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Highly connected neurons spike less frequently in balanced networks
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Biological neuronal networks exhibit highly variable spiking activity. Balanced networks offer a parsimonious
model of this variability in which strong excitatory synaptic inputs are canceled by strong inhibitory inputs
on average, and irregular spiking activity is driven by fluctuating synaptic currents. Most previous studies of
balanced networks assume a homogeneous or distance-dependent connectivity structure, but connectivity in
biological cortical networks is more intricate. We use a heterogeneous mean-field theory of balanced networks
to show that heterogeneous in-degrees can break balance. Moreover, heterogeneous architectures that achieve
balance promote lower firing rates in neurons with larger in-degrees, consistent with some recent experimental
observations.
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Many neuronal networks exhibit noisy and irregular activity
[1–3], which is the focus of many theoretical studies [4–7], and
they also exhibit a balance between positive (excitatory) and
negative (inhibitory) interactions [8–16]. Balanced network
models offer a parsimonious model of this activity. In balanced
networks, chaotic or chaoslike dynamics produce irregular
spiking activity through transient fluctuations in the balance
of strong excitatory and inhibitory currents [17–21]. Most
studies of balanced networks assume a homogeneous network
architecture where connection probability depends only on cell
polarity. This was recently extended to networks with distant-
dependent connection probabilities [22,23], but biological
networks exhibit more diverse architectures [24–27].

In this paper, we use mean-field theory to show that
architectures with heterogeneous in-degree distributions and
homogeneous out-degree distributions can break the classical
balanced state, consistent with parallel studies [27–30]. We
next show that balance can be restored, for example if
out-degrees are also heterogeneous. In each of the example
architectures we consider, neurons with higher in-degrees have
lower firing rates, consistent with recent experimental results
showing a negative correlation between firing rate and local
functional coupling strength in cortex [31].

I. MODEL DESCRIPTION

We consider a network of N integrate-and-fire neurons. The
membrane potential of neuron j obeys

dVj

dt
= f (Vj ) + Ij (t)

and each time Vj (t) exceeds a threshold at Vth, the neuron
spikes, the membrane potential is held for a refractory period
τref , and it is then reset to Vre. All simulations use the
exponential integrate-and-fire (EIF) model. The EIF model is
defined by τmf (V ) = −(V − EL) + �T exp[(V − VT )/�T ]
with parameters τm = 15 ms, �T = 2 mV, VT = −55 mV,
Vth = −50 mV, Vre = −75 mV, and τref = 0.5 ms. Synaptic
input currents are defined by

Ij (t) =
N∑

k=1

Jjk√
N

∑
n

αk(t − tk,n) +
√

NFj , (1)

where tk,n is the nth spike time of neuron k = 1, . . . ,N .
Postsynaptic current waveforms satisfy αk(t) = 0 for t <

0 and
∫

αk(t)dt = 1. For all simulations, αk(t) = (e−t/τd −
e−t/τr )/(τd − τr ) for t > 0 with time scales τd = 0.1 ms and
τr = 6 ms for excitatory presynaptic neurons and τd = 0.1 ms
and τr = 4 ms for inhibitory neurons. The term Fj models
feedforward input to the neuron from outside the network.

We are interested in the statistics of network activity as N

grows large. The N×N connectivity matrix, J , is assumed
random and our mean-field analysis only depends on the
expected value of the entries of J .

II. HETEROGENEOUS MEAN-FIELD THEORY
OF BALANCED NETWORKS

We first extend the mean-field theory of firing rates in
balanced networks [17–19,23] to account for heterogeneous
structure. We consider random networks partitioned into K

populations, and we assume that the mean strength of synaptic
connections between neurons in each pair of populations is
known and O(1).

Specifically, we assume that population m contains Nm

neurons with qm = Nm/N ∼ O(1) for m = 1, . . . ,K . The
average input to neurons in population m is

Im = avgj∈G(m)[Ij (t)],

where j ∈ G(m) indicates that the average is taken over all
neurons in population m, and also over time. Define Fm

similarly and define rm to be the average spiking rate of neurons
in population m. Averaging Eq. (1) over each population and
over time gives the mean-field mapping

�I =
√

N (W �r + �F ), (2)

where �I = [I 1 · · · IK ] is the vector of mean inputs and
similarly for �r and �F . The K×K mean-field connectivity
matrix is defined by

W = [qnJmn]Km,n=1,

where

Jmn = 1

NmNn

∑
j ∈ G(m), k ∈ G(n)

