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Weak additivity principle for current statistics in d dimensions
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The additivity principle (AP) allows one to compute the current distribution in many one-dimensional
nonequilibrium systems. Here we extend this conjecture to general d-dimensional driven diffusive systems,
and validate its predictions against both numerical simulations of rare events and microscopic exact calculations
of three paradigmatic models of diffusive transportin d = 2. Crucially, the existence of a structured current vector
field at the fluctuating level, coupled to the local mobility, turns out to be essential to understand current statistics
ind > 1. We prove that, when compared to the straightforward extension of the AP to high d, the so-called weak
AP always yields a better minimizer of the macroscopic fluctuation theory action for current statistics.
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Currents are the hallmark of nonequilibrium behavior.
Whenever a system is driven out of equilibrium by a boundary
gradient and/or external field, a current of a conjugate
observable (mass, energy, momentum, charge, etc.) appears
which reflects the associated entropy production [1]. The
function controlling current fluctuations seems to play a
role akin to the equilibrium free energy in nonequilibrium
situations [2,3], and hence the understanding of current
statistics in terms of microscopic dynamics has become one
of the main goals of nonequilibrium statistical mechanics, a
problem which has proven to be very difficult even in the
simplest situations. Indeed, up to now only a handful of exactly
solvable models are fully understood [3—6] and, despite some
exact results in the form of fluctuation theorems [7-21], the
overall picture remains puzzling and in need of a general,
first-principles approach. This deadlock has changed dramat-
ically with the recent formulation of macroscopic fluctuation
theory (MFT) [22-30], a unifying theoretical scheme to
study dynamic fluctuations in nonequilibrium systems, based
solely on the knowledge of a few transport coefficients easily
measurable in experiments, and applicable to a broad class of
nonequilibrium problems [31-49].

When applied to current statistics, MFT leads to a well-
defined but highly complex variational problem in space and
time for the optimal paths responsible for a given current
fluctuation, whose solution remains challenging in most
cases [24-28]. However, in an effort to explore clarifying
hypotheses, Bodineau and Derrida [50] (see also [3,4,28])
have conjectured an additivity principle (AP) which greatly
simplifies the MFT variational problem for currents in one
dimension (1D), leading to explicit quantitative predictions
and thus opening the door to a systematic way of computing
the current statistics in general nonequilibrium systems [2]. In
other words, the AP amounts to assuming within MFT that
the optimal path responsible for a given current fluctuation is
time independent. The validity of the AP has been confirmed
with high accuracy in rare-event simulations of 1D stochastic
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lattice gases [51-54], but the question remains, however, as to
how to generalize this conjecture to the more interesting case
ofd > 1.

Here we propose such a generalization, which we call weak
additivity principle (WAP), and demonstrate its validity and
accuracy by comparing our predictions with both numerical
simulations of rare events [55-59] and microscopic exact
calculations [16,60-63] in three paradigmatic models of
diffusive transport, namely, the Kipnis-Marchioro-Presutti
(KMP) model of heat conduction [64], the zero-range process
(ZRP) [65,66], and the random walk model [28,67], all
defined in d = 2. A main novelty of our conjecture when
compared to the straightforward generalization of the 1D AP
to d > 1 is the realization of the essential role played by
an optimal divergence-free current vector field in the MFT
variational problem for current statisticsind > 1. This optimal
current field turns out to be structured along the gradient
direction according to the local mobility, a possibility already
suggested in [16]. It is then easy to prove that the wAP
always yields a better minimizer of the MFT action for current
statistics.

We are interested in a broad class of d-dimensional driven
diffusive systems characterized by a conserved density field
p(r,t) which evolves according to the following fluctuating
hydrodynamics equation [3,4,24-28,53]:

ap(r,t)+ V - [=D(p)Vp(r,)) + £@r,0] =0, (1)

with r € A =[0,1]1%. The field j(r,t) = —D(p)Vp(r,t) +
&(r,r) is the fluctuating current, with local average given
by Fick’s or Fourier’s law with a diffusivity matrix D(p),
and &(r,r) is a Gaussian white noise with (&(r,7)) = 0, and
characterized by a mobility matrix 6 (p)

(E(r,)ER (1)) = L ™04, (0)8upd (x — X)8(1 — 1),

with L is the system size in natural units and «,f8 € [1,d].
This (conserved) noise term accounts for the many fast
microscopic degrees of freedom which are averaged out
in the coarse-graining procedure resulting in Eq. (1). The
diffusion and mobility transport matrices are diagonal, with
components D,(p) and o,(p), respectively, being related
via a local Einstein relation D(p) = 0 (08 (), with fy(p)
the equilibrium free energy of the system at hand. To
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completely define the problem, the evolution Eq. (1) must be
supplemented with appropriate boundary conditions, which
typically include an external gradient along a given direction
(say %), p(r,t)|x=0.1 = pr,r, Which drives the system out of
equilibrium for p; # pg, and periodic boundaries along all
other (d — 1) directions.

The probability of observing a given history {p(r,?),j(r,1)}§
of duration t for the density and current fields can be written
using path integrals as [28]

P({p.i}) ~ expt-L41.[p.jD),

with an action I;[p.j] = — [, dt [, dr L(p.j) and
L(p.j) = 1li+ D(p)Vpl- £(p)li + D(p)Vpl.

The matrix 3(p) is diagonal with components E,(p)=
aa’l(p), and the fields p(r,) and j(r,t) are coupled via the
continuity equation [see also Eq. (1)]

dp(r,t) +V - j(r,t) = 0. )

In any other case I;[p,j] = —oo. The probability P;(J) of
observing an averaged empirical current J, defined as

J= l/T dt/ drj(r,1), 3)
T Jo A

scales for long times as P;(J) ~ exp[+7LYG())], and the
current large deviation function (LDF) G(J) can be related
to I:[p,j] via a simple saddle-point calculation in the long-
time limit, G(J) = lim;_ oo 7" maxq, j; I:[p.jl, subject to
constraints (2) and (3) and the fixed boundary conditions.
The density and current fields solution of this variational
problem, denoted here as p(r,t;J) and j@r,t;J), are just the
optimal path the system follows to sustain a long-time current
fluctuation J.

