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Chaotic self-sustaining structure embedded in the turbulent-laminar interface
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An interface structure between turbulence and laminar flow is investigated in two-dimensional channel flow.
This spatially localized structure not only sustains itself but also converts the laminar state into turbulence actively.
A filtered simulation technique is introduced to understand the invading process as an inhomogeneity-induced
self-sustaining coherent structure, which consists of a meandering jet on bulk-region and near-wall vortex pairs. A
phenomenological model, called the ejection-jet cycle, reveals the relationship between the spatial inner structure
of the interface and the invading speed. This model gives insight on the inner-outer interaction in wall-turbulence.
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Introduction. Turbulence ubiquitously appears in nature,
from quark-gluon plasma [1] to the universe [2]. Because
of its strong nonlinearity, most studies related to turbulence
may have adopted more or less statistical or coarse-graining
approaches [3]. Though they have vividly revealed phe-
nomenological and/or kinematic natures of turbulence such
as the energy transfer among different scales and places,
these statistical treatments are not sufficiently adequate to
elucidate concrete mechanisms of even such fundamental
processes of turbulence, such as what substance, e.g., vortices,
transfers energy or why the energy transfer occurs. On the
other hand, the dynamical systems approaches to turbulence
have helped us describe these mechanisms with numerically
obtained components (invariant sets) in the phase space such
as fixed points, periodic orbits, and their connections [4].

Recent developments in the dynamical systems approach
to turbulence arrive at the next stage, where the spatial
inhomogeneity is taken into account. Famous actors on the
previous stage are the so-called minimal flows [5], which
mean direct numerical simulations with minimal system
sizes reproducing elementary processes and basic statistical
quantities of turbulence. These studies have introduced the
idea of self-sustaining coherent structures. There are several
attempts to understand spatial inhomogeneity in turbulence
from self-sustaining coherent structures and phenomeno-
logical interactions among them [6,7]. This approach has
succeeded in flows at low Reynolds number, where vortex
structures are similar to those appearing in minimal flows.
However, experiments and numerical simulations suggest
different types of coherent structures live together in flows at
high Reynolds number [8,9]. We present a simple example in
which two dynamically coupled different coherent structures
of different scales coexist.

We focus on interfaces which have critical importance
to understand inhomogeneous systems since most properties
change along it. However, interfaces themselves can be
complicated in a strongly nonlinear inhomogeneous state.
Turbulence-laminar interface appears in many flows, e.g.,
boundary layers, jet, wake, and so on. In three-dimensional
flows, the dynamics of the interface is spatiotemporally
chaotic [10]. It is sometimes even hard to detect such

*teramura@kyoryu.scphys.kyoto-u.ac.jp

interfaces since they have intricate spatial geometries. These
complexities prevent us from detailed studies of interfaces. To
avoid this problem, we use a two-dimensional channel flow,
where the activities of interfaces are limited compared to those
in three-dimensional flows. This will be one of the simplest
examples of localized chaotic coherent structures induced by
spatial inhomogeneity.

In this paper, we describe the simulation setting and show
an energy balance analysis. It is used to define a coherent
structure, which we call chaotic interface (CI). Next, we
confirm the self-sustainability of the chaotic interface using so-
called filtered simulations. Here we propose a self-sustaining
mechanism of the chaotic interface, called the ejection-jet
cycle. A mechanism of determining the traveling speed of
the interface is also argued. Finally, we discuss how our
result could extend the dynamical systems approach to the
inhomogeneous turbulence.

Chaotic interface structure. Two-dimensional (2D) laminar
channel flow has the same critical Reynolds number Rec

as the three-dimensional one. In the 2D case, the Tollmien-
Schlichting (TS) wave solution appearing at this critical point
bifurcates into a weak chaotic state, which we call the chaotic
TS wave, as its Reynolds number increases [11–14]. In this
paper, we consider a channel which contains both turbulent
and laminar regions.