Jjk
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is the mean connection strength from neurons in population n

to those in population m, assumed to be O(1).
In the balanced state, �r, �I ∼ O(1) as N increases. From

Eq. (2), however, this can only be achieved under a cancellation
between positive and negative (excitatory and inhibitory)
input sources in such a way that W �r + �F ∼ O(1/

√
N ). This

cancellation defines the balanced network state [17,18]. As
N → ∞, firing rates are given by the solution to the balance
equation

W �r + �F = 0. (3)

Thus, the existence of a balanced state requires that Eq. (3)
has a solution, �r , with positive components, rm > 0. When
W is invertible, this solution can be written as limN→∞ �r =
−W−1 �F .

The mean-field analysis above only considers the existence
of a balanced fixed point, but this fixed point must be stable
for balance to be realized. When membrane and synaptic
dynamics are mostly homogeneous in the network, stability
can be approximated by considering the dynamical mean-field
equation [23,32,33]

τm�r ′ = −�r + f (
√

N [W �r + �F ]), (4)

where f (·) is a nondecreasing firing rate function and τm is
the neurons’ membrane time constant. For integrate-and-fire
models, we can assume that f is a threshold-linear function,
and we conclude that stability is achieved for large N when all
eigenvalues of W have a negative real part [23]. A more precise
stability analysis uses a diffusion approximation and accounts
for synaptic kinetics [19,34,35], but the simpler approach here
has been successfully applied to balanced networks [18,23].

III. A REVIEW OF HOMOGENEOUS
BALANCED NETWORKS

For the purpose of comparison, we first review networks
with homogeneous connection probabilities that depend only
on cell polarity (excitatory or inhibitory), as in [17,18]. For
this model, Ne = qeN of the neurons are excitatory and
Ni = qiN are inhibitory, where qe,qi ∼ O(1). All excitatory
neurons receive the same feedforward input, Fj = Fe > 0,
and all inhibitory neurons receive Fj = Fi > 0. The synaptic
connection strength Jjk , from neuron k in population y = e,i
to neuron j in population x = e,i, is randomly assigned
according to

Jjk =
{

jxy with prob. pxy,

0 otherwise.

Here, pxy represents the connection probability from popu-
lation y = e,i to population x = e,i and jxy represents the
strength of each such connection. Note that jee,jie > 0 and
jei,jii < 0.

Dividing the network into excitatory and inhibitory popula-
tions and applying the mean-field theory outlined above gives
the mean feedforward input, �F = [Fe Fi]T , and the mean-field
connectivity matrix

Wh =
[
wee wei

wie wii

]
, (5)

Fe

Fi
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FIG. 1. A homogeneous balanced network. (a) Network
schematic. A population of Ne excitatory and Ni inhibitory neurons
(e and i) are randomly connected and also receive feedforward input
(Fe and Fi). (b) Raster plot of 500 randomly sampled excitatory
neurons from a simulation of a balanced network with Ne = 4×104

and Ni = 104. (c) Firing rates from simulations (solid curves)
approach the values predicted by solving Eq. (3) (dashed lines)
as network size, N = Ne + Ni, grows. (d) Synaptic input to one
representative excitatory neuron shows that strong excitatory currents
(blue) balance with strong inhibitory currents (red) to yield a moderate
total synaptic current (black). Synaptic currents were convolved with
a Gaussian-shaped filter (σ = 8 ms) and normalized by the neuron’s
rheobase.

where wxy = qypxyjxy , and the subscript h, for homogeneous,
is used to distinguish this matrix from those we will consider
below. For this network, the balance equation (3) has a stable,
positive solution whenever [17–19,23]

Fe

Fi
>

wei

wii
>

wee

wie
. (6)

Computer simulations (parameters for all simulations are jee =
112.5, jei = −300, jie = 225, jii = −450, Fe = 0.0187,

Fi = 0.015, qe = 0.8, qi = 0.2, and pxy = 0.05 for x,y ∈
{e,i}) confirm the predicted firing rates and demonstrate the
asynchronous, irregular spiking characteristic of the balanced
state (Fig. 1). We next show that rewiring this network to
produce heterogeneous in-degrees can break balance.

IV. HETEROGENEOUS IN-DEGREES
CAN BREAK BALANCE

As a first example of a heterogeneous network, we rewired
the homogeneous network above to produce a bimodal
distribution of in-degrees. We first partitioned the excitatory
population into two equal-sized subpopulations, e1 and e2. We
then did the same for the inhibitory population, giving a total of
K = 4 subpopulations, which we enumerate as e1,i1,e2, and i2.

