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Directed Abelian sandpile with multiple downward neighbors
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We study the directed Abelian sandpile model on a square lattice, with K downward neighbors per site, K > 2.
The K = 3 case is solved exactly, which extends the earlier known solution for the K = 2 case. For K > 2, the
avalanche clusters can have holes and side branches and are thus qualitatively different from the K = 2 case
where avalanche clusters are compact. However, we find that the critical exponents for K > 2 are identical with
those for the K = 2 case, and the large-scale structure of the avalanches for K > 2 tends to the K = 2 case.
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I. INTRODUCTION

The directed Abelian sandpile model is a simple variation
of the sandpile model first introduced by Bak, Tang, and
Wiesenfeld [1]. It was the first model of self-organized
criticality solved exactly [2], and its critical exponents can
be determined in all dimensions d. The exponents take the
classical values for d > 3, and for d = 3, there are logarithmic
corrections to power-law behavior [3]. The model is related to
other models of nonequilibrium statistical physics, such as the
voter model, Scheideggar river network model, and Takayasu
model of aggregating and diffusing particles with injection [4].
It has also found applications in more complex situations, such
as modeling economic networks [5], growth of droplets of
water in falling rain [6], and fracture of ice-sheets [7].

While the exact solution of the directed Abelian sandpile
model on a square lattice with K = 2 downward neighbors
per site is rather elementary, it depends crucially on the fact
that avalanche clusters in this case have no holes and thus the
problem reduces to that of two annihilating random walkers.
If we consider sandpile models with K > 2, this property is
no longer true, and it is not clear if the problem for K > 2
belongs to the same universality class as K = 2. In fact, direct
estimates of critical exponents from Monte Carlo simulations
of the model with K > 2 show a persistent deviation from the
exactly known K = 2 values [8].

The aim of this paper is to resolve this discrepancy. We
provide an exact solution for the K = 3 case and show that
K =2 and K = 3 belong to the same the universality class.
While this conclusion is not very surprising, the exact solution
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for K = 3 is of some interest, as we get the exact expression
for the generating function of the mean-squared flux at a given
depth from the top. This was not done in the earlier study of the
K = 2 case, where only the critical exponents were deduced
using scaling arguments. The K = 3 avalanches differ from
K =2 avalanches mostly near the surface, as can be seen
from the pictures of typical avalanche clusters (Fig. 1). We find
that the presence of holes and side-branches in the avalanches
for K = 3 is irrelevant in the sense of renormalization group
theory. Finally, we present the results of large-scale Monte
Carlo studies of this model for K = 2,3, and 4. Our data
is consistent with all of these being in the same universality
class, and the observed deviations of exponents from the exact
theoretical values in earlier simulations may be ascribed to the
effect of significant corrections to scaling.

II. DEFINITION OF THE MODEL

We consider a directed sandpile model on a square lattice.
The lattice is of size (height) L and width M. The sites are
labeled X = (x,1), where x € {0, ...,M — 1} and the vertical
coordinate, thought of as time coordinate, is denoted by ¢ €
{0,1,...,L — 1}. The top row is t = 0 and the ¢ coordinate
increases downwards (Fig. 2). We assume periodic boundary
conditions in the x direction, so that the x coordinate is defined
modulo M. .

At each site X = (x,7), there is a nonnegative integer
variable h(x,t), called the height of the pile. If h(x,t) < K
the site is said to be stable. If 2(x,t) > K, the site is unstable
and is said to topple. When K = 3, on toppling at (x,?), it
will send one particle each to its three downward neighbors
x—1,t+D,(x,t+1,and (x + 1,7+ 1).

Since the avalanche propagation depends only on the layers
below the site where the particle is added, without loss of
generality, we may assume that particles are added only in the
top layer. Thus, we add particles at randomly selected sites in
the row ¢+ = 0 and let the configuration relax by toppling. If
a toppling occurs at any site in the bottom layer t = L — 1,
three particles are lost from the system. The total number of
topplings after adding a particle to the top row is called the
avalanche size s and the set of sites where topplings occur, the
corresponding avalanche cluster.
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FIG. 1. Randomly selected, but representative, examples of avalanches for K =2, s = 201, 406, and 802 (top row) and K =3, s =
201, 404, and 805 (bottom row). The height L is 64 and the width M is 160; the avalanches have been centered around their seed site and the
width shown is 64 columns for aesthetic considerations. The color code is lighter color for greater height, and the sites that have toppled during

the avalanche are highlighted in bright copper.