We adopt a frame of reference moving at a speed cI against
the laboratory frame for CI not to march, and call it the interface
frame. The streamwise and the wall-normal coordinates are
denoted by x and y, respectively, in this interface frame, and
this system is nondimensionalized by the half width of the
channel, so that y ∈ [−1,1]. The velocity field in this frame is
denoted by u. We deal with a very long box [0,L = 20π ] ×
[−1,1] to emulate the dynamics realized in an infinitely long
channel. To clarify the direction we call the left side of Fig. 1
the turbulent side and the right side the laminar side. Since
the walls move in the interface frame, the nonslip boundary
conditions become u(x,±1) = −cI x̂, where x̂ denotes the x-
directional unit vector. The Reynolds number Re is fixed to
8 000 in this paper to exceed the critical value Rec = 5 772
of stability of the laminar flow. We have confirmed that the
qualitative nature of CI reported below does not change for
Re = 6000,7000,9000, and 10000.

To analyze the dynamics of this process in a finite
computational box, we have to keep supplying laminar flow
since the turbulent region becomes longer. We resolve this
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FIG. 1. A snapshot of the vorticity deviation. ζ varies from −25 to 25 on the walls, and regions ζ > 1.5 (ζ < −1.5) are colored by the
same color of ζ = 1.5 (ζ = −1.5).

problem using the damping filter [15] in the interface frame.
We introduce a linear damping term into the incompressible
Navier-Stokes (NS) equation to reproduce a laminar Poiseuille
flow UL = (1 − y2 − cI )x̂ in a small region � = [0,1.4] ×
[−1,1]:

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
∇2u − Hσ 2,�(x)(u − UL),

Hσ 2,�(x) = 1√
2πσ 2

∫
�

dx ′ exp

(
(x − x ′)2

2σ 2

)
,

where the last term of NS equation is the damping filter term.
The periodic boundary condition is imposed in the x direction.
Since cI is larger than the phase speed of the chaotic TS
wave, this damping term laminarizes it, and the laminarized
flow returns upstream (x = L) due to the periodic boundary
condition. We use the stream function vorticity scheme, and
thus the state variable is the z component of vorticity of the
velocity deviation, ζ = [∇ × (u − UL)]z. We use Fourier (x)–
Chebyshev (y) spectral method for spatial discretization, and
explicit (convection term) and implicit (viscous term) Euler
schemes for temporal evolution.

We need the following several steps to determine cI . First,
we produced a uniform turbulent state in the laboratory frame
using an initial condition u(x,y,t = 0) = ε(1 − y2)2 cos(kx)
like in Ref. [13], where ε = 0.3 and k = 2π/L. Second, we
created a turbulent puff by executing a short simulation in
the laboratory frame with the damping filter � = [0,20] ∪
[40,L] × [−1,1]. The damping filter was introduced in the
laboratory frame in this step. If we execute this simulation
for a long time, the entire vortices will be damped. Third,
we executed a nonfiltered simulation to estimate the cI . In this
simulation the turbulent region became wider since the laminar
flow is unstable, and the invading speed of the interface is about
cI � 0.8. The turbulent region filled the systems in a short time
due to the lack of the damping term, and then the interface
disappeared. We could only obtain a rough estimate of the
invading speed in this simulation. Last, we executed a filtered
simulation on a moving frame with cI = 0.8. Because 0.8 is
smaller than the real value 0.855 obtained after, the interface
marches slowly to the laminar side. Then we adjusted cI for the
interface not to march, and this procedure yields cI = 0.855.

In this setting a turbulent-laminar interface can be simulated
permanently. Figure 1 shows that the whole domain can be
separated into the following three regions: weak turbulence
(WT, x � xl), chaotic interface (CI, xl � x � xr ), and laminar
(xr � x) regions. Moreover, the chaotic interface contains
dynamic inner structures, a meandering bulk structure, and
strong wall shear layers. The weak turbulence consists of
spatially modulated chaotic TS waves [11]. The separation
points xl = 18.5 and xr = 35 are defined in the later discussion

about the energy balance and the growth of vortices near the
walls.

To focus on its streamwise inhomogeneity, we consider the
y-averaged energy balance equation:

∂E

∂t
+ ∂x(Ju + Jν) = Pp + Pν − Dν + F. (1)

The energy is defined in the interface frame: E(x,t) =∫ 1
−1 dy‖u‖2/2. Since the walls move, there is an energy

injection due to the viscosity on the walls Pν = P +
ν + P −

ν ,
where P ±

ν = ∓cI ∂yux |y=±1/Re in addition to the bulk viscous
dissipation

Dν = 1

Re

∫ 1

−1
dy[2(∂xux)2 + (∂xuy)2 + (∂yux)2]. (2)

