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incompressible and compressible flows

L. M. Yang,1 C. Shu,2,* and Y. Wang2

1Department of Aerodynamics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,
Yudao Street, Nanjing 210016, Jiangsu, China

2Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
(Received 21 November 2015; revised manuscript received 24 February 2016; published 23 March 2016)

In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous
incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which
was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611
(2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity
domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the
explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of
circular function-based GKS for viscous flows are still complicated, which may not be easy for the application
by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated
formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of
moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution
functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle,
which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that
the present scheme can provide accurate numerical results for incompressible and compressible viscous flows
with roughly the same computational cost as that needed by the Roe scheme.
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I. INTRODUCTION

In recent years, as a promising alternative computational
fluid dynamics (CFD) approach, the gas-kinetic scheme (GKS)
has received increasing attention and made a lot of achieve-
ments in various fields, such as in incompressible flows [1–3],
compressible flows [4–7], rarefied flows [8–10], turbulence
flows [11,12], etc. In GKS, the finite volume method (FVM)
or the finite difference method (FDM) is usually applied to
discretize the macroscopic governing equations and the local
solution of the Boltzmann equation is utilized to compute the
fluxes of conservative variables at the cell interface. Since
the numerical fluxes are obtained from the local solution
of physical equation instead of numerical approximation,
the solution of GKS is more credible. In particular, for the
supersonic and hypersonic flows, GKS captures strong shock
waves stably without the “carbuncle phenomenon” [13,14].

To date, there are lots of studies on the GKS. Some of
them include the work of Pullin [15], Mandal and Deshpande
[16], Chou and Baganoff [17], Yang et al. [18], Xu [19,20],
Chae et al. [21], Jiang and Qian [22], Sun et al. [23], Shu
and his co-workers [24,25], and Ohwada and his co-workers
[26–28]. Among them, those methods reported in [15–17]
can be classified as the kinetic flux vector splitting (KFVS)
scheme. Basically, for the KFVS scheme, the collisionless
Boltzmann equation is solved in the gas evolution stage, and
the collision process is controlled by a numerical time step. As
a result, the KFVS scheme provides good positivity property
for simulation of flows with strong shock wave and expansion
wave, but gives poorer results than those obtained from the
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Harten-Lax-van Leer (HLL) scheme [29] and the Roe scheme
[30]. With inclusion of the Bhatnagar-Gross-Krook (BGK)
collision model during the gas evolution stage, the gas-kinetic
BGK scheme was proposed and developed in recent decades
[19–22]. For the gas-kinetic BGK scheme, the dissipation in
the streaming process is controlled by the collision time rather
than by the numerical time step. Therefore, the gas-kinetic
BGK scheme usually works very well for both incompressible
and compressible flows. To construct a general gas-kinetic
scheme, Ohwada [26] proposed a railroad method, with which
the theoretical backgrounds of the KFVS scheme and the
gas-kinetic BGK scheme can be well unified. Furthermore,
Ohwada and Kobayashi [27] systematically studied the influ-
ence of various reconstruction methods on the kinetic scheme
and developed several robust gas-kinetic schemes.

On the other hand, it is indicated that the gas-
kinetic equation with the Maxwellian distribution function
[15–17,19–23,26,27] or the general distribution function [18]
is usually used to calculate the numerical fluxes at the cell
interface in most of the GKS. Due to the complexity of the
Maxwellian function and the general distribution function,
these schemes are usually more complicated and less efficient
than the traditional Riemann solvers [29–31]. In addition, as
pointed out in [7], for the viscous flow simulated by the GKS
[19–22] it is required to calculate a number of coefficients
related to the physical space and phase space at every cell
interface and each time step. This makes the evaluation of
numerical fluxes by the GKS expensive. To improve the
computational efficiency of the Maxwellian function-based
GKS and simplify its derivation, the circular function-based
GKS for the two-dimensional case is developed by Shu and
his co-workers [24,25]. In the method, it assumes that the
mass, momentum, and energy of particles in the phase velocity
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space are concentrated on a circle. Thus, the integrals for
conservation forms of moments in the infinity domain for
the Maxwellian function-based GKS, which are needed to
recover Navier-Stokes equations, can be reduced to those in
the finite domain (integrals along the circle) for the circular
function-based GKS. In addition, the Maxwellian distribution
function can be reduced to a simple form, which only
depends on macroscopic flow variables on the circle. These
simplifications enable us to derive explicit formulations to
compute macroscopic flow variables and numerical fluxes.
As a consequence, the circular function-based GKS usually
requires much less computational effort than the corresponding
Maxwellian function-based GKS. On the other hand, as
compared with the conventional Riemann solvers [29–31],
the explicit formulations of circular function-based GKS for
viscous flows are still complicated, which may not be easy
for application by new users. So, practically, there is also a
demand to replace the complicated formulations by a simple
solution process. This motivates the present work.