One can easily demonstrate that this is an Abelian' model.
There are KM stable recurrent configurations and all occur
with equal probability in the steady state, if particles are added
everywhere [4]. However, if particles are added only in the top
layer, then the system breaks into KX~! disjoint sectors. In
the thermodynamic limit of large lattice, i.e., L, M > 1, the
avalanche statistics in the steady state is independent of the
sector.

III. CALCULATING THE TWO-POINT
CORRELATION FUNCTION

Consider the pile in the steady state and add a particle at
the origin 0= (0, 0). Let 17()} ) denote the indicator variable
that this causes a toppling at the site X = (x, t). We define the
two-point correlation function G,(x,?) as the expected number
of tgpplings at X , given that 0 topples after adding a particle
at O, i.e.,

Ga(x,1) = (n(X)). (1)

Clearly, G»(0, 0) = 1 as we are considering the expected no.
of topplings under the condition that site 0 topples. In the
steady state, any given site X = (x, t) has equal probability of
being with height 0,1 or 2. Thus, if we focus on the activity
in the layer above, the probability of topplings at (x, ¢) in a
single avalanche equals to 1/3 times the expected number of
upward neighbors that have toppled in the avalanche.
Thus, G,(x, t) satisfies the equation

1
Go(x,t) = % Z Ga(x + 8,1 —1). )
§=—1

'A model is said to be Abelian if the final state after adding two
particles, first at site (x;,0) and the second at site (x;,0) does not differ
from the final state of the system when the particles are added in the
reverse order.

With the boundary condition G,(x, t = 0) = 4, ¢, this equa-
tion determines the function G,(x, ) for all x and .
If we define the characteristic function

Galk, 1) =) Ga(x, D)™, 3)
x
it is easily seen that
Gok, 1) = [ﬂ}t 4)
Substituting this into an inverse transform of Eq. (3), we get
Ga(x, 1) = /OZH %[Héﬂ}te—f“. ®)

FIG. 2. The directed sandpile model on a square lattice with
cylindrical boundary conditions and K = 3 downward neighbors at
each site. If the height at any site exceeds 2, one particle is transferred
to each of the K neighbors in the layer below. The arrows show the
directions of particle transfers after toppling at the top site. Filled
circles indicate sites in the future light cone of the top site.
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Note that G,(x, t) vanishes strictly for all |x| > ¢. We call the
region |x| < ¢ the future light cone of the origin; see Fig. 2.
For large t, G,(x, t) is well-approximated by a Gaussian of
zero mean and variance 2t /3.

We define ®(r) as the random variable that measures
the number of topplings in the layer ¢ caused by driving
at O:

(1) =Y n(x.1). 6)

Then, it is easily seen that

(@) =Y Ga(x.1) = 1, forallt. (7)

We would now like to calculate the mean square flux (®2(z)).
By definition:
(@) = Y G(x1. xa1), ®)

X1,X2

where

G3(xy, x20t) = (n(x1, Hn(xz, 1)). )

Note that since each site topples at most once, G3(x1, x2|t)
is in fact the probability that sites X; and X, both topple in a
given avalanche.

IV. CALCULATION OF THE THREE-POINT
FUNCTION G3(x1 s X2 It)

Letus denote (x; + 61, — 1) and (xp + 85, — 1), 81, 8, €
{—1,0, 1} to be the upward neighbours of (x1, t) and (x5, t),
respectively.

For x| # x,, if we consider the layer above, since (x, t)
and (x,, t) have three upward neighbors each, the probability
that (x1, t) or (x3, t) topples is equal to 1/3 times the number
of topplings of their upward neighbors. Hence,

+1

1
Gs(xi, xalt)=2 Y (n(x1+81, 1= Dn(xa+8, 1 —1)).
9
81,60=—1
(10)
Thus, from Eq. (9) we get for all x; # x;
+1
Gi(xi, oty =2 D Gslxi+8,x+ &t —1). (11
81, 8=—1

Note that for the special case of x; = x, since n(xy, 1) =
n(xy, t), we have

G3(x1, x1|t) = Ga(x1, 1) Vxp. (12)

It is easy to verify that
G3(x1, x201) = G2[X1]01G,[X,| O] (13)
satisfies the linear Eq. (10), where Qz[)? |17] denotes

the expected number of topplings at X = (x,t), in an
avalanche generated by a particle addition at Y = (y, t').
Clearly,

GoX|Y1=Go(X =¥)=Gaolx —y, 1 —=1).  (14)

PHYSICAL REVIEW E 93, 042107 (2016)

The function Gz[f( |)7] inheritsﬁthe light-cone structure of
G(x, t): it is nonzero only if X is in the future-light cone
of Y.