A proportion cin = 1/5 of the incoming connections to
postsynaptic neurons in populations e1 and i1 were randomly
reassigned to postsynaptic neurons in populations e2 and
i2, respectively. Thus, the average in-degrees of neurons in
populations e2 and i2 were larger than those of neurons in
populations e1 and i1, respectively [Fig. 2(a)]. The out-degrees
and feedforward inputs were unchanged from Fig. 1.
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FIG. 2. Heterogeneous in-degrees can break balance. (a) Network
diagram. Same as the network in Fig. 1 except excitatory and
inhibitory populations were each split into two populations. Neurons
in populations e2 and i2 have larger in-degrees than those in e1 and
i1. (b) Raster plot of 500 randomly selected excitatory neurons, half
from e1 and half from e2, from a simulation with N = 5×104 neurons.
(c),(d) Mean firing rate in each population as a function of network
size (N ).

In simulations of this network, the average firing rates of
neurons in populations e1 and i1 were larger than the excitatory
and inhibitory rates in populations e2 and i2 [Figs. 2(b)–2(d)].
Thus, perhaps surprisingly, a higher in-degree was associated
with lower firing rates. Increasing the network size while keep-
ing the connection probability fixed exaggerated this effect as
firing rates in population e2 approached zero [Figs. 2(c) and
2(d)].

To understand this phenomenon intuitively, consider a
simplified network diagram in which the populations with
decreased in-degrees (e1 and i1) are grouped together (group 1)
and those with increased in-degrees (e2 and i2) are also grouped
together [group 2, Fig. 2(a)]. The increased in-degree of group
2 is then the equivalent of an increase in the mean strength of its
self-connections and the mean strength of group-2-to-group-1
connections [indicated by thicker arrows in Fig. 2(a)].

In the balanced state, strong inhibition cancels strong
excitation, including excitatory feedforward input. While both
groups receive identical feedforward input, group 2 receives
more recurrent input than group 1 regardless of the firing rates
of each population. Balance cannot be maintained in both
groups because the same level of feedforward input received
by each group cannot be simultaneously balanced by the
two different levels of recurrent input they receive. Group 2
receives an excess of inhibition because recurrent connections
are net inhibitory in balanced networks [17,18], explaining
why group 2 has lower firing rates than group 1.

A more rigorous understanding is provided by applying the
heterogeneous mean-field analysis described above. The 4×1
vector of mean feedforward inputs to populations e1,i1,e2,
and i2 is given by �F = [Fe Fi Fe Fi]T . The 4×4 mean-field
connectivity matrix is given in block form by

W = 1

2

[
(1 − cin)Wh (1 − cin)Wh

(1 + cin)Wh (1 + cin)Wh

]
,

where Wh is the 2×2 matrix from Eq. (5).

Note that W is singular and its range does not contain
�F . Thus, Eq. (3) does not admit a solution and this network

rewiring destroys balance. As a result, firing rates in group
2 approach zero as N → ∞ due to an excess of recurrent
inhibition. Thus, rewiring a homogeneous network to achieve
heterogeneous out-degrees can destroy balance [27–30], caus-
ing highly connected subpopulations to cease spiking.

This loss of balance was caused by the singularity of
W , which is a null-property of matrices since the perturbed
matrix W + εA is almost surely invertible for random ma-
trices, A, with entries drawn independently from an abso-
lutely continuous distribution. However, the perturbed firing
rate vector, given by �r = −(W + εA)−1 �F, is almost surely
O(1/ε). Thus, connectivity structures that are inconsistent
with balance promote large firing rates even when they are
only approximately realized. Moreover, balance requires that
the firing rate solutions are positive, so not all perturbations
of a singular W give a balanced solution. Nevertheless, there
are numerous modifications of the network that can recover
balance. We next consider some examples.

V. RECOVERING BALANCE PROMOTES LOWER FIRING
RATES IN NEURONS WITH MORE SYNAPTIC INPUTS

The rewiring of the homogeneous network considered
above only altered in-degrees of neurons. Starting from this
rewiring, we now also change the out-degrees by rewiring
the source of some edges. Specifically, a proportion cout =
4/5 of the synaptic projections from presynaptic neurons
in population e1 to postsynaptic neurons in population e2

are rewired to emanate from randomly selected presynaptic
neurons in population e2, i.e., they now project from e2 to e2.
Similarly, a proportion cout = 4/5 of projections from neurons
in x1 to neurons in y2 are rewired to form x2-to-y2 projections
for all pairings of x,y ∈ {e,i}.