Firstly, we use certain discrete points to represent the circle
in the phase velocity space. Then, integrals along the circle
for conservation forms of moments can be approximated
by integral quadrature. The basic requirement is that the
conservation forms of moments for the circular function-based
GKS can be satisfied by weighted summation of distribution
functions at discrete points. In fact, as shown in this paper,
integral quadrature by four discrete points on the circle, which
forms the D2Q4 discrete velocity model, can exactly match
the integral. In this way, the macroscopic flow variables and
numerical fluxes can be computed by weighted summations of
distribution functions at discrete points, and the application of
complicated formulations resulting from integrals is avoided.
At the same time, since the equilibrium distribution function
of circular function-based GKS is directly applied without any
approximation, the method is still a kind of GKS. As such,
like the Maxwellian function-based GKS, the present scheme
can be applied to simulate flows from incompressible regime
to hypersonic regime. To validate the present solver, some
viscous incompressible and compressible flows are solved.
Numerical results showed that for incompressible viscous
flows, the computational accuracy of the present scheme is
better than that of the standard lattice Boltzmann method
(LBM) with D2Q9 model [32], and it agrees well with
the circular function-based GKS [25]. In addition, for the
compressible viscous flow, the computational efficiency of the
present scheme is equivalent to that of the Roe scheme [33].

II. DEVELOPMENT OF DISCRETE VELOCITY MODELS
FROM CIRCULAR FUNCTION-BASED GAS-KINETIC

SCHEME (GKS)

A. Circular function-based GKS and seven conservation forms
of moments

In this work, the discrete velocity models are developed
from the circular function-based GKS, which was recently
proposed by Shu and his co-workers [24,25]. As mentioned
in the Introduction, the purpose of the developed discrete
velocity model is to distribute discrete points on the circle
in the phase velocity space so that the integrals in the circular

function-based GKS can be simplified by weighted summation
of distribution functions at discrete points. So, at the beginning,
the circular function-based GKS and its seven conservation
forms of moments are briefly introduced. The Boltzmann
equation with Bhatnagar-Gross-Krook (BGK) collision model
can be written as

∂f

∂t
+ ξ · ∇f = g − f

τ
, (1)

where f is the gas distribution function and g is the equilibrium
state approached by f through particle collisions within a
collision time scale τ . ξ is the particle velocity in the phase
space. The equilibrium state is a Maxwellian distribution
function. As reported in [24,25], for the two-dimensional case,
the Maxwellian distribution function can be simplified to the
circular function given by

gC =
{

ρ

2π
if (ξ1 − u1)2 + (ξ2 − u2)2 = c2

0 otherwise
. (2)

Here ρ is the density of mean flow; ξ = (ξ1,ξ2) and u =
(u1,u2) are the phase velocity vector and the macroscopic flow
velocity vector, respectively. The square of radius c actually
represents the mean kinetic energy of the particles given by

c2 = D(γ − 1)e, (3)

where γ is the specific heat ratio, D is the abbreviation of the
dimension (D = 2 for two dimensions). e = p/[(γ − 1)ρ] is
the potential energy of mean flow, where p is the pressure. The
physical meaning of Eq. (2) is that all the mass, momentum,
and energy are concentrated on the circle.

To construct the discrete velocity models from the circular
function-based GKS, one of the fundamental requirements is
that the developed models must satisfy the seven conservation
forms of moments. From Eq. (2) and Fig. 1, the phase velocity
components in the Cartesian coordinate system for the circular
function-based GKS can be written as

ξ1 = u1 + c cos (θ ), (4a)

ξ2 = u2 + c sin (θ ), (4b)

FIG. 1. Schematic diagram of D2Q4 model.
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where θ is the angle between the radial direction and x direction, as shown in Fig. 1. With notations c1 = c cos(θ ), c2 = c sin(θ ),
and ξα = uα + cα , the seven conservation forms of moments for the circular function-based GKS, which are used to recover
Navier-Stokes equations, can be expressed as [25,34]∫ 2π