To find a solution that is also consistent with the boundary
conditions Eq. (12), we consider the following superposition
of such solutions [2]:

G3(x1, 12l) = Y F(NGAX1[V1GA[Xa V] (15)
Y

Here the summation over ¥ could extend over all sites.
However, due to the light-cone structure of the propagator
G2, only the sites which are in the future light-cone of O and
in the past light-cones of both X; and X » contribute to the
summation. _ .

Then, for X; = X, the equations determining the unknown
coefficients f (17 ) are the boundary conditions Eq. (12), which
become

G(X) =) f(NGIIXIY], VX, (16)
Y

where the summation over Y is over all sites that are in
the future light-cone of O, and the backward light-cone
of X.

These equations are coupled linear equations which can be
used to determine the unknown function f (Y ) at sites Y in the
past-light cone of X and hence can be determined recursively
starting from the driving site.

In fact, we do not need to know the f (17 )’s for all Y ;
the knowledge of their sum for each constant-time layer is
sufficient. Let us denote this sum, for all times ¢ > 0, as

Ft)y=)_ f((x.1). (17)

Now, if we substitute our general solution from Eq. (15)
into our expression for (®2(¢)) as stated in Eq. (8), we get

(@X0) =Y Y f)GAX||YIGXY].  (18)
X%y

Doing summations over x;, x;, and ¢/,
and (17), we get

using Eqgs. (7)

(@) = Y _F(t). (19)
t'=0
Now let us define
K(t)=) Gix.1) (20)

and note that K (¢) vanishes with G,(x, 1) when t < 0.
Then, summing over different sites X in the layer ¢, in
Eq. (16), and using Eq. (7) yields

t
1=Y F@K(—1). Q1)
=0
This equation differs from that in Ref. [2] by a factor, due to
different choice of normalization of Gz()} ) here. Also, note that
the summation over ¢ may be extended to +00, as K(t — 1)
vanishes with ¢ < ¢’.
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Now we define

Fz)=Y F)', (22a)
t=0

K@) =) K0, (22b)
t=0

to be the generating functions of, K (z) and F(z), respectively.
In terms of these generating functions, Eq. (21) can be
expressed as

L K()F(2). (23)
1—-z2

Now let us remind ourselves that G,(x, t) is the expected
number of topplings at site (x, ¢) given that there was a toppling
at the origin 0. A site can topple at most once, hence its
expected number of topplings is exactly its probability to
topple. Also, based on the Abelian property we know that
the total number of topplings at another site (x’, ¢') is the sum
of the topplings triggered by (x, t) toppling. Hence, we can
write the expected number of topplings at site X = (x', 1) as

GolX' = Go(x', 1) = ) Galx, DGax' = x, 1" —1)

=) G1[X1Go[X'|X] (24)

for 0 < ¢t < t'. But then, the expected number of topplings at
site (0, 2t) is just
G2(0,21) = Z G>[(0, 20)|(x, D1G2[(x, )]0, 0)].  (25)
X

Also, G2[(0, 2)|(x, )] = G2[(—x, )]0, 0)] = G2 (x, 7). Sub-
stituting this in Eq. (20) yields

K(t) = G2(0, 21). (26)
Thus, the generating function becomes
R(z)=) Galx =0.1 =2m)". 27)
m=0

Now let us define H(z) = Y. G,(0, m)z™, and hence
m=0

H(z)+ H(—2) =2 G20, 2m)2". (28)

m=0

Since K(z) is sum only over even values of ¢ of G,(0, t), we
have

K(z) = 3[H(/2) + H(—2)]. (29)

Substituting Eq. (5) with x = 0 into our definition of H(z) and
evaluating the geometric sum yields

H(z) = / - ax 3 ) (30)
o 2m[3—2z(1+2cosk)]
Finally, evaluating this elementary integrals yields
3
NiEncE)

H(z) = €29
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We can substitute into this, using Eq. (29), to get

K@) = 32 T 3/2
VI-V2)G6+y2)  J1+J2B—V2)

(32)

One can substitute this into Eq. (23) to get F(z) as an explicit
function of z. Note that odd powers of /z will cancel out in
the expansion.