This is a complex spatiotemporal variational problem
whose solution remains challenging in most cases [3,4,24—
28,31,32,50-53,68], so simplifying hypotheses are required.
Inspired by results from 1D [3,4,50-53], we now propose a
weak version of the additivity principle (or wAP in short)
which consists in two main hypotheses, namely, that (i) the
dominant paths responsible for a given current fluctuation
are indeed time independent [69], i.e., p(r) and j(r), and
(ii) the relevant fields exhibit structure only along the gradient
direction, so p(x) and j(x) in our convention. Clearly (ii)
is expected on physical grounds due to periodicity along
all directions orthogonal to the gradient. To make clear the
simplifying power of the wAP, note that (i) implies, via the
continuity Eq. (2), that the relevant current vector fields are
divergence-free, V - j(r) = 0, and this, together with (ii) above
and constraint (3), leads to current fields j(x) = (J,j(x)),
with

1
)= / dxj. (o), @)
0

and where we have decomposed J = (Jj,J.) along the
gradient (||) and all other, (d — 1) directions (L). The wAP
thus leads to the following simplified variational problem for
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the current LDF:

1
Gu) = = min [ dx Lu(p.jui D).
plx 0

L

2
[+ Dip)p ()P J @)
Lw(pu]L’J) - 201(,0) a2 2001(0) '

and subject to the constraints (4) and the imposed boundary
conditions. To explicitly take into account the constraints,
we now introduce (d — 1) Lagrange multipliers and de-
fine a modified functional L£P(p,ji;)) = Ly(p.jiid) —
vy - ji(x). Standard variational calculus thus leads to the
following differential equation for the optimal density profile
pw(x: J) [53]:

d
Di(p)*p'(x)* = J)* + Gl(p)[ZK -y vi‘”zoa(p)},

a=2

where K is an integration constant which guarantees the
correct boundary conditions [53]. The optimal current field
also follows as jyw(x;J) = [Jj,jw,1 (x; D] with

JO sl = vP0,(pw), @ € [2,d], (5)

with the Lagrange multipliers fixed via (4) to v(f) =

Ji“) / fol dx 04(py). Equation (5) shows that the optimal,
divergence-free current vector field exhibits structure along
the gradient direction in all orthogonal components, and this
structure is coupled to the optimal density profile via the
mobility transport coefficient.

This result should be compared with the straightforward
extension of the 1D-AP to high dimensions, which amounts
to assume, together with (i) and (ii) above, that the optimal
current field is constant across space and hence equals J due
to (3). This strong additivity principle (or sAP in short) leads
to an even simpler variational problem for the current LDF,

Gy(J) = —min, fol dx Ly(p;J), with
d (@)?
Ji
+ 9
Z 204(p)

a=2

[J) + Di(p)p'(x)]?
201(p)

Ls(p;)) =

whose optimal solution is denoted here as ps(x; J). Note that,
for J fixed, we expect pg(x;J) # pw(x;J) in general, and
the question remains as to which hypothesis (WAP or sAP)
yields a maximal G(J). Intuition suggests that the wAP should
offer a better solution as it includes additional degrees of
freedom that the system at hand can put at work to improve
its rate function. To confirm rigorously this argument, note
first that the optimal current field jw(x;J) is a functional
of the optimal density py(x;J) [see Eq. (5)], so we can
always write Gy (J) = Fw(pw;J), where we have defined
the functional Fo(y;J) = — fo] dx L,(Yr;)), with £ = w, s,
for any function ¥(x) obeying the boundary conditions.
Similarly, we may write G(J) = Fs(ps;J). Since py(x;J)
is the maximizer of the wAP action, clearly Fy(pw;J) =
Fo(Wr; J) V¥ (x) # pw(x; J). Next, we compare both function-
als Fy, s applied to the same profile p at fixed J, i.e., we define
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Aws = fw(ﬁb’J) - fb(pMJ) and find

d J<a>2
s- 4|
a=2

! 1 1
/ dx — — — > 0.
0 0a(ps) f() dx o4(ps)

The last inequality arises because fol dxo, Y(ps) >

[ fol dxaa(ﬁs)]’l, which is a particular instance of the reverse
Holder’s inequality [70]. In this way, Fy, (pw; J) = Fu(ps; J) =
Fs(ps; J) and hence G (J) = G(J). This proves that, when
compared to the strong AP, the weak AP always yields a
better minimizer of the macroscopic fluctuation theory action
for currents. This result therefore singles out the wAP as
the relevant simplifying hypothesis to study current statistics
in general d-dimensional systems. Interestingly, the previous
proof shows that both the sSAP and wAP yield the same
result only for constant mobility, o, (p) = 0, Ve, or for current
fluctuations parallel to the gradient direction, J = (J;,J1 = 0).
This observation helps in making sense of previous, seemingly
contradictory results [71-73].