0
gCdθ = ρ, (5a)

∫ 2π

0
gCξαdθ = ρuα, (5b)

∫ 2π

0
gC(ξαξα + 2ep)dθ = ρ(uαuα + bRT ), (5c)

∫ 2π

0
gCξαξβdθ = ρuαuβ + pδαβ, (5d)

∫ 2π

0
gC

(
ξαξα + 2ep

)
ξβdθ = ρ[uαuα + (b + 2)RT ]uβ, (5e)

∫ 2π

0
gCξαξβξχdθ = p(uαδβχ + uβδχα + uχδαβ) + ρuαuβuχ , (5f)

∫ 2π

0
gC(ξχξχ + 2ep)ξαξβdθ = ρ{bR2T 2δαβ + [(b + 4)uαuβ + uχuχδαβ]RT + uχuχuαuβ}, (5g)

where ξα , ξβ , ξχ and uα , uβ , uχ are the phase velocities
and macroscopic flow velocities in the α, β, and χ direction,
respectively. ep = [1 − D(γ − 1)/2]e is the potential energy
of particles. R is the gas constant and T is the temperature
of mean flow. b is a constant related to γ ; b = 2/(γ − 1).
Equations (5a)–(5c) are used to recover the fluid density,
momentum, and energy. Equations (5d) and (5e) are applied
to recover convective fluxes of momentum equation and
energy equation. Equations (5f) and (5g) are utilized to
recover diffusive fluxes of momentum equation and energy
equation. As pointed out in [25,34], the Prandtl number of the
macroscopic governing equations recovered by the circular
function-based GKS is fixed at γ . To consider the effect of
Prandtl number, energy flux correction should be applied [25].

B. Basic requirement for development of discrete
velocity models

Although the circular function-based GKS has been greatly
simplified as compared with the Maxwellian function-based
GKS, it is still a continuous model, and its explicit formulations
for viscous flows [25] are still complicated. On the other
hand, we notice that in the circular function-based GKS, only
the particle velocities shown in Eq. (4) are related to the
angle θ and the distribution function gC shown in Eq. (2) is
independent of θ . Obviously, when the particle velocity ξ and
the distribution function gC are substituted into Eq. (5), it only
involves the integrals of sine and cosine functions of θ . To sum
up, the seven forms of Eq. (5) involve the following integrals:

∫ 2π

0
sini−1(θ )cosj−1(θ )dθ = Aij , 1 � i + j � 5, (6)

where Aij is the result of the integral equation (6), and
both i and j are the positive integers. For 1 � i + j � 5,

we have

A =

⎡
⎢⎣

2π 0 π 0
0 0 0
π 0
0

⎤
⎥⎦. (7)

To construct the discrete velocity models, Eq. (6) should be
expressed as the form of integral quadrature, i.e.,

M∑
m=1

sini−1(θm)cosj−1(θm)θ = Aij , 1 � i + j � 5, (8)

where θ is the angle between two adjacent discrete points
shown in Fig. 1; i.e., θ = 2π/M . M is the number of the
discrete points on the circle. θm is the angle of the mth discrete
point, which can be computed by

θm =
(

m − 1

2

)
θ, m = 1,2, . . . ,M. (9)

This reminds us that the discrete velocity models can be
constructed by discretizing the angle θ into some discrete val-
ues as long as the relationship (8) can be exactly or accurately
satisfied by the discrete angle, θm. Actually, Eq. (8) forms
the framework of developing the discrete velocity models for
simulation of viscous incompressible and compressible flows
in this work.

C. D2Q4 and other discrete velocity models

Once the angle θ is discretized by Eq. (9), the corresponding
discrete velocity model can be expressed as

gm = ρ

2π
, m = 1,2, · · · ,M, (10a)

ξm = (ξm,1,ξm,2)

= [u1 + c cos (θm),u2 + c sin (θm)], m = 1,2, . . . ,M.