From the fact that the dominant singularity of K (z) for z
near 1 is of the form (1 — z)~!/2, we see that for z tending
to 1 from below that the leading behavior of F(z) also is
(1 — z)~'/2. Hence, F(t) varies as t~!/2 for large ¢ and then
(P%(1)) varies as #'/2. This is the same behavior as found for
the case K = 2 in Ref. [2]. The probability that ®(¢) is not
zero decreases as ¢t~ !/? for large . But once it is nonzero, its
typical value is of the order t*!/2, consistent with the mean
value 1; see Eq. (7). Then the mean value (®2(r)) would be
expected to grow as ¢'/2 for large .

We now illustrate in Fig. 3 the importance of taking into
account the corrections to scaling in estimating exponents
from numerical data. First, we plot the exact values of
(®2(t)) for 1 < t < 500. These values were determined using
Egs. (23) and (32) to expand F(z) as a Taylor series in z
with Mathematica. A simple visual fit to a power law gives
(®2(1)) ~ at®, with a ~ 1.58 and « ~ 0.52. Second, we plot
the effective exponent ;. o, is defined in terms of the exact
values of (®%(¢)) at ¢ and ¢ + 1 by

 log({(®%(1 + 1)) /(D2(1)))
a log((t + 1)/1) '

(33)

0.7

2
10 F<" 0.6 g

0.5 -

o 100 200 300 400 500

100 L L
10° 10’ 102

FIG. 3. The main figure shows the behavior of the mean squared
flux (®2(r)) as a function of the depth 7, 1 < ¢ < 500, determined
from the exact series expansion of F(z) (full line). The best visual
fit to the function f(¢) = at* given by the estimated parameters a &
1.58, o ~ 0.52 (dashed-dotted line). In the inset, we plot effective
exponent «,, defined in Eq. (33) (solid line), which slowly converges
to the exact value 0.5 (dashed-dotted line), as (®?(¢)) o ¢t'/2. Both
plots in this figure show that corrections to scaling are still large for
avalanches of duration of order 5 x 107.
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We see that the effective exponent converges very slowly to
the exact value 0.5. These two plots show that corrections to
scaling are rather large in this problem.

Conversely, knowing that (®2(1)) varies as ¢ implies that
the probability that an avalanche has duration greater than ¢
goes as t~'/2, It follows that the avalanche duration exponent
is 3/2. The avalanche dimension D in a directed model is
identical to the duration exponent, thatis D = 3/2 (Sec. 8.4.3
in Ref. [13]). All other exponents follow and we can verify that
they are the same as the case of coordination number K = 2.

We note that a similar analysis has been reported for a
directed sandpile model in Ref. [9]. In this paper, the authors
determine the exact two-point correlation function G, (x, t) for
a model with the following rules: the critical height is 4, and
on toppling at (x, t), a particle is transferred to (x — 1, + 1)
and (x 4+ 1,7 4 1), and two particles to (x, t + 1). With these
rules, the functions K () and F'(¢) were determined recursively
numerically for small ¢ (+ < 500), and it was found that the
corrections to scaling are large. However, no explicit analytical
expressions for F(¢) or K (t) were found.

172

V. NUMERICAL SIMULATIONS

The directed sandpile is comparatively easy to implement
and study numerically even on very big lattices, because
avalanches progress in one direction only, i.e., no backward
avalanches [10] or multiple topplings occur [11]. The aim
of the numerics is to provide reliable numerical estimates
of (supposedly universal) critical exponents. In the following
we will discuss pertinent issues in relation to the numerical
simulations, the fitting models used, and the critical exponent
estimates found numerically.

A. Initialization

The directed sandpile is deterministic up to the driving in the
first row. As every state is recurrent, one might naively start
from an empty lattice A(x, t) = 0 as this indeed belongs to
the stationary state. Because every toppling moves K particles
downstream and every particle added performs L moves before
leaving the system, K particles additions cause L topplings
(and thus K L moves) on average, i.e., the average avalanche
size is

(s) = L/K, (34)

where avalanche sizes s are measured as the number of
topplings that occur in the system after a driving attempt
(deposition of a particle in the top row). Note that this definition
includes avalanche size s = 0.