This rewiring increases the average out-degree of neurons
in populations e2 and i2 by a proportion cout and decreases the
out-degrees of neurons in population e1 and i1 by the same
proportion. Since e2 and i2 also have larger in-degrees, this
results in positively correlated in- and out-degrees [Fig. 3(a)].

Simulating this network, we found that the average firing
rates of neurons in populations e1 and i1 were larger than the
rates in populations e2 and i2, respectively [Figs. 3(b)–3(d)],
but the difference was less drastic than the example with just
heterogeneous in-degrees (compare to Fig. 2). Increasing the
network size while keeping the connection probability fixed
caused the rates to approach nonzero limits [Figs. 3(c) and
3(d)].

Repeating the mean-field analysis from above, the 4×4
mean-field connectivity matrix is given in block form by

W = 1

2

[
(1 − cin)Wh (1 − cin)Wh

(1 + cin)(1 − cout)Wh (1 + cin)(1 + cout)Wh

]
,

where Wh is from Eq. (5). For this example, the network admits
a stable balanced state, i.e., Eq. (3) has positive solutions
and the eigenvalues of W are negative. As predicted, the
balanced firing rates given by �r = −W−1 �F agree with network
simulations for large N [Figs. 3(c) and 3(d)]. Interestingly,
neurons with larger in-degrees (those in populations e2 and i2)
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FIG. 3. Balance can be restored by heterogeneous out-degrees.
Same as Fig. 2, except out-degrees of neurons in populations e2 and
i2 were increased by rewiring a proportion cout = 4/5 of the outgoing
projections from populations e1 and i1 to project from e2 and i2

instead. Dashed lines show the asymptotic firing rates predicted by
Eq. (3).

have lower firing rates. We next show that this is a prevailing
feature of heterogeneous balanced networks.

We have so far considered heterogeneous networks con-
structed by breaking a homogeneous balanced network into
K = 4 populations (two excitatory and two inhibitory), then
modifying the connection probability between each of the
four populations. Generalizing this approach, we can consider
multiplying the connection probability from populations ek

and ik to populations ej and ij by some factor ajk for j,k = 1,2.
This gives a mean-field connectivity matrix of the form

W =
[
a11Wh a12Wh

a21Wh a22Wh

]
.

As before, we leave the feedforward inputs unchanged,
�F = [Fe Fi Fe Fi]T .

See the Supplemental Material [36] for proof that this
network admits a stable balanced state only if populations
project to themselves with a higher probability than they
project to each other (a11 > a21 and a22 > a12), and that, under
this condition, populations with higher in-degree have lower
firing rates.

Note that it is still possible to construct a balanced
network with two excitatory and two inhibitory populations
such that populations with larger in-degree have larger rates.
For example, one could increase the feedforward input to
neurons with larger in-degree. However, our results suggest
that balance promotes lower firing rates in neurons with
more inputs. This can be explained intuitively by noting
that recurrent input is net-inhibitory in balanced networks, so
neurons with more local inputs tend to receive more inhibition.

So far, we have focused on networks with two excitatory
and two inhibitory population. See the Supplemental Material
[36] for numerical examples demonstrating that the negative
correlation between in-degree and firing rates persists when a
larger number of populations is considered.

In conclusion, networks with discrete populations can
achieve balance, but balance promotes lower firing rates in

neurons with higher in-degrees because recurrent connections
are net-inhibitory in balanced networks. We next investigate
whether this finding carries over to a continuously indexed
network.

VI. FIRING RATES IN A SCALE-FREE NETWORK

We assign to each neuron an in-degree, u, drawn indepen-
dently from a generalized Pareto distribution with the density
function

Q(u) =
{

1
σ

(
1 + u−μ

σ
ξ
)−(ξ−1−1)

, u � μ,

0, u < μ,

with shape parameter ξ = 0.25, location parameter μ = 5,
and scale parameter σ = (pN − μ)(1 − ξ ), giving an average
connection probability p = 0.05. We then draw round(u)
excitatory and inhibitory presynaptic neurons randomly and
uniformly from the network. Thus, in-degrees obey a power-
law distribution, but out-degrees are approximately homo-
geneous. Feedforward input strengths depend only on cell
polarity, as above.