(10b)
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It should be pointed out that Eq. (10) is a general form of
discrete velocity model, which may not satisfy Eq. (8). So, the
question that remains is whether there is a value of M so that
the developed discrete velocity model can exactly satisfy the
relationship (8). To answer this question, let us set M = 4K ,
where K is a positive integer. For this case, we can have the
following results:

M∑
m=1

sin0(θm)cos0(θm)θ = 2π,

M∑
m=1

sin1(θm)cos0(θm)θ

= 0, (11a)
M∑

m=1

sin0(θm)cos1(θm)θ = 0,

M∑
m=1

sin2(θm)cos0(θm)θ

= π, (11b)
M∑

m=1

sin1(θm)cos1(θm)θ = 0,

M∑
m=1

sin0(θm)cos2(θm)θ

= π, (11c)
M∑

m=1

sin3(θm)cos0(θm)θ = 0,

M∑
m=1

sin2(θm)cos1(θm)θ

= 0, (11d)
M∑

m=1

sin1(θm)cos2(θm)θ = 0,

M∑
m=1

sin0(θm)cos3(θm)θ

= 0. (11e)

Equation (11) shows that with M = 4K , the developed discrete
velocity model can exactly satisfy the relationship (8). In other
words, with M = 4K , the developed discrete velocity model
can exactly satisfy the seven conservation forms of moments to
recover Navier-Stokes equations. In this way, we do not need
to use complicated formulations to compute flow variables
and fluxes. Instead, we can simply use integral quadrature to
compute them.

By choosing different values of K, different discrete
velocity models can be developed. Specifically, we can take
K = 1 to develop a four-points discrete velocity model. The
schematic diagram of this model is shown in Fig. 1. The
equilibrium distribution function and discrete velocities of this
model are given by

gm = ρ

2π
, m = 1,2,3,4, (12a)

ξm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u1 + √
2/2c,u2 + √

2/2c), m = 1

(u1 − √
2/2c,u2 + √

2/2c), m = 2

(u1 − √
2/2c,u2 − √

2/2c), m = 3

(u1 + √
2/2c,u2 − √

2/2c), m = 4

. (12b)

For simplicity, we name the four-points discrete velocity
model as D2Q4 model in this work. Here, D denotes the
dimension and Q represents the number of discrete velocities.
Similarly, we can set K = 2 and K = 3 to develop the D2Q8
model and D2Q12 model, respectively. In this work, we
mainly focus on the D2Q4 model to test its performances for

FIG. 2. Schematic diagram of discrete GKS with D2Q4 model.

simulation of viscous incompressible and compressible flows.
At the same time, the D2Q8 and D2Q12 models are also used
to test the influence of the number of discrete velocities on the
computational accuracy and efficiency.

III. DISCRETE GAS-KINETIC SCHEME FOR
NAVIER-STOKES EQUATIONS

A. Navier-Stokes equations discretized by finite volume method

To apply the developed discrete GKS on arbitrary meshes,
the finite volume method (FVM) is used to discretize the
Navier-Stokes equations. For simplicity, the local coordinate
system is utilized, which is defined in Fig. 2. In the local
coordinate system, direction 1 is taken as the normal direction
pointing outwards from the cell interface and direction 2 is
chosen as the tangential direction of the cell interface. The
discrete form of Navier-Stokes equations given by FVM can
be written as

dWI

dt
= − 1

�I

Nf∑
i=1

FiSi, (13)

where I is the index of a control volume; �I and Nf

represent the volume and the number of interfaces of the
control volume I, respectively. Si denotes the area of the ith
interface of the control volume. W and F are the vector of
conservative variables at the cell center and flux vector at
the cell interface, respectively. According to the conservation
forms of moments (5), the connections between the distribution
functions of the developed discrete velocity models fm and the
conservative variables W and flux vector F can be expressed
as the following numerical integrations:

W = (ρ,ρu1,ρu2,ρE)T =
M∑

m=1

ϕmfmθ, (14)

F = (F1,F2,F3,F4)T =
M∑

m=1

ξm,1ϕmfmθ, (15)
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where E is the total energy of mean flow; E = (u2
1 + u2

2)/2 +
e. ϕm stands for the moments

ϕm = (
1,ξm,1,ξm,2,

1
2 |ξm|2 + ep,m

)T
. (16)

Note that in the current work, the conservative variables at
the cell center W are not given from Eq. (14). Instead, they are
obtained by marching Eq. (13) in time. As a consequence, the
main task is to calculate the flux vector F at the cell interface.

In the practical calculation, we need to transform the flux
vector F into the global coordinate system. In the global
coordinate system, the flux vector is given by [25]

Fn = (F1,F2nx − F3ny,F3nx + F2ny,F4)T , (17)

where n = (nx,ny) denotes the unit normal vector of the cell
interface in the global coordinate system. It can be seen from
Eq. (17) that the calculation of Fn is equivalent to evaluating
F by Eq. (15) and the key issue is to obtain the discrete
distribution functions fm and the moments ϕm.