Starting from an empty initial configuration, the first mo-
ment of the cluster size s in a system with K = 4and L = 512
(with M = 3072, see below) shows very good convergence
within less than 2 x 107 avalanching attempts (i.e., particles
deposited in the top row). However, the second moment of
s still shows signs of drift after 5 x 10'° avalanches. Higher
moments show similar long transients, but are more noisy.
This only underlines the fact that the steady state of model
studied here has very slowly decaying temporal correlations,
even though it has no spatial correlations.

PHYSICAL REVIEW E 93, 042107 (2016)

To avoid these lengthy transients, we resorted to initial-
ization with random, independently, uniformly distributed
h(x,t) < K. As the system is then no longer forced into an
exceptional initial state, there is no noticeable drift in any
of the moments measured. We have verified numerically for
smaller lattices that random initial states generate the same
moment estimates as starting from an empty system and taking
estimates after those very long transients.

B. Parameters and results

We used systems with sizes L = 2", with r taking integer
values from 4 to 14, and K = 2, 3,4 and widths M > L(K —
1) so that even the largest avalanche possible cannot topple all
sites of a row. We used the Mersenne Twister pseudorandom
number generator [12], which is (after initializing randomly
the lattice) needed only to determine the site in the top row
that receives a particle from the external drive. In order to
determine scaling exponents, we measured moments (s") of
the avalanche size s forn = 2 to 5 (Fig. 4).

Statistical errors were determined by accumulating data
over chunks of 10° avalanches and measuring the variance
of those estimates. We produced usually at least several
thousand chunks, except for the largest system sizes. If chunks
are independent, then the variance does not vary noticeably
when chunks are merged. Using that as an indicator, we
merged chunks until they became independent. Based on
the now independent measurements, statistical errors of the
mean (across chunks) of a moment are given by the estimated
standard deviation of the moments (across chunks), divided by
the square root of the number of independent chunks.

Because high moments draw most of their weight from very
large and thus very rare events, their relative error grows with
their order. For example, for K = 3 and L = 16 384, averaging
over 3.8 x 10% avalanches, the fractional error in the eighth
moment is approximately 0.014, while for the second moment

FIG. 4. Plot of scaled moments a, L®"~D/2 versus the height of
the lattice L for n = 2, 3, 4, 5. The data shown is for different K : 2
(red circles), 3 (green squares), and 4 (blue diamonds). For the same
K, a higher curve corresponds to higher n.
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it was approximately .00016. We report here our results only
for moments up to order 5.

Standard finite-size scaling of the probability density of the
avalanche sizes s implies that the moments scale to leading
order in the system size L like [13]

(s"y =a,L* forL > 1, (35)

where @, are metric factors, and u, = D(1 — t + n). Here D
is the fractal dimension of avalanche clusters, and T > 1 [14].
The critical exponents D and t are expected to be universal,
but they are not independent as (s) = L/K, Eq. (34) implies
that D2 — 1) = 1.

For t > 1 (whichis expected in the present case) the scaling
of the variance of the nth moment is dominated by that of the
scaling of the 2nth moment, and thus the relative error of
independent samples scales like

VIS ppe-br, (36)
(s™)
and thus grows, independent of the order, with the system size
(height). Meaningful estimates of moments thus require larger
and larger sample sizes for larger systems.

However, simulation time per avalanche grows essentially
like the average avalanche size, which is linear in the system
size L. Worse, correlation times grow with the system size
L, so that the increased demand on the sample size for larger
system is met with highly increased costs for independent
samples.

Using random initialization, we were able to skip the
transient as described above and thus could produce very large
samples even for large system sizes. For the smaller system
sizes, our sample sizes were comparatively large, typically
about 10'9 avalanches and more. However, to fit well the
accurate estimates for the moments for small L, we need to
have a large number of corrections to scaling terms, which
complicates the analysis. Therefore, we excluded system sizes
smaller than L = 512 from further analysis.