Simulating this network confirms that firing rates are lower
for neurons with higher in-degree (Fig. 4), analogous to the
networks considered above.

The heterogeneous mean-field analysis outlined above can
be applied by partitioning the network according to in-degree
and neuron polarity. In the limit of large N and finer partitions,
the matrix equation (3) is approximated by a system of integral
equations (compare to spatial networks in [23]),∫ ∞

μ

[wee(u,v)re(v) − wei(u,v)ri(v)]dv + Fe = 0,

∫ ∞

μ

[wie(u,v)re(v) − wii(u,v)ri(v)]dv + Fi = 0. (7)

Here, rx(v) is the average firing rate of neurons in population
x = e,i with in-degree round(v). The term

wxy(u,v) = Q(v)jxyp(u,v)

represents mean-field connectivity from neurons in population
y = e,i with in-degree v to neurons in population x = e,i with
in-degree u, where p(u,v) represents the probability and jxy

the strength of such a connection. For the example considered
here, the connection probability depends only on the in-degree

FIG. 4. Dependence of firing rates on in-degree in a scale-free
network. (a) Raster plot and (b) firing rates as a function of in-degree
from a network of 5×104 neurons with a power-law distribution of
in-degrees. For the raster plot, 500 excitatory neurons were sampled
uniformly from the network and sorted so that in-degree increased
with “neuron index.”
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of the postsynaptic neuron so that p(u,v) = u/N . Note that
u ∼ O(N ) so that p(u,v) ∼ O(1) on average. Thus Eqs. (7)
become

u

N
[jxere − jxir i] + Fx = 0, x = e,i,

where rx = ∫
Q(v)rx(v)dv is the average firing rate of neurons

in population x = e,i. For balance to be achieved, this equation
must be satisfied simultaneously for all u > μ, which is not
possible. We conclude that the network in Fig. 4 violates the
balanced state.

Restoring balance in this example would require building
a family of networks indexed by N , where the connection
probability, p(u,v) ∼ O(1), depends on pre- and postsynaptic
in-degree, u and v, in such a way that Eqs. (7) are solvable
with rx(v) � 0. Balance could also be restored by allowing
feedforward input to depend on in-degree, Fx → Fx(u), in
such a way that Eqs. (7) are solvable. However, unlike the
matrix equation (3), the system of integral equations in (7)
is not generically solvable. Specifically, since Eq. (7) is an
integral equation of the first kind, for any connectivity kernels,
wxy(u,v), there are feedforward inputs, Fx(u), such that Eq. (7)
does not admit a solution [37].

VII. DISCUSSION

We used mean-field theory to analyze structured balanced
networks. Similar to the theory of homogeneous and spatially
extended balanced networks, firing rates in the limit of large
network size are determined by a linear equation [17–19,23].
The solvability of this equation determines the existence of the
balanced state in the thermodynamic limit.

We found that balance is promoted by architectures where
populations connect to themselves more strongly than they
connect to each other. Moreover, we showed that balance

promotes lower firing rates in neurons with a larger number
of inputs from the local network. This is explained by the
fact that recurrent input is net-inhibitory in balanced networks
[17–19]. This observation could explain the negative correla-
tion between firing rate and local population coupling recently
observed in cortical recordings [31].

Our mean-field analysis only relied on the assumption that
synaptic integration is linear and that firing rates are O(1)
as N increases. Thus, our findings are applicable to neuron
models with more detailed membrane dynamics, such as the
Fitzhugh-Nagumo model.

The imbalance created by heterogeneous in-degrees sup-
presses spiking in some neurons and increases rates in others
as N → ∞ (Fig. 2). Biological networks are, of course, finite
in size. At sufficiently small N , rates can be positive even if
Eq. (3) has no positive solution [as in Figs. 2(c) and 2(d)].
Firing rates in such finite-sized networks could potentially
be approximated numerically using a diffusion approximation
that yields a system of nonlinear fixed-point equations [19,34].

A parallel study reached the same conclusion that balance
can be broken by heterogeneous in-degrees, but balance
was recovered through an adaptation current [27–29]. This
resolution requires that adaptation currents are O(

√
N ) to

cancel excess synaptic input. This could be reasonable at the
finite sizes of biological networks.

Previous studies consider recurrent neuronal networks with
various types of heterogeneous connectivity structures [38,39],
but not in the balanced state. Future work will consider
the application of our balanced mean-field theory to these
alternative architectures.
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