Our aim now is to verify the wAP predictions against
both numerical simulations of rare events and microscopic
exact calculations of various paradigmatic models of diffusive
transport in d = 2. Our first model of choice is the widely
studied ZRP [65,66], a model of interacting particles amenable
to exact computations due to the factorization property of its
stationary measure. The ZRP is defined on a d-dimensional
lattice of linear size L whose sites i may be occupied by an
arbitrary number of particles n; € N which jump to randomly
chosen neighbors at a rate w,(n;) = hy f(n;), with f(n;) the
interaction function (which depends only on the population of
the departure site) and A, the (constant) hopping rate along the
« direction, o € [1,d]. Different interaction functions model
varying physical situations, but for concreteness we focus here
on a constant f(n) = 1, which mimics an effective attraction
between particles on each site [65]. When coupled to particle
reservoirs at the left and right boundaries at densities p; and
PR, respectively [65,66], with p; # pg, the so-defined ZRP
sustains a net average current of particles (J) = £h (pL —
Pr)/I(1 + pr)(1 + pg)] described by Fick’s law with a
diffusivity matrix with components D,(p) = hy /(1 + p)>.
Moreover, the mobility coefficient has components o,(p) =
2hyp/(1 4 p), and together these transport coefficients can
be used to solve numerically the MFT problem for currents
under the wAP conjecture (see [62] for the 1D case). We
compare these theoretical predictions with exact results for
the ZRP current LDF and the associated optimal density
profiles, which can be obtained within the so-called quantum
Hamiltonian formalism for the master equation [16,60-62].
Within this picture, the current LDF is obtained from the
lowest eigenvalue of a tilted Hamiltonian, a spectral problem
whichreducestoa L x L system of linear equations due to the
factorization property of ZRP [16,60-62] (see Appendix A in
the Supplemental Material [74]). Optimal density profiles are
then related to the left and right eigenvectors associated to the
lowest eigenvalue [52,53,59]. Figure 1 shows our results for
G(J) (top) and p(x;J) [bottom, after subtracting the steady-
state profile p,,(x) [75]] for parameters p;, = 1, pg = 0.1, and
isotropic hopping rates h, = 1/2 V. The agreement between
WAP predictions and exact matrix computations for L = 103
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FIG. 1. Top: Current LDF for the isotropic ZRP vs |J| for different
angles ¢ = tan™! (Jy/Jy). Inset: G(J) from MFT under wAP and sAP.
Clearly, G(J) > G4(J). Bottom: Excess optimal density profiles for
different |J| and ¢. Symbols stand for exact matrix computations for
L = 10%, while solid (dashed) lines represent wAP (sAP) predictions.

is excellent in all cases, while sAP predictions fail outside
the gradient direction, the discrepancy being maximal for
orthogonal fluctuations and increasing with |J|. Appendix B
in the Supplemental Material [74] presents similar data for
an anisotropic ZRP, as well as for a fluid of random walkers,
and in all cases the agreement between wAP predictions and
matrix data for L = 10° is remarkable.

The previous results are restricted to transport models with
a factorizable stationary measure [65]. We now focus on the
more complex 2D-KMP model of heat transport [64], defined
on a square lattice of linear size L whose sites i contain
certain amount of energy p; € Ry. Dynamics proceeds via
random energy exchanges between neighbors, such that the
pair energy is conserved, and we couple the system to two
thermal baths at the left and right ends at temperatures 7} g,
respectively [53,64], with periodic boundary conditions in
the y direction. At the macroscopic level this model obeys
Fourier’s law with a scalar conductivity D(p) = 1/2 and a
mobility o (p) = p2, and for T; # Ty it develops a linear
temperature profile p,y(x) = Ty + x (T — Tp) with anonzero
average current (J) = X(Tp — Tg)/2. For this nonfactorizable
model the quantum Hamiltonian matrix approach does not
yield useful results. Instead, we measure the full current
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FIG. 2. Top: Legendre transform of the current LDF for the KMP
model vs ¢ for different values of 7 = |z| and varying L. Convergence
to the wAP prediction as L increases is apparent. Bottom: Excess
optimal density profiles for different z and ¢ as measured for L = 20.
Symbols stand for cloning simulation results, while solid (dashed)
lines represent wAP (sAP) predictions.

statistics using advanced cloning Monte Carlo simulations
particularly designed for this task [15,52,53,55-58]. This
method, which works well for not too large L, yields the
Legendre-Fenchel transform of the current LDF, p(d) =
maxy[G(J) + A - J]. Figure 2 shows the measured w(A) for
T, =2, T = 1 and different L, as a function of the current
angle ¢ for different values of |z|, with z= A1 + € and € =
%(TR_ - T, 1, corresponding to a broad range of current
fluctuations [15]. While the sAP predicts a ¢-independent
() for fixed |z|, we observe a double-bump structure in
¢ as predicted by wAP [76]. Moreover, finite-size data clearly
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converge to the wAP prediction as L increases, while sAP
only yields the correct prediction for ¢ = 0,7, as expected.
Note that similar finite-size corrections are observed for the
ZRP (see Appendix B in the Supplemental Material [74]).
Data for optimal density profiles also fit nicely the theoretical
wAP curves, overall demonstrating the superior predictive
power of the weak additivity principle presented in this Rapid
Communication.

In summary, we have extended the additivity principle to
general d-dimensional driven diffusive systems, demonstrat-
ing the key role played by a structured current field (coupled
to the local density via the mobility coefficient) to understand
current statistics ind > 1. Predictions from the so-called weak
additivity principle have been tested against both exact matrix
results and simulations of rare events in different paradigmatic
models of transport in d = 2, and a remarkable agreement
is found in all cases. Moreover, we have also proven that
the wAP (and not the sAP) offers a better minimizer of
the MFT action for currents, except for current fluctuations
along the gradient direction, where both wAP and sAP yield
equivalent results. This explains previous apparent validations
of the sAP in d-dimensional systems [71-73], as these works
focus on a scalar current parallel to the gradient. However, in
the general vectorial-current case the role of the structured,
divergence-free optimal current field associated to the wAP
cannot be overlooked. Indeed, our general findings agree with
very recent microscopic results for the ZRP which highlight
the importance of the local structure of the current field in this
model [77]. An interesting issue for future study concerns
the stability of the wAP solution against space and time
perturbations in d-dimensional boundary driven systems [78].
Finally, we mention that additivity violations are known to
happen in 1D periodic systems via a dynamic phase transition
to a traveling-wave phase with broken symmetries [25,28,31—
33,68,79-81]. The natural question of course concerns the
nature of this transition for d > 1. We anticipate that a similar
spontaneous symmetry-breaking phenomenon exists at the
fluctuation level in d dimensions, for which a form of weak
additivity in terms of a structured current field also plays a
crucial role [76].

We thank R. J. Harris, N. Tizén, and R. Villavicencio-
Sanchez for useful discussions. Financial support from
Spanish project FIS2013-43201-P (MINECO), NSF Grant
No. DMR1104500, Italian Research Funding Agency (MIUR)
through FIRB project Grant No. RBFR10N90W, Italian
INdAM Francesco Severi, University of Granada, Junta de
Andalucia Project No. P09-FQM4682, and GENIL PYR-
2014-13 project is acknowledged.

[1] S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics
(Dover, New York, 1984).

[2] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[3] B. Derrida, Non-equilibrium steady states: Fluctuations and
large deviations of the density and of the current, J. Stat. Mech.
(2007) P07023.

[4] T. Bodineau and B. Derrida, Current large deviations for
asymmetric exclusion processes with open boundaries, J. Stat.
Phys. 123, 277 (2006).

[5] M. Gorissen, A. Lazarescu, K. Mallick, and C.
Vanderzande, Exact Current Statistics of the ASEP
with Open Boundaries, Phys. Rev. Lett. 109, 170601

(2012).

040103-4


http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023
http://dx.doi.org/10.1007/s10955-006-9048-4
http://dx.doi.org/10.1007/s10955-006-9048-4
http://dx.doi.org/10.1007/s10955-006-9048-4
http://dx.doi.org/10.1007/s10955-006-9048-4
http://dx.doi.org/10.1103/PhysRevLett.109.170601
http://dx.doi.org/10.1103/PhysRevLett.109.170601
http://dx.doi.org/10.1103/PhysRevLett.109.170601
http://dx.doi.org/10.1103/PhysRevLett.109.170601

WEAK ADDITIVITY PRINCIPLE FOR CURRENT ...

[6] A.Lazarescu, The physicist’s companion to current fluctuations:
One-dimensional bulk-driven lattice gases, J. Phys. A: Math.
Theor. 48, 503001 (2015).

[7] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of
Second Law Violations in Shearing Steady States, Phys. Rev.
Lett. 71, 2401 (1993).

[8] G. Gallavotti and E. D. G. Cohen, Dynamical Ensembles in
Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74, 2694
(1995).

[9] J. Kurchan, Fluctuation theorem for stochastic dynamics, J.
Phys. A 31, 3719 (1998).

[10] J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type sym-
metry in the large deviation functional for stochastic dynamics,
J. Stat. Phys. 95, 333 (1999).

[11] C.Jarzynski, Nonequilibrium Equality for Free-Eenergy Differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[12] G. E. Crooks, Nonequilibrium measurements of free energy
differences for microscopically reversible Markovian systems,
J. Stat. Phys. 90, 1481 (1998).

[13] T. Hatano and S. I. Sasa, Steady-State Thermodynamics of
Langevin Systems, Phys. Rev. Lett. 86, 3463 (2001).

[14] U. Seifert, Stochastic thermodynamics, fluctuation theorems,
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[15] P. I. Hurtado, C. P. Espigares, J. J. del Pozo, and P. L. Garrido,
Symmetries in fluctuations far from equilibrium, Proc. Natl.
Acad. Sci. USA 108, 7704 (2011).

[16] R. Villavicencio-Sanchez, R. J. Harris, and H. Touchette,
Fluctuation relations for anisotropic systems, Europhys. Lett.
105, 30009 (2014).

[17] N. Kumar, H. Soni, S. Ramaswamy, and A. K. Sood, Anisotropic
isometric fluctuation relations in experiment and theory on a
self-propelled rod, Phys. Rev. E 91, 030102 (2015).

[18] D. Manzano and P. I. Hurtado, Symmetry and the thermody-
namics of currents in open quantum systems, Phys. Rev. B 90,
125138 (2014).

[19] D. Andrieux and P. Gaspard, A fluctuation theorem for currents
and non-linear response coefficients, J. Stat. Mech. (2007)
P02006.

[20] D. Lacoste and P. Gaspard, Isometric Fluctuation Relations for
Equilibrium States with Broken Symmetry, Phys. Rev. Lett. 113,
240602 (2014).

[21] P. Gaspard, Multivariate fluctuation relations for currents, New
J. Phys. 15, 115014 (2013).

[22] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Fluctuations in Stationary Nonequilibrium States
of Irreversible Processes, Phys. Rev. Lett. 87, 040601 (2001).

[23] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory for stationary non-
equilibrium states, J. Stat. Phys. 107, 635 (2002).

[24] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Current Fluctuations in Stochastic Lattice Gases, Phys.
Rev. Lett. 94, 030601 (2005).

[25] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Non equilibrium current fluctuations in stochastic
lattice gases, J. Stat. Phys. 123, 237 (2006).

[26] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Stochastic interacting particle systems out of
equilibrium, J. Stat. Mech. (2007) P07014.

[27] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Towards a nonequilibrium thermodynamics: A

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 93, 040103(R) (2016)

self-contained macroscopic description of driven diffusive sys-
tems, J. Stat. Phys. 135, 857 (2009).

[28] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87,
593 (2015).

[29] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Thermodynamic transformations of nonequilibrium
states, J. Stat. Phys. 149, 773 (2012).

[30] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and
C. Landim, Clausius Inequality and Optimality of Quasistatic
Transformations for Nonequilibrium Stationary States, Phys.
Rev. Lett. 110, 020601 (2013).

[31] P. I. Hurtado and P. L. Garrido, Spontaneous Symmetry
Breaking at the Fluctuating Level, Phys. Rev. Lett. 107, 180601
(2011).

[32] C. Pérez-Espigares, P. L. Garrido, and P. I. Hurtado, Dynamical
phase transition for current statistics in a simple driven diffusive
system, Phys. Rev. E 87, 032115 (2013).

[33] R. L. Jack, I. R. Thompson, and P. Sollich, Hyperuniformity
and Phase Separation in Biased Ensembles of Trajectories for
Diffusive Systems, Phys. Rev. Lett. 114, 060601 (2015).