First, the critical exponents D are extracted by applying
moments analysis without including corrections to scaling. In
the limit of large system sizes, the nth moment scales according
to Eq. (35). Hence, plotting the measured moments (s”) against
system size L yields estimates for w,. According to Eq. (35)
and the scaling relation T =2 — 1/D, we expect u, =1+
D(n — 1), so we can extract the critical exponent D by plotting
W, versus n. Then the avalanche size exponent is calculated
form the scaling relation T = 2 — 1/D. The critical exponents
are listed in columns 1 and 2 in Table I. The critical exponents
we find for K = 2 are consistent with the theoretical values
D =3/2 and v = 4/3. However, the critical exponents for
K =3 and 4 show significant deviation from the theoretical
values and we notice that the deviation increases with K.

However, we now include two corrections to scaling terms
in our fitting model,

(s") = a,L" (1 + b, L™"* + ¢, L™, (37)

and fit each moment versus system size L, using the
Levenberg-Marquardt method [15]. Where convergence was a
problem, we provided initial guesses by fitting first using fewer
parameters (which typically results in substandard goodness

PHYSICAL REVIEW E 93, 042107 (2016)

TABLE I. Numerical estimates of the avalanche dimension D,
and t derived from it via the scaling relation t =2 — 1/D. The
numerics for K =2 were performed as a reference, as D = 3/2
and hence T = 4/3 was already known analytically [2]. The first two
columns are fits without including corrections to scaling. The last two
columns list the exponents extracted when the fit includes corrections
to scaling (ctos) Eq. (37) for systems with K = 3 and 4. The error
bars listed in the brackets correspond to three standard deviations of
the last two significant digits.

K D T D (ctos) T (ctos)
2 1.4999(11) 1.3333(05)

3 1.5141(38) 1.3342(17) 1.5020(20) 1.3395(09)
4 1.5244(78) 1.3440(34) 1.4994(35) 1.3331(23)

of fit). The resulting estimates for exponents 1, were accepted
for further analysis if the goodness of fit was at least 0.25 [15].
This was the case for n up to 5. One exponent, w1, is known to
be unity from Eq. (34), which means that x,, needs to be fitted
linearly against 1 + D(n — 1) for n = 2, 3, 4, 5. Because the
I, are, for different n, all based on the same data (the set of
avalanche sizes generated), they are bound to be correlated,
but this is difficult to quantify reliably, except by using a rather
brutal upper bound. Taking that course of action, we have
effectively assumed that the estimates of p,, forn =2,3,4,5
may have been derived from distinct samples, by multiplying
each error bar by a factor /4. The resulting estimates for
the exponent D (and implicitly for t) are shown in Table I,
columns 3 and 4, respectively.

These estimates fit acceptably well with the theoretical
value of D = 3/2 and v = 4/3, but only for very large sample
sizes, system sizes, and CPU time.

C. Summary and conclusions

We have studied the directed Abelian sandpile model on
a square lattice with K downward neighbors. When K = 2,
avalanche clusters are compact without any holes. Using
this property, the K =2 case has previously been solved
exactly [2]. When K > 2, avalanche clusters typically contain
holes, that is, they are no longer compact. Hence, the previous
derivation for the K = 2 case cannot be extended to the K > 2
case and it is an interesting question whether K > 2 belong to
the same universality class as K = 2.

In this paper, we calculated exactly the exponents for the
K =3 case, where the problem is complicated by the fact
that avalanche clusters are no longer compact. We find that
the critical exponents are identical to the K = 2 case, that
is, the avalanche dimension D = 3/2 and the avalanche size
exponent T = 4/3. In addition, we get exact expression for
other observables, for example, generating function F(z) of
the mean-square flux. Our result shows that the deviations
from K = 2 values observed in recent numerical studies are
due to corrections to scaling.

We performed large-scale numerical simulations of the
generalized directed Abelian sandpile model for K = 2, 3,
and 4. Although the empty state is a recurrent state, it is not a
typical state. Initializing the system in the empty state results
in extremely long transients before correlations caused by this
exceptional state vanish. Initializing the system in a random
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recurrent state minimized the transient time before avalanche
size moments estimates no longer drifted.

Using system sizes L = 512, 1024, ...,16 384, moments
analysis yields numerical estimates for the avalanche dimen-
sion D and hence T =2 — 1/D. For K = 2, the numerical
estimates are consistent with the exact result. However, for
K =3 and 4, there are large corrections to scaling effects.
If these are taken into account [see Eq. (37)], the resulting
numerical estimates for the critical exponents are consistent
with the exact findings, that is, the directed Abelian sandpile
model belongs to the same universality class for all K > 2.
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Data associated with this work are available in Ref. [16].
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