B. Evaluation of numerical fluxes at cell interface

In this work, the developed D2Q4, D2Q8, and D2Q12
models are utilized to calculate the numerical fluxes by
replacing the integral formulations of the circular function-
based GKS with a simple solution process. Suppose that
the cell interface is located at r = 0. As shown in [25],
the distribution function at the cell interface consists of an
equilibrium part and a nonequilibrium part, which can be
written as

fm(0,t) = f eq
m (0,t) + f neq

m (0,t)

= gm(0,t) + τ0[gm(−ξmδt,t − δt)

− gm(0,t)] + O(δt2), (18)

where gm(0,t) = f
eq
m (0,t) is the equilibrium distribution

function at the cell interface, and gm(−ξmδt,t − δt) is the
equilibrium distribution function on the circle. τ0 is the
dimensionless collision time, which can be calculated by

τ0 = τ

δt
= μ

pδt
, (19)

where μ is the dynamic viscosity, which can be determined
from Sutherland’s law or the relationship of the Reynolds
number. δt is the streaming time step, which will be discussed
later. To simplify the notation, “(0,t)” is denoted by superscript
“f ace” and “(−ξmδt,t − δt)” is noted by superscript “cir” in
the following text. Substituting Eq. (18) into Eq. (15), we can
get

F =
M∑

m=1

ξ face
m,1 ϕface

m gface
m θ

+ τ0

[
M∑

m=1

ξ cir
m,1ϕ

cir
m gcir

m θ −
M∑

m=1

ξ face
m,1 ϕface

m gface
m θ

]

= FI + τ0[FII − FI ]. (20)

From Eq. (20), it can be observed that there are two
parts of flux at the cell interface. One is the flux attributed
to the equilibrium distribution function and moments at the

cell interface, which is denoted as FI . The other is the flux
attributed to the equilibrium distribution function and moments
on the circle, which is referred to as FII .

The schematic diagram of the current scheme is shown in
Fig. 2. In order to calculate the fluxes FI and FII , ϕface

m , gface
m ,

ϕcir
m , and gcir

m should be computed in advance. The moments and
equilibrium distribution functions on the circle can be obtained
from the conservative variables at the same physical positions.
The conservative variables on the circle can be computed by

Wcir
m =

{
WL − ∇WL · ξ+

mδt, if ξ+
m,1 � 0

WR − ∇WR · ξ+
mδt, if ξ+

m,1 < 0
, (21)

where WL and WR are the conservative variables at the left
and right side of the cell interface. ∇WL and ∇WR are the
first-order derivatives of the conservative variables at the left
and right cells around the cell interface, respectively. ξ+

m is the
predicted particle velocity at the cell interface given by

ξ+
m = (ξ+

m,1,ξ
+
m,2) = [u+

1 + c+ cos(θm),u+
2 + c+ sin(θm)].

(22)
As mentioned in [25], the predicted mean flow velocities

u+
1 and u+

2 and effective peculiar velocity c+ can be given
from those calculated in the previous time step. The details for
calculation of these variables at the cell interface can be seen
in Eqs. (25) and (26). At the beginning, the values of these
variables can be simply given by the average of those at two
sides of the cell interface. Once the conservative variables on
the circle are obtained, the particle velocities, particle potential
energy, and equilibrium distribution function can be calculated
by

ξ cir
m,1 = ucir

m,1 + c+ cos (θm), (23a)

ξ cir
m,2 = ucir

m,2 + c+ sin (θm), (23b)

ecir
p,m = [1 − D(γ − 1)/2]ecir

m , (23c)

gcir
m = ρcir

m

2π
, (23d)

where ρcir
m , ecir

m , ucir
m,1, and ucir

m,2 are the density, potential energy,
normal velocity, and tangential velocity of mean flow on the
circle, respectively. Substituting Eq. (23) into Eq. (15), we can
obtain the numerical flux FII as

FII =

⎡
⎢⎢⎢⎢⎢⎣

∑M
m=1 ξ cir

m,1g
cir
m θ∑M

m=1 ξ cir
m,1ξ

cir
m,1g

cir
m θ∑M

m=1 ξ cir
m,1ξ

cir
m,2g

cir
m θ∑M

m=1 ξ cir
m,1

(
1
2

∣∣ξ cir
m

∣∣2 + ecir
p,m

)
gcir

m θ

⎤
⎥⎥⎥⎥⎥⎦. (24)

In order to calculate the flux attributed to ϕface
m and gface

m , the
conservative variables at the cell interface should be computed
first. As reported in [25], according to the compatibility
condition, the conservative variables at the cell interface can
be computed by

Wface =
M∑

m=1

ϕcir
m gcir

m θ. (25)
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FIG. 3. Comparison of temperature profiles in steady Couette
flow with different specific heat ratios.