The term Pp(x,t) = − ∫ 1
−1 dy(u · ∇)p denotes the energy

injection due to the pressure gradient and takes both positive
and negative values. Pp > 0 means the flow accelerated by
the pressure gradient, and Pp < 0 means the flow against
the pressure gradient. Pp balances almost with the gradient

of the energy flux ∂xJu, where Ju = ∫ 1
−1 dyux‖u‖2/2, and

their spatial means are smaller than those of the viscous terms
Pν and Dν . The flux due to the viscosity Jν is negligible.
F = − ∫ 1

−1 dyHσ 2,�u · (u − UL) is the energy damping by
the filter term. The left side of CI, i.e., xl , is defined as the
maximum point of the time average of Ju.

To examine the energy balance of CI, we integrate Eq. 1
over CI [xl,xr ]:

dĒ

dt
= J (L)

u − J (T )
u + P̄p + P̄ν − D̄ν, (3)

where the bar ·̄ denotes the integral over the interface, and
J (L)

u = Ju(xr ),J (T )
u = Ju(xl) respectively. Since the interface

marches faster than the mean flow, the energy flux of the
laminar flow is negative in the interface frame. In other
words, the chaotic interface withdraws the energy from
the laminar flow by invading it. The time averages 〈·〉 of
these terms are calculated over t ∈ [0,300]: 〈J (L)

u 〉 = −0.074,
〈J (T )

u 〉 = −0.072, 〈P̄p〉 = 2.4 × 10−3, 〈P̄ν〉 = 1.08 × 10−2,
〈D̄ν〉 = 1.09 × 10−2, and the summation of them is almost
zero: 〈dĒ/dt〉 = 7.5 × 10−5 ≈ 0. The time series of these
values are displayed in Fig. 2. Each of these variables
Pp,Pν , and J (T )

u − J (L)
u behaves almost periodically, but their

amplitudes vary chaotically. The periodicity strongly suggests
the existence of a self-sustaining mechanism of the interface
structure, and the chaotic amplitude suggests that its dynamics
is effectively low dimensional.

Ejection-jet cycle. Here we give a concrete description of
the self-sustaining mechanism of the chaotic interface. This
sustaining process is constituted by the interaction among
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FIG. 2. Time series of each integrated value in Eq. 3. These are
weakly chaotic. Dotted lines of each color denote the mean values.

vortex ejections on the walls and the meandering jet in the
bulk region. This collective dynamics is further split into four
steps as summarized in Fig. 3. In step (i), a pair of sheetlike
vortices is created by the meandering jet. This process takes
place around x � xr (see Fig. 5). In x > xr the jet becomes
straight, and the creation of vortex pairs ceases.

Step (ii) is the convective growth of the vortex pair. The
thin vortex pair generated in step (i) grows up into an intense
vortex ejection. These vortex pairs are very thin due to the
high Reynolds number Re = 8 000, and are characterized by
the value of vorticity on the wall. To focus on the growth
process, we use the intensity of the vorticity on the lower wall
ζL(x,t) = ζ (x,y = −1,t), which is displayed onto x-t plane
in Fig. 4. There are elongated regions of deep blue where
ζL takes a negative value in this x-t plot. The length of this
region in the x direction is sharp enough to define the position
of the vortex pair. Two dashed lines in this figure indicate
that there are two traveling velocities except for cI . The black
dashed line guides the minimum of ζL around x ∈ [20,30] to
measure the traveling velocity cv of the vortex pair, and this
line indicates cv � 0.52. Since we define the velocity in the
laboratory frame, positive cv means that the vortex pair goes
to the laminar side in the laboratory frame, although it moves
to the turbulent side in the interface frame since cv − cI < 0.
The gray dashed line indicates the traveling velocity of weak
turbulence cw = 0.38, which is consistent with the previous
work [11].

Step (iii) is the vortex ejection process, which excites the
jet and makes it meander. This ejection occurs on the turbulent
side of the chaotic interface, namely around 22 < x < 28. A
very strong shear accompanies this vortex ejection process.

Jet

Ejection
(i)

(ii)

(iii)

(iv)

FIG. 3. A schematic view of the ejection-jet cycle.

FIG. 4. The vorticity at the lower wall ζL(x,t) = ζ (x,y = −1,t).
Black dashed line guides the minimum of ζL(x,t) (deep blue
elongated regions) around x ∈ [20 : 30]. The slope of this line
indicates that local minimum points move as xmin = c′

vt � −0.33t ,
and thus they move with cv = cI − c′

v � 0.52 in the laboratory frame.