[34] A. Prados, A. Lasanta, and P. I. Hurtado, Large Fluctuations
in Driven Dissipative Media, Phys. Rev. Lett. 107, 140601
(2011).

[35] A. Prados, A. Lasanta, and P. I. Hurtado, Nonlinear driven
diffusive systems with dissipation: Fluctuating hydrodynamics,
Phys. Rev. E 86, 031134 (2012).

[36] P. 1. Hurtado, A. Lasanta, and A. Prados, Typical and rare fluc-
tuations in nonlinear driven diffusive systems with dissipation,
Phys. Rev. E 88, 022110 (2013).

[37] T. Bodineau and M. Lagouge, Current large deviations in a
driven dissipative model, J. Stat. Phys. 139, 201 (2010).

[38] P. L. Krapivsky, K. Mallick, and T. Sadhu, Large Devia-
tions in Single File Diffusion, Phys. Rev. Lett. 113, 078101
(2014).

[39] B. Meerson and S. Redner, Large fluctuations in diffusion-
controlled absorption, J. Stat. Mech. (2014) POS008.

[40] P. L. Krapivsky, K. Mallick, and T. Sadhu, Melting of an Ising
quadrant, J. Phys. A: Math. Theor. 48, 015005 (2015).

[41] F. Bouchet, K. Gawedzki, and C. Nardini, Perturbative cal-
culation of quasi-potential in non-equilibrium diffusions: A
mean-field example, J. Stat. Phys. (2016).

[42] J. Tailleur, J. Kurchan, and V. Lecomte, Mapping Nonequilib-
rium onto Equilibrium: The Macroscopic Fluctuations of Simple
Transport Models, Phys. Rev. Lett. 99, 150602 (2007).

[43] C. Appert-Rolland, B. Derrida, V. Lecomte, and F. Van Wijland,
Universal cumulants of the current in diffusive systems on a
ring, Phys. Rev. E 78, 021122 (2008).

[44] B. Derrida and A. Gerschenfeld, Current fluctuations in one
dimensional diffusive systems with a step initial density profile,
J. Stat. Phys. 137, 978 (2009).

[45] P. L. Krapivsky and B. Meerson, Fluctuations of current in
nonstationary diffusive lattice gases, Phys. Rev. E 86, 031106
(2012).

[46] B. Meerson, A. Vilenkin, and P. L. Krapivsky, Survival of a
static target in a gas of diffusing particles with exclusion, Phys.
Rev. E 90, 022120 (2014).

[47] B. Meerson and P. V. Sasorov, Extreme current fluctuations in
a nonstationary stochastic heat flow, J. Stat. Mech. Theory Exp.
(2013) P12011.

040103-5


http://dx.doi.org/10.1088/1751-8113/48/50/503001
http://dx.doi.org/10.1088/1751-8113/48/50/503001
http://dx.doi.org/10.1088/1751-8113/48/50/503001
http://dx.doi.org/10.1088/1751-8113/48/50/503001
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1073/pnas.1013209108
http://dx.doi.org/10.1073/pnas.1013209108
http://dx.doi.org/10.1073/pnas.1013209108
http://dx.doi.org/10.1073/pnas.1013209108
http://dx.doi.org/10.1209/0295-5075/105/30009
http://dx.doi.org/10.1209/0295-5075/105/30009
http://dx.doi.org/10.1209/0295-5075/105/30009
http://dx.doi.org/10.1209/0295-5075/105/30009
http://dx.doi.org/10.1103/PhysRevE.91.030102
http://dx.doi.org/10.1103/PhysRevE.91.030102
http://dx.doi.org/10.1103/PhysRevE.91.030102
http://dx.doi.org/10.1103/PhysRevE.91.030102
http://dx.doi.org/10.1103/PhysRevB.90.125138
http://dx.doi.org/10.1103/PhysRevB.90.125138
http://dx.doi.org/10.1103/PhysRevB.90.125138
http://dx.doi.org/10.1103/PhysRevB.90.125138
http://dx.doi.org/10.1088/1742-5468/2007/02/P02006
http://dx.doi.org/10.1088/1742-5468/2007/02/P02006
http://dx.doi.org/10.1088/1742-5468/2007/02/P02006
http://dx.doi.org/10.1103/PhysRevLett.113.240602
http://dx.doi.org/10.1103/PhysRevLett.113.240602
http://dx.doi.org/10.1103/PhysRevLett.113.240602
http://dx.doi.org/10.1103/PhysRevLett.113.240602
http://dx.doi.org/10.1088/1367-2630/15/11/115014
http://dx.doi.org/10.1088/1367-2630/15/11/115014
http://dx.doi.org/10.1088/1367-2630/15/11/115014
http://dx.doi.org/10.1088/1367-2630/15/11/115014
http://dx.doi.org/10.1103/PhysRevLett.87.040601
http://dx.doi.org/10.1103/PhysRevLett.87.040601
http://dx.doi.org/10.1103/PhysRevLett.87.040601
http://dx.doi.org/10.1103/PhysRevLett.87.040601
http://dx.doi.org/10.1023/A:1014525911391
http://dx.doi.org/10.1023/A:1014525911391
http://dx.doi.org/10.1023/A:1014525911391
http://dx.doi.org/10.1023/A:1014525911391
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1103/PhysRevLett.94.030601
http://dx.doi.org/10.1007/s10955-006-9056-4
http://dx.doi.org/10.1007/s10955-006-9056-4
http://dx.doi.org/10.1007/s10955-006-9056-4
http://dx.doi.org/10.1007/s10955-006-9056-4
http://dx.doi.org/10.1088/1742-5468/2007/07/P07014
http://dx.doi.org/10.1088/1742-5468/2007/07/P07014
http://dx.doi.org/10.1088/1742-5468/2007/07/P07014
http://dx.doi.org/10.1007/s10955-008-9670-4
http://dx.doi.org/10.1007/s10955-008-9670-4
http://dx.doi.org/10.1007/s10955-008-9670-4
http://dx.doi.org/10.1007/s10955-008-9670-4
http://dx.doi.org/10.1103/RevModPhys.87.593
http://dx.doi.org/10.1103/RevModPhys.87.593
http://dx.doi.org/10.1103/RevModPhys.87.593
http://dx.doi.org/10.1103/RevModPhys.87.593
http://dx.doi.org/10.1007/s10955-012-0624-5
http://dx.doi.org/10.1007/s10955-012-0624-5
http://dx.doi.org/10.1007/s10955-012-0624-5
http://dx.doi.org/10.1007/s10955-012-0624-5
http://dx.doi.org/10.1103/PhysRevLett.110.020601
http://dx.doi.org/10.1103/PhysRevLett.110.020601
http://dx.doi.org/10.1103/PhysRevLett.110.020601
http://dx.doi.org/10.1103/PhysRevLett.110.020601
http://dx.doi.org/10.1103/PhysRevLett.107.180601
http://dx.doi.org/10.1103/PhysRevLett.107.180601
http://dx.doi.org/10.1103/PhysRevLett.107.180601
http://dx.doi.org/10.1103/PhysRevLett.107.180601
http://dx.doi.org/10.1103/PhysRevE.87.032115
http://dx.doi.org/10.1103/PhysRevE.87.032115
http://dx.doi.org/10.1103/PhysRevE.87.032115
http://dx.doi.org/10.1103/PhysRevE.87.032115
http://dx.doi.org/10.1103/PhysRevLett.114.060601
http://dx.doi.org/10.1103/PhysRevLett.114.060601
http://dx.doi.org/10.1103/PhysRevLett.114.060601
http://dx.doi.org/10.1103/PhysRevLett.114.060601
http://dx.doi.org/10.1103/PhysRevLett.107.140601
http://dx.doi.org/10.1103/PhysRevLett.107.140601
http://dx.doi.org/10.1103/PhysRevLett.107.140601
http://dx.doi.org/10.1103/PhysRevLett.107.140601
http://dx.doi.org/10.1103/PhysRevE.86.031134
http://dx.doi.org/10.1103/PhysRevE.86.031134
http://dx.doi.org/10.1103/PhysRevE.86.031134
http://dx.doi.org/10.1103/PhysRevE.86.031134
http://dx.doi.org/10.1103/PhysRevE.88.022110
http://dx.doi.org/10.1103/PhysRevE.88.022110
http://dx.doi.org/10.1103/PhysRevE.88.022110
http://dx.doi.org/10.1103/PhysRevE.88.022110
http://dx.doi.org/10.1007/s10955-010-9934-7
http://dx.doi.org/10.1007/s10955-010-9934-7
http://dx.doi.org/10.1007/s10955-010-9934-7
http://dx.doi.org/10.1007/s10955-010-9934-7
http://dx.doi.org/10.1103/PhysRevLett.113.078101
http://dx.doi.org/10.1103/PhysRevLett.113.078101
http://dx.doi.org/10.1103/PhysRevLett.113.078101
http://dx.doi.org/10.1103/PhysRevLett.113.078101
http://dx.doi.org/10.1088/1742-5468/2014/8/P08008
http://dx.doi.org/10.1088/1742-5468/2014/8/P08008
http://dx.doi.org/10.1088/1742-5468/2014/8/P08008
http://dx.doi.org/10.1088/1751-8113/48/1/015005
http://dx.doi.org/10.1088/1751-8113/48/1/015005
http://dx.doi.org/10.1088/1751-8113/48/1/015005
http://dx.doi.org/10.1088/1751-8113/48/1/015005
http://dx.doi.org/10.1007/s10955-016-1503-2
http://dx.doi.org/10.1007/s10955-016-1503-2
http://dx.doi.org/10.1103/PhysRevLett.99.150602
http://dx.doi.org/10.1103/PhysRevLett.99.150602
http://dx.doi.org/10.1103/PhysRevLett.99.150602
http://dx.doi.org/10.1103/PhysRevLett.99.150602
http://dx.doi.org/10.1103/PhysRevE.78.021122
http://dx.doi.org/10.1103/PhysRevE.78.021122
http://dx.doi.org/10.1103/PhysRevE.78.021122
http://dx.doi.org/10.1103/PhysRevE.78.021122
http://dx.doi.org/10.1007/s10955-009-9830-1
http://dx.doi.org/10.1007/s10955-009-9830-1
http://dx.doi.org/10.1007/s10955-009-9830-1
http://dx.doi.org/10.1007/s10955-009-9830-1
http://dx.doi.org/10.1103/PhysRevE.86.031106
http://dx.doi.org/10.1103/PhysRevE.86.031106
http://dx.doi.org/10.1103/PhysRevE.86.031106
http://dx.doi.org/10.1103/PhysRevE.86.031106
http://dx.doi.org/10.1103/PhysRevE.90.022120
http://dx.doi.org/10.1103/PhysRevE.90.022120
http://dx.doi.org/10.1103/PhysRevE.90.022120
http://dx.doi.org/10.1103/PhysRevE.90.022120
http://dx.doi.org/10.1088/1742-5468/2013/12/P12011
http://dx.doi.org/10.1088/1742-5468/2013/12/P12011
http://dx.doi.org/10.1088/1742-5468/2013/12/P12011

PEREZ-ESPIGARES, GARRIDO, AND HURTADO

[48] B. Meerson and P. V. Sasorov, Extreme current fluctuations in
lattice gases: Beyond nonequilibrium steady states, Phys. Rev.
E 89, 010101 (2014).

[49] P.1. Hurtado and P. L. Krapivsky, Compact waves in microscopic
nonlinear diffusion, Phys. Rev. E 85, 060103(R) (2012).

[50] T. Bodineau and B. Derrida, Current Fluctuations in Nonequi-
librium Diffusive Systems: An Additivity Principle, Phys. Rev.
Lett. 92, 180601 (2004).