Substituting Eq. (23) into Eq. (25), we can obtain the
explicit expression of Wface as

ρface =
M∑

m=1

gcir
m θ, (26a)

(ρu1)face =
M∑

m=1

ξ cir
m,1g

cir
m θ, (26b)

(ρu2)face =
M∑

m=1

ξ cir
m,2g

cir
m θ, (26c)

(ρE)face =
M∑

m=1

(
1

2

∣∣ξ cir
m

∣∣2 + ecir
p,m

)
gcir

m θ. (26d)

Once the conservative variables at the cell interface Wface

are obtained, ϕface
m and gface

m can be determined in a straight-
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FIG. 4. Comparison of temperature profiles in steady Couette
flow with different Prandtl numbers.
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FIG. 5. Comparison of temperature profiles in steady Couette
flow with different moving velocities at top plate.

forward way, and the flux vector FI can be evaluated by
substituting ϕface

m and gface
m into Eq. (15). An alternative but

simpler way to compute FI is to substitute the conservative
variables Wface directly into the expression of inviscid flux,
i.e.,

FI =

⎡
⎢⎣

ρu1

ρu1u1 + p

ρu1u2

(ρE + p)u1

⎤
⎥⎦

face

. (27)

Substituting Eqs. (24) and (27) into Eq. (20), we can obtain
the whole expression of the numerical fluxes for Navier-Stokes
equations.

The last undetermined variable in Eq. (20) is the streaming
time step δt . Note that δt is not the real time step to march in
time. It is only used at the cell interface to reconstruct the local
solution and is related to the collision time τ0 by Eq. (19). The
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FIG. 6. Comparison of u-velocity profiles in unsteady Couette
flow at various simulation times.
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FIG. 7. Comparison of velocity profiles for lid-driven cavity flows at Re = 1000. (a) u-velocity profiles along vertical central line. (b)
v-velocity profiles along horizontal central line.

principle for the choice of δt is that the circle in the physical
space must be within the cell of the interface in order to avoid
extrapolation. In this work, δt is determined by

δt = 0.2 min{l,r}
(max{u+

1 ,u+
2 } + c+)

, (28)

where l and r are the shortest edge of the left and
right cells around the cell interface, respectively. In this way,
the extrapolation is avoided for any nonexcessive distorted
structured and unstructured meshes.

In addition, as mentioned in Sec. II A, the Prandtl number
of the macroscopic governing equations recovered by the
circular function-based GKS is fixed at γ . In order to solve
problems with different Prandtl number, a convenient approach

is to make a correction for energy flux. The heat flux can be
expressed as

q = −k∇T · n = − γμ

(γ − 1) Pr
∇T · n, (29)

where k is the thermal conductivity and Pr is the Prandtl
number. The gradient of temperature at the cell interface takes
the mean value of those from the cells around the cell interface.
With Eq. (29), the correct energy flux is calculated by

F correct
4 = F4 +

(
1 − Pr

γ

)
q. (30)

It is found that the above remedy is quite simple and
effective with very little increment of computational effort.
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FIG. 8. Comparison of pressure contours for lid-driven cavity flows at Re = 1000. (a) Results of present scheme with D2Q4 model. (b)
Results of standard LBM with D2Q9 model.
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FIG. 9. Comparison of pressure profiles for lid-driven cavity flows at Re = 1000. (a) Pressure profiles along vertical central line. (b)
Pressure profiles along horizontal central line.

C. Basic computational sequence

The basic solution procedure of the present scheme is
outlined below:

(1) Calculate the derivatives of conservative variables and
reconstruct the initial conservative variables at two sides of the
cell interface.

(2) Assign the values of u+
1 , u+

2 , and c+ at the cell interface
from those in the previous time step, and further compute the
predicted particle velocