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Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows
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The transformative influence of compressibility on the Kelvin-Helmholtz instability (KHI) at the interface
between two fluid streams of different velocities is explicated. When the velocity difference is small (subsonic),
shear effects dominate the interface flow dynamics causing monotonic roll-up of vorticity and mixing between
the two streams leading to the KHI. We find that at supersonic speed differentials, compressibility forces the
dominance of dilatational (acoustic) rather than shear dynamics at the interface. Within this dilatational interface
layer, traveling pressure waves cause the velocity perturbations to become oscillatory. We demonstrate that the
oscillatory fluid motion reverses vortex roll-up and segregates the two streams leading to KHI suppression.
Analysis and illustrations of the compressibility-induced suppression mechanism are presented.
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Kelvin-Helmholtz instability (KHI) [1,2] occurs at the
interface of any two fluid streams in a state of relative motion or
stratification [3]. The flow dynamics underlying the three-stage
development of KHI in low-speed shear layers—highlighted
by vortex roll-up and intense mixing between two streams—is
well established in literature [4]. The KHI in compressible
flows is of much importance in astrophysical jets [5–7],
protoplanetary disks [8], other natural flows [9–13], and
engineering applications [14,15]. It has long been known
that KHI is suppressed in compressible flows [16–21]. Yet,
identifying the fundamental physical mechanism responsible
for vortex roll-up disruption and mixing inhibition remains
an unsolved problem. It is evident that the suppression
must be due to the transformation in character of pressure
from an incompressibility preserving Lagrange multiplier at
low speeds to a bona fide thermodynamic state variable at
high speeds. Eigenmode analyses [19,22–26] that clearly
indicate asymptotic KHI inhibition are inherently unsuited for
explaining the transient suppressing action of pressure. A clear
understanding of the transient pressure effects culminating
in KHI suppression is critical for predicting transition and
turbulence in high-speed shear flows.

In this work, we explain the transient suppression mecha-
nism employing (linear) initial value analysis and numerical
simulations. We examine the interplay between pressure,
velocity, and vorticity fields at different speed regimes. The
focus is on the wave character of pressure at high speeds and
the consequent effect on vortex dynamics. We will demonstrate
that the compressible pressure-vorticity dynamics undergoes
a drastic change resulting in inhibition of mixing across the
interface and suppression of instability.

Three-dimensional inviscid compressible Navier-Stokes
equations form the basis of this analysis [17,27–29]. The
flow and thermodynamic variables (velocity field, u; pressure,
p; density, ρ; and temperature, T ) are decomposed into
base and perturbation fields: q(ρ,ui,p) = q̄ + q ′. The base or
background velocity is described by a steady, planar, parallel
free-shear layer ū = (U1(x2),0,0). Here, x1, x2, and x3 are
taken to be the streamwise, normal and spanwise directions.
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For a planar shear layer, ∂p̄/∂xi = 0 and ∂ūi/∂xi = 0 [29].
The evolution of the perturbation field is most rigorously
examined in a reference frame advecting with the unperturbed
flow [30]: X1 = x1 − ∫ t

0 U1dξ , X2 = x2, and X3 = x3. The
linearized equations of the perturbation evolution described in
the new coordinate frame are
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where S = ∂X2U1 is the background shear rate and S∗ =∫ t

0 S(X2)dξ . The specific heat ratio is γ , and p is given by the
ideal gas law, p = ρRT . Inspection of the linearized equations
shows that (i) the growth of perturbation kinetic energy and
spanwise vorticity (ω′

3) depends principally on u′
2; and (ii) the

effect of change in the character of p′ on u′
2 holds the key to

understanding the compressibility suppression mechanism.
To extract the nonmodal stabilization mechanism [31],

we perform an initial value analysis. Hence, we examine
the temporal evolution of the two-dimensional perturbation
mode of the type q = q̂(X2,t)eiκ1X1 , where (.̂) is the Fourier
amplitude, κ1 is the streamwise wave number, and q̂(X2,0)
satisfies the free-stream boundary conditions. To examine the
compressibility effect manifesting via the p′-u′

2 interaction,
(2)–(4) is rearranged in the form of wave (hyperbolic)
equations with source terms [32]:
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where Mg = S/ā0κ is the gradient Mach number [33] and
ā0 = √

γ p̄/ρ̄ is the speed of sound. The independent variables
are normalized as follows: t∗ = St and x∗

2 = κX2, where
κ is the magnitude of the perturbation wave number. The
normalized pressure and velocity amplitudes are p̂∗ = p̂/p̄

and û∗
i = ûi/u0, respectively, where u0 is the root mean square

of the initial perturbation velocity. From the dimensionless
form of (6) and (7), it is evident that Mg is the relevant
Mach number to characterize compressibility effects on the
perturbation field.