The wall unit lτ is estimated at 2.1 × 10−3, and the friction
Reynolds number Reτ = l−1

τ is about 460. This means that the
length of the interface in the x direction (xr − xl) is 5 000
times larger than lτ . Therefore, we should regard this interface
structure as a large-scale motion in the wall-turbulence context.
After the intensive ejection process, the vortex structures are
swept to turbulent side, and this corresponds to the leak of the
energy 〈
Ju〉 from the interface to the weak turbulence region.

Step (iv) is an energy transportation taken by the mean-
dering jet. Most part of the fluid goes to the turbulent side
in the interface frame since the invading speed cI = 0.855
is faster than the traveling speeds of other parts, i.e., cw and
cv , but the meandering jet goes to the laminar side even in
the interface frame. The jet is strongly meandering around
the ejection (x ∼ 25) because of the alternate ejections on the
lower and upper walls, and it becomes straight as leaving from
the ejection. Then the cycle is closed, and we call this cycle an
ejection-jet cycle (EJC).

To complete the EJC model, let us consider how the
invading speed cI is determined. There are two dynamical
processes, the convective growth of the vortex pair and energy
transportation by the jet. The spatial growth of the vortex pair
on the lower wall is displayed in Fig. 5. The maximum absolute
value of the vorticity ζ is realized around x = 25, where the
intensive ejection of step (iii) occurs. The temporal minimum
value of ζ (x,y = −1) changes linearly around x ∈ [25,35]
as guided by a dashed line. Since no vortex pairs exist on
x > xr , the end of this slope xr defines the right boundary of
CI, and its estimated value is xr = 35. This linear slope should
be connected with the dynamics of step (ii), but we do not
have enough tools to deduce this slope. Since the vortex pair
moves at the constant speed cv in this region as shown in Fig. 4
(black dashed line), this spatial growth can be converted into a
temporal growth of the minimum vorticity of the vortex pair,
denoted by ω, in the Lagrangian viewpoint:

ω = −α(x − x0) = α(cv − cI )(t − t0), (4)
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FIG. 5. Spatial growth of the vorticity at the lower wall ζL(x,t) =
ζ (x,y = −1,t). A snapshot ζL(x,t = 58), temporal mean ζmean(x) =
〈ζL(x,t)〉t , maximum ζmax(x) = max0�t�T ζL(x,t), and minimum
ζmin(x) = min0�t�T ζL(x,t), are displayed with T = 100.

where α denotes the slope in Fig. 5. In addition, we assume
the minimum of the vorticity ωmin ≈ −25, which is realized
around x = 25 on the lower wall, is independent of cI . It
should be determined only by Reynolds number. Then Eq. 4
gives an estimate length of CI: 
x = ωmax/α. The difference
cI − cv is regarded as the relative speed between the jet and the
vortex pair, and thus it characterizes the mean shear exerting
on the vortex pair. While the maximum velocity of the jet is
faster than cI , the typical speed of bulk structures is roughly
approximated by cI . This means that the jet loses its energy for
enhancing the vortex pairs. Here we summarize the mechanism
of the determination of the invading speed cI . If cI is too
large, this energy loss prevents the creation of new vortex
pairs, and thus cI decreases. Conversely, if cI is too small, the
energy loss is suppressed, and thus the jet is accelerated. By
the balance of these processes, cI is determined spontaneously.
Quantitative validations of these assumptions are left for future
works.

We confirm the EJC model by removing each of the
following ingredients: (a) weak turbulence, (b) vortex ejection,
and (c) vortex pair excitation. Each of them is damped out
by the linear damping filter. These filtered simulations help
us confirm that these four steps are necessary and minimal
components. A snapshot of the previous simulation is used as
the initial condition of these filtered simulations. Animations
visualized by the turbulent vorticity are included in the
Supplemental Materials [16].

Case (a): We set �(a) = [0,22] × [−1,1] to damp the weak
turbulent region, and to confirm the self-sustainability of the
chaotic interface. In this setting we yield a permanent chaotic
interface, whose invading speed and the spatial structure
are hardly changed. We conclude that the following weak
turbulence is additional as assumed in the EJC model. Fur-
thermore, the selection process of cI and the spatial structure
is completely closed in the chaotic interface. In other words,
the weak turbulence region hardly affects the selection process.