[51] P. I. Hurtado and P. L. Garrido, Test of the Additivity Principle
for Current Fluctuations in a Model of Heat Conduction, Phys.
Rev. Lett. 102, 250601 (2009).

[52] P. I. Hurtado and P. L. Garrido, Large fluctuations of the
macroscopic current in diffusive systems: A numerical test of
the additivity principle, Phys. Rev. E 81, 041102 (2010).

[53] P. I. Hurtado, C. Pérez-Espigares, J. J. del Pozo, and P. L. Gar-
rido, Thermodynamics of currents in nonequilibrium diffusive
systems: Theory and simulation, J. Stat. Phys. 154, 214 (2014).

[54] M. Gorissen and C. Vanderzande, Current fluctuations in the
weakly asymmetric exclusion process with open boundaries,
Phys. Rev. E 86, 051114 (2012).

[55] C. Giardina, J. Kurchan and L. Peliti, Direct Evaluation of Large
Deviation Functions, Phys. Rev. Lett. 96, 120603 (2006).

[56] V. Lecomte and J. Tailleur, A numerical approach to large
deviations in continuous-time, J. Stat. Mech. (2007) P03004.

[57] V. Lecomte and J. Tailleur, Simulation of Large Deviation
Functions using Population Dynamics, AIP Conf. Proc. No.
1091 (AIP, Meliville, NY, 2009), p. 212.

[58] C. Giardina, J. Kurchan, V. Lecomte and J. Tailleur, Simulating
rare events in dynamical processes, J. Stat. Phys. 145, 787
(2011).

[59] P.1. Hurtado and P. L. Garrido, Current fluctuations and statistics
during a large deviation event in an exactly-solvable transport
model, J. Stat. Mech. (2009) P02032.

[60] R. J. Harris and G. M. Schiitz, Fluctuation theorems for
stochastic dynamics, J. Stat. Mech. (2007) P07020.

[61] G. M. Schiitz, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, London,
2001), Vol. 19.

[62] O. Hirschberg, D. Mukamel, and G. M. Schiitz, Density profiles,
dynamics, and condensation in the ZRP conditioned on an
atypical current, J. Stat. Mech. (2015) P11023.

[63] C. Pérez-Espigares, F. Redig, and C. Giardina, The spatial
fluctuation theorem, J. Phys. A: Math. Gen. 48, 35FT01 (2015).

[64] C. Kipnis, C. Marchioro, and E. Presutti, Heat flow in an exactly
solvable model, J. Stat. Phys. 27, 65 (1982).

[65] M. R. Evans and T. Hanney, Nonequilibrium statistical mechan-
ics of the zero-range process and related models, J. Phys. A:
Math. Gen. 38, R195 (2005).

[66] E. Levine, D. Mukamel, and G. M. Schiitz, Zero-range process
with open boundaries, J. Stat. Phys. 120, 759 (2005).

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 93, 040103(R) (2016)

[67] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer-Verlag, Berlin/Heidelberg, 1991).

[68] T. Bodineau and B. Derrida, Distribution of current in nonequi-
librium diffusive systems and phase transitions, Phys. Rev. E 72,
066110 (2005).

[69] The physical picture behind this hypothesis corresponds to a
system that, after a short transient time at the beginning of the
large deviation event (microscopic in the diffusive time scale ),
settles into a time-independent state with structured density and
current fields (which can be different from the stationary ones)
such that the empirical, space-and-time-averaged current equals
J. This behavior is expected to minimize the cost of a fluctuation
at least for moderate deviations from the average behavior.

[70] G. H. Hardy, J. E. Littlewood, and G. Pdlya, Inequalities
(Cambridge University Press, Cambridge, UK, 1934).

[71] K. Saito and A. Dhar, Additivity Principle in High-Dimensional
Deterministic Systems, Phys. Rev. Lett. 107, 250601 (2011).

[72] E. Akkermans, T. Bodineau, B. Derrida, and O. Shpielberg,
Universal Current Fluctuations in the Symmetric Exclusion
Process and Other Diffusive Systems, Europhys. Lett. 103,
20001 (2013).

[73] T. Becker, K. Nelissen, and B. Cleuren, Current fluctuations in
boundary driven diffusive systems in different dimensions: A
numerical study, New J. Phys. 17, 055023 (2015).

[74] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.93.040103 for a brief description of the
Quantum Hamiltonian formalism for the current statistics of
the 2D-ZRP, as well as for some additional results on the ZRP,
both in the isotropic and anisotropic cases, and for the random
walk model.

[75] The ZRP steady-state density profile is p,, (x) = [ (1 + pr) —
x(pr — pr)1/[1 + pr + x(or — pr)] in this case.

[76] N. Tizén, C. Pérez-Espigares, P. L. Garrido, and P. I. Hurtado
(unpublished).

[77] R. Villavicencio and R. J. Harris, Local structure of current
fluctuations in diffusive systems beyond one dimension, Phys.
Rev. E 93, 032134 (2016).

[78] O. Shpielberg and E. Akkermans, Le Chatelier principle for
out of equilibrium and boundary driven systems: Application to
dynamical phase transitions, arXiv:1510.05254.

[79] G. M. Schiitz. Exactly Solvable Models for Many-Body Systems
Far from Equilibrium, Phase Transitions and Critical Phenom-
ena Vol. 19 (Academic, New York, 2001), pp. 1-251.

[80] P. Lloyd, A. Sudbury, and P. Donnelly, Quantum operators in
classical probability theory: I. Quantum spin techniques and the
exclusion model of diffusion, Stoch. Processes Appl. 61, 205
(1996).

[81] R. J. Harris, A. Rakos, and G. M. Schiitz, Current fluctuations
in the zero-range process with open boundaries, J. Stat. Mech.
(2005) P0O8003.

040103-6


http://dx.doi.org/10.1103/PhysRevE.89.010101
http://dx.doi.org/10.1103/PhysRevE.89.010101
http://dx.doi.org/10.1103/PhysRevE.89.010101
http://dx.doi.org/10.1103/PhysRevE.89.010101
http://dx.doi.org/10.1103/PhysRevE.85.060103
http://dx.doi.org/10.1103/PhysRevE.85.060103
http://dx.doi.org/10.1103/PhysRevE.85.060103
http://dx.doi.org/10.1103/PhysRevE.85.060103
http://dx.doi.org/10.1103/PhysRevLett.92.180601
http://dx.doi.org/10.1103/PhysRevLett.92.180601
http://dx.doi.org/10.1103/PhysRevLett.92.180601
http://dx.doi.org/10.1103/PhysRevLett.92.180601
http://dx.doi.org/10.1103/PhysRevLett.102.250601
http://dx.doi.org/10.1103/PhysRevLett.102.250601
http://dx.doi.org/10.1103/PhysRevLett.102.250601
http://dx.doi.org/10.1103/PhysRevLett.102.250601
http://dx.doi.org/10.1103/PhysRevE.81.041102
http://dx.doi.org/10.1103/PhysRevE.81.041102
http://dx.doi.org/10.1103/PhysRevE.81.041102
http://dx.doi.org/10.1103/PhysRevE.81.041102
http://dx.doi.org/10.1007/s10955-013-0894-6
http://dx.doi.org/10.1007/s10955-013-0894-6
http://dx.doi.org/10.1007/s10955-013-0894-6
http://dx.doi.org/10.1007/s10955-013-0894-6
http://dx.doi.org/10.1103/PhysRevE.86.051114
http://dx.doi.org/10.1103/PhysRevE.86.051114
http://dx.doi.org/10.1103/PhysRevE.86.051114
http://dx.doi.org/10.1103/PhysRevE.86.051114
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1088/1742-5468/2007/03/P03004
http://dx.doi.org/10.1088/1742-5468/2007/03/P03004
http://dx.doi.org/10.1088/1742-5468/2007/03/P03004
http://dx.doi.org/10.1007/s10955-011-0350-4
http://dx.doi.org/10.1007/s10955-011-0350-4
http://dx.doi.org/10.1007/s10955-011-0350-4
http://dx.doi.org/10.1007/s10955-011-0350-4
http://dx.doi.org/10.1088/1742-5468/2009/02/P02032
http://dx.doi.org/10.1088/1742-5468/2009/02/P02032
http://dx.doi.org/10.1088/1742-5468/2009/02/P02032
http://dx.doi.org/10.1088/1742-5468/2007/07/P07020
http://dx.doi.org/10.1088/1742-5468/2007/07/P07020
http://dx.doi.org/10.1088/1742-5468/2007/07/P07020
http://dx.doi.org/10.1088/1742-5468/2015/11/P11023
http://dx.doi.org/10.1088/1742-5468/2015/11/P11023
http://dx.doi.org/10.1088/1742-5468/2015/11/P11023
http://dx.doi.org/10.1088/1751-8113/48/35/35FT01
http://dx.doi.org/10.1088/1751-8113/48/35/35FT01
http://dx.doi.org/10.1088/1751-8113/48/35/35FT01
http://dx.doi.org/10.1088/1751-8113/48/35/35FT01
http://dx.doi.org/10.1007/BF01011740
http://dx.doi.org/10.1007/BF01011740
http://dx.doi.org/10.1007/BF01011740
http://dx.doi.org/10.1007/BF01011740
http://dx.doi.org/10.1088/0305-4470/38/19/R01
http://dx.doi.org/10.1088/0305-4470/38/19/R01
http://dx.doi.org/10.1088/0305-4470/38/19/R01
http://dx.doi.org/10.1088/0305-4470/38/19/R01
http://dx.doi.org/10.1007/s10955-005-7000-7
http://dx.doi.org/10.1007/s10955-005-7000-7
http://dx.doi.org/10.1007/s10955-005-7000-7
http://dx.doi.org/10.1007/s10955-005-7000-7
http://dx.doi.org/10.1103/PhysRevE.72.066110
http://dx.doi.org/10.1103/PhysRevE.72.066110
http://dx.doi.org/10.1103/PhysRevE.72.066110
http://dx.doi.org/10.1103/PhysRevE.72.066110
http://dx.doi.org/10.1103/PhysRevLett.107.250601
http://dx.doi.org/10.1103/PhysRevLett.107.250601
http://dx.doi.org/10.1103/PhysRevLett.107.250601
http://dx.doi.org/10.1103/PhysRevLett.107.250601
http://dx.doi.org/10.1209/0295-5075/103/20001
http://dx.doi.org/10.1209/0295-5075/103/20001
http://dx.doi.org/10.1209/0295-5075/103/20001
http://dx.doi.org/10.1209/0295-5075/103/20001
http://dx.doi.org/10.1088/1367-2630/17/5/055023
http://dx.doi.org/10.1088/1367-2630/17/5/055023
http://dx.doi.org/10.1088/1367-2630/17/5/055023
http://dx.doi.org/10.1088/1367-2630/17/5/055023
http://link.aps.org/supplemental/10.1103/PhysRevE.93.040103
http://dx.doi.org/10.1103/PhysRevE.93.032134
http://dx.doi.org/10.1103/PhysRevE.93.032134
http://dx.doi.org/10.1103/PhysRevE.93.032134
http://dx.doi.org/10.1103/PhysRevE.93.032134
http://arxiv.org/abs/arXiv:1510.05254
http://dx.doi.org/10.1016/0304-4149(96)84552-2
http://dx.doi.org/10.1016/0304-4149(96)84552-2
http://dx.doi.org/10.1016/0304-4149(96)84552-2
http://dx.doi.org/10.1016/0304-4149(96)84552-2
http://dx.doi.org/10.1088/1742-5468/2005/08/P08003
http://dx.doi.org/10.1088/1742-5468/2005/08/P08003
http://dx.doi.org/10.1088/1742-5468/2005/08/P08003