The time scale of pressure constitutes the biggest difference
between incompressible and compressible flows. A reasonable
analytical estimate of the pressure time scale can be obtained
by invoking WKB-like approximation [34] into Eqs. (6) and
(7), which suppresses spatial variations in shear. Now Eqs. (6)
and (7) reduce to a third-order ordinary differential equation
for pressure:
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+ 2κ2

κ
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)
. (8)

The solution of Eq. (8) for the case of the compressible
homogeneous shear flows can be obtained by using generalized
hypergeometric functions, such as Bessel functions [35].
Ultimately, the asymptotic expansion of solution indicates that
the pressure amplitude oscillates in time.

However, for the early and intermediate times of the
perturbation evolution of the pressure amplitude, Eq. (8)
permits a solution of the type [36]
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where σ is the frequency of pressure-amplitude variation. At
low Mach numbers (Mg → 0) σ is very large at all times
(9) and the time scale of pressure evolution is very small
leading to the well-known Poisson equation for pressure. It
can then be shown that the behavior u′

2 is monotonic resulting
in the sustained growth of perturbation vorticity and kinetic
energy (4) resulting in familiar KHI behavior. At high speeds
(Mg > 1), p′ evolution is described by the nonhomogeneous
wave equation and pressure propagates through the flow field
at a wave speed proportional to 1/Mg . It is immediately evident
that u′

2 which is coupled as a harmonic oscillator also attains
the wavelike character in compressible flows. The changing
sign of u′

2 in a compressible shear layer has a profound effect
on perturbation kinetic energy and spanwise vorticity. At any
given location, the production of both these flow features will
alternate in sign as S and ∂X2S in the vorticity equation (4)
are nearly constant. Thus, we can conclude from the analysis
of the reduced mathematical equations that spanwise vortex
structures roll and unroll repeatedly. Furthermore, perturbation
energy production is alternately positive and negative. Such
behavior will necessarily result in stabilization of the flow.

To explore the stabilizing interplay between pressure,
velocity, and ultimately vorticity more precisely, we perform
direct numerical simulations of perturbation evolution in a
temporally evolving mixing layer. Nonlinear and viscous
effects omitted in the simplified analysis are now included,

FIG. 1. A schematic of a mixing layer with the initial perturbation
of u′

2(x1,t = 0); pivot point P ; stagnation points S1, S2; and quadrants
marked by Q1–Q4.

resulting in a more comprehensive investigation. The goals are
to (i) examine KHI in compressible flows and (ii) contrast the
KH dynamics at low and high Mach numbers. The numerical
scheme has been thoroughly validated [32,36–38]. The base
velocity field features the requisite inflection point: ui =
(	U/2 tanh(0.5x2/δ

0
m),0,0), where δ0

m is the initial momentum
thickness of the mixing layer. Even at very high speeds, it is
evident from (6) and (7) that high wave-number perturbations
(κ > S/ā0) experience subsonic Mg . Therefore, a low-wave-
number or large-wavelength initial velocity perturbation field
is chosen: u′

i = (0,û0
2 sin(κ1x1),0); κ1 = 2π/L = 1 and 2,

where L is the domain length and the initial perturbation
amplitude, û0

2 = 0.05	U . The thermodynamic fields are
initially taken to be uniform. The simulations are carried
out for the air (γ = 1.4), with the initial values of Prandtl
and Reynolds numbers: Pr = 0.7 and Reδ0

m
= 400. Mixing

layers of different convective Mach number are computed:
Mc = 	U/2ā = 0.3, 0.6, 0.8, 1.0, 1.1, and 1.2. It must be
noted that the convective Mach number Mc is a global measure
of the mixing layer speed, while Mg is a local measure of the
effect of compressibility on the perturbation of wave number κ .