Case (b): We set �(b) = [0,30] × [−1,1] to damp the weak
turbulence and the vortex ejection processes. This simulation
tests whether the jet is maintained by the acceleration due to the

vortex ejection. If the meandering jet is able to sustain itself,
this simulation yields a finite amplitude state in which only the
meandering jet exists. The result of the simulation denies this
hypothesis. The jet loses its meandering structure in a short
time (t � 20). This simulation finally yields the laminar flow
while the straightened jet remains a long time. In this sense,
the meandering of the jet is only a component mechanism of
this self-sustaining process, and is not self-sustaining.

Case (c): We set �(c) = [30,20π ] × [−1,1] to obstruct step
(i). In this case the nonfiltered region of the chaotic interface
(20 < x < 30) remains on the same position until t � 20, and
then it travels to the turbulent side. This time lag corresponds
to the growth time Tv of the vortex ejection, and thus this
result also supports the EJC model. After a long transient
period, another chaotic interface is reconstructed around
15 � x � 27. Their invading speed and spatial structure are
same as the previous one. This result insists that the chaotic
interface structure is robust while a laminar region exists.
This robustness is an important issue for the pattern selection
problem, but the current framework of the dynamical systems
approach lacks tools applicable for settling this issue.

Concluding remarks. We have investigated the turbulent-
laminar interface in two-dimensional channel flow and pro-
posed a self-sustaining mechanism, the ejection-jet cycle
(EJC). From a technical viewpoint, the filtered simulation has
been introduced and utilized to confirm the self-sustainability
of EJC. Unlike simple interfaces such as shocks in compress-
ible fluids, the chaotic interface (CI) has internal dynamics. It is
hard to capture such dynamic properties in current approaches
to interfaces. For example, there is a classical heteroclinic
orbit technique [17], which has been developed to analyze
effectively one-dimensional interfaces. This method rephrases
the spatial structure of the interface into a heteroclinic orbit
of a corresponding low-dimensional dynamical system, and
thus it is incompatible with time-dependent interface. Our
approach to treat the local self-sustainability directly by
the filtered simulations will be an alternative approach to
attack dynamical interfaces. It is well compatible with the
coherent structure approach since the interface itself would be
a coherent structure.

Our self-sustaining mechanism, the ejection-jet cycle
(EJC), has different properties from the Waleffe’s self-
sustaining process (SSP) [18]. While the SSP has one
spatiotemporal scale, the EJC contains two different spatial
scales. These structures, namely the meandering jet and the
wall vortex pair, interact by the convective growth of the vortex
pair. In other words, small-scale structures are convected on a
large-scale distance, and this convection makes the interaction
possible. This interscale interaction mechanism is different
from known ones [19]. Spatial dynamics of the interscale
interaction process in isotropic turbulence, i.e., the substance
of Richardson’s cascade picture, is well studied in Ref. [20],
where spatial convection does not play an active role. This
indicates that convection-induced interscale interaction may
be unique to the wall turbulence. We should try to combine
such convective interaction scenario with the wall-turbulence
theories, namely the mixing length picture and/or the attached
eddy picture, and this remains for our future work.

Finally, we should compare our result with localized exact
solutions [21–27]. Localized solutions to the Navier-Stokes
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equation have been obtained in various flows at low Reynolds
number. The localized dynamics corresponding to most of
these exact solutions is Waleffe’s SSP [28]. The existence
of these solutions indicates that SSP can be embedded in
laminar flow, and thus support the reaction-diffusion model
of turbulent-laminar patterns [6,7]. In other words, it suggests
that reaction, i.e., pointwise SSP dynamics, and diffusion, i.e.,
interactions among each SSP dynamics, can be separable. In
the EJC model, however, the chaotic interface (CI) maintains
the following weak turbulence region (WT). This one-sided
relation between CI and WT is not a simple diffusion, though
the dynamics of CI that appeared in the filtered simulation
case (a) argued earlier can be regarded as a low-dimensional
reaction. Such singular interactions among coherent structures

will be important where the flux of energy and/or momentum
plays critical roles, e.g., log layer in wall turbulence [8]. The
EJC model could be a minimal example of this problem, and
extensions to three-dimensional flows will be done in our
future work.
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