 2.274.

fluctuations according to the Harris–Luck criterion [37] and
we can expect a change in the universality class.

We present the susceptibility χ as a function of temperature
T in Fig. 7. In the large-lattice-size limit, the susceptibility
diverges at Tc ≈ 2.274. The FSS critical behavior of χ , given
by Eq. (7), is presented in Fig. 8. The slope of the curve gives
the critical-exponent ratio γ /ν = 1.25 (2). The exponent ratio
differs from the pure model and this change in the universality
class is induced by the quasiperiodic order.

To obtain the critical exponent 1/ν, we investigated
the critical behavior of the temperatures Tχ for which the
susceptibility is maximal. We show the critical behavior of
Tχ in Fig. 9. The critical behavior obeys Eq. (10) and from
the slope of the curve we obtain the value of the exponent
1/ν = 0.84 (2), which differs from the pure Ising 2D case.
The quasiperiodic order induces a change in the universality
class of the system.

We show the specific heat c, given by Eq. (4), in Fig. 10.
The curves suggest a critical behavior as a function of T .
When increasing the lattice size we observe a crescent maxima,
suggesting a logarithm divergence or a negative exponent
divergence at the critical temperature. We estimate the α

exponent by collapsing the specific heat c for different lattice
sizes following the scaling relation presented in Eq. (8). Our
best data collapsing, presented in Fig. 11, was obtained for
α/ν ≈ −0.40.
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FIG. 11. Data collapse of specific heat c for different lattice sizes
L. The best data collapsing gives us the estimate α/ν ≈ −0.40.
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FIG. 12. Data collapse of EA order parameter qEA and suscepti-
bility χ . The thermodynamic parameters as functions of lattice size
collapse for β/ν = 0.40 (2), γ /ν = 1.25 (2), and 1/ν = 0.84 (2) next
to the critical temperature according to the scale forms given in Eq. (6)
differing from the pure Ising 2D case.

Finally, we show our data collapsed to confirm the obtained
exponents β, γ , and ν. We see, from Fig. 12, that all the
data for the EA order parameter qEA and the susceptibility χ

as a function of lattice sizes collapse for β/ν = 0.40 (2) and
1/ν = 0.84 (2), next to the critical temperature according to the

correspondent scale forms given in Eq. (6) for a second-order
phase transition. We have for this system a second-order phase
transition from a paramagnetic phase to a spin-glass phase by
decreasing the temperature. We would like to emphasize that
the exponent ratios obtained differ from the Ising 2D ones,
changing the universality class of the system.

IV. CONCLUSIONS

We presented a simple model with quasiperiodic long-range
order with competing interactions and obtained the critical be-
havior of a second-order transition in the Edwards–Anderson
parameter driven by temperature. In the low-temperature limit
we obtained a spin-glass phase with critical temperature
Tc ≈ 2.274. The spin-glass ordering in a two-dimensional
system is rare and, as far as we know, the only other example
is an under-frustrated Ising model [39].

We obtained the critical exponents β, γ , and ν in the
case of equal antiferromagnetic and ferromagnetic strengths.
The values of the exponents β/ν, γ /ν, and 1/ν are 0.40 (2),
1.25 (2), and 0.84 (2) respectively. Our result for β = 0.48 (2)
is interesting because it is the same for the Landau classic
theory of second-order phase transitions. The exponents
obtained differ from Ising 2D exponents so the quasiperiodic
order can change the universality class of the model. Therefore,
the quasiperiodic ordering changes the critical behavior in the
2D case.
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