A thorough numerical convergence study confirms that a cu-
bic domain of side L = 2π with 256 × 512 × 128 grid points
provides results of requisite accuracy [32]. Various features of
the computational geometry and flow conditions are exhibited
in Fig. 1. The extent of KHI can be characterized in terms of
the following mixing metrics: (i) momentum thickness δm =
(1/ρ̄0)

∫ ∞
−∞ ρ̄(1/4 − u2

1/	U 2)dx2, (ii) perturbation turbulent

kinetic energy, and (iii) circulation: � = ∮
C

	u′ · d 	I where d 	I
is a directed line segment and C is a square of side π/2 centered
at the inflection point of the mean velocity profile, shown in
Fig. 1. The evolution of these metrics obtained from the sim-
ulations are presented for different Mach numbers in Fig. 2.

Consistent with the findings in literature [20,39–44], we
find that all mixing characteristics monotonically diminish
with the Mach number indicating a gradual suppression of
KHI with increasing Mc (Fig. 2). To highlight the difference
between high and low Mach number effects, we examine
p′-u′

2-ω′
3 interactions at the two extreme Mach number cases.

We begin with a brief description of the incompressible
instability mechanism and contrast it against the compressible-
case behavior.
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FIG. 2. The temporal evolution of the mixing metrics: momentum
thickness (a), turbulent kinetic energy (b), and circulation around the
inflection point of the base velocity at low and high Mc, (c) and (d),
respectively. Horizontal axis is the normalized time: τ = t	U/δ0

m.

Development of KHI in the incompressible flows. For this
case, Mg 
 1 nearly everywhere in the mixing layer. It can be
shown that perturbation fields evolve monotonically leading
to the formation of the classical KHI which abides by the
Rayleigh inflection point criterion [28]. The three stages of
instability development [45,46] can be identified referring to
Fig. 3 which shows the p′ and ω′

3 contours at various times.
The dynamics in the four quadrants (Q1–Q4) around the
stagnation point P and the neighborhood of points S1 and S2,
schematically shown in Fig. 4, are central to this description.

Stage 1. In the initial development stage, a low-pressure
region forms around P and high-pressure regions form around
S1 and S2 due to initial conditions. In the neighborhood of
the pivot point P , negative (clockwise) vortices are initiated
in quadrants Q2 and Q4, and positive (counterclockwise)
vortices in Q1 and Q3. These features are captured in
Figs. 3(a) and 3(b).

Stage 2. In the region around P , the Poisson character
of pressure leads to a positive-feedback interaction between

FIG. 3. KHI development in the incompressible (Mc = 0.3) case:
Stage 1—initial development [(a), (b)]; Stage 2—merger and roll-up
[(c) and (d)]; and Stage 3—asymptotic [(e)–(f)].

FIG. 4. Schematic of a compressible mixing layer. The initial
perturbation profile—u′

2(x1,0)—and the DIL are shown. Stagnation
points (P , S1, and S2) and quadrants (Q1–Q4) are also identified.

clockwise vorticity and decreasing pressure. Low pressure
and clockwise vorticity mutually intensify each other in Q2

amd Q4. On the contrary, pressure weakens counterclockwise
vortices in Q1 and Q3. As a result, the two negative
vortices grow and merge in the vicinity of P . The merged
clockwise vortex begins to roll-up rapidly constituting the
central mechanism of KHI evolution known as the merger
and roll-up stage. The rolling vortex begins to entrain fluid
from both free streams [Figs. 3(c) and 3(d)]. At S1 and S2,
high pressure leads to suppression of the clockwise vortex and
mild enhancement of the counterclockwise vortex. Thus, the
pressure and vorticity fields grow slowly at these points.

Stage 3. The nonlinear asymptotic KHI stage is marked
by consolidation and rapid inward spiral rotation of the
low-pressure vortex around the pivot point P . Entrainment
intensifies leading to the onset of instability as can be seen
from Figs. 3(e) and 3(f).

Development KHI in the compressible flows. At high Mc,
there exists a region around the interface within which Mg(x2)
exceeds unity—which we call dilatational interface layer
(DIL).

Within the DIL, p′ and u′
2 exhibit strong wavelike character

(6) and (7). In the outer regions, where Mg(x2) < 1, the wave
character of p′ and u′

2 is much weaker. A schematic of a typical
compressible mixing layer is shown in Fig. 4.

To understand the wave character of the DIL upon KHI,
contours of pressure and vorticity perturbations for the Mc =
1.2 case are presented in Fig. 5. The DIL can be identified
as the narrow region in the middle, in Figs. 5(c)–5(e). The
different stages of perturbation evolution at high Mc are as
follows.

Stage 1. The initial development stage of the compressible
mixing layer is similar to that of the incompressible case as
the initial conditions are identical: low pressure forms around
P and high pressure around S1 and S2. The similarities of this
stage at different Mach numbers can be seen from Figs. 3(a)
and 3(b) and Figs. 5(a) and 5(b).
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FIG. 5. KHI development in the compressible (Mc = 1.2) case:
Stage 1—initial development [(a), (b)]; Stage 2—vortex reversal
[(c)–(f)]; dashed lines demarcate the dilatational interface layer.

Stage 2. The second stage behavior is markedly different in
the compressible case as p′ and u′

2 evolve according to wave
equations. Around P : (i) the magnitude of u′

2 reduces gradually
and changes sign leading to the reversal of the vortices in
the Q2 and Q4 quadrants to counterclockwise; (ii) similar
reversal of vortices in Q1 and Q3 to clockwise; and (iii) gradual
increase in pressure. Thus, vortex reversal rather than merging
dominates the second stage.

During the reversal process, positive pressure and coun-
terclockwise vortex prevail at P , shown in Figs. 5(c) and
5(d). With the passage of time, the pressure at P returns to
negative values accompanied by clockwise vorticity in the Q2

and Q4 quadrants and counterclockwise in the Q1 and Q3

quadrants as seen in Figs. 5(e) and 5(f). Most importantly, the
reversals preclude the central KHI mechanism in compressible
flows—steady positive feedback between the clockwise vortex
and low pressure at P . The effect of the reversal of the vortex
roll-up is shown in Fig. 2(d), where the level of circulation
diminishes as the Mach number increases. A similar reversal,
but in the opposite direction occurs at S1 and S2. Thus, this
stage is now identified as the first vortex reversal stage with
no roll-up.

Stage 3. The asymptotic stage is marked by periodic
reversals until nonlinear or viscous processes intervene. There
is no steady entrainment and thus the circulation remains small.

Outer regions. Although Mg is smaller than unity in the
outer regions, the behavior here is not similar to that in the
incompressible flow. Pressure waves generated within the DIL
propagate through these regions dominating the flow features.
At any given point, the velocity is nearly periodic and this
leads to very little mixing even in the low Mg regions.

In this work, we uncover the physical mechanism of
the KHI suppression in compressible flows through the
pressure-velocity interaction dynamics. The contrast between
incompressible and compressible cases is exhibited in Fig. 6.
The most crucial dynamics occur in the vicinity of P . A
low-pressure region forms around P and clockwise and coun-
terclockwise vortices form in diagonally opposite quadrants as
seen in Figs. 6(a) and 6(b). The behavior in the second stage
is determined by the evolution equations and hence markedly

FIG. 6. Schematic representation of contrasting the stages of
the KHI development in the incompressible (left) against the
compressible (right) flows.

different in the two cases. In the incompressible case, the
velocity field mediates a steady positive-feedback interaction
between the clockwise vortex and the negative pressure field
causing mutual intensification and ultimately triggering the
KHI [Fig. 6(c)]. On the other hand, compressibility engenders
the formation of a dilatational interface layer which acts
as a barrier between two streams. Within this interface, the
compressible velocity field is inherently oscillatory, resulting
in vorticity and pressure field reversals, precluding positive-
feedback growth [Fig. 6(d)]. We find that the influence of
compressibility sets in gradually with increasing Mach number
rather than a distinct bifurcation. At the final stage, the
incompressible case features a solid body vortex rotation in the
low-pressure region around P [Fig. 6(e)]. In stark contrast, the
compressible interface features mostly oscillatory fluid motion
that cannot sustain vorticity or mixing between the two streams
as illustrated by the dashed vortex lines in Figs. 6(d)–6(f). The
gradual change in linear stability behavior with increasing
Mach numbers and subsequent nonlinear effects will be
addressed in detail in future works.

In summary, the action of pressure leads to shear-driven
stirring action between the two streams at low speeds, and
a dilatation-driven oscillatory motion of the interface at high
speeds. While stirring leads to mixing (instability), oscillations
maintain segregation (stabilization) between the two streams.
The findings can potentially be generalized to a variety of
high-speed shear flows including hypersonic boundary layers
and jets. In particular, the present analysis can be extended to
examine supersonic plasma jets in astrophysical flows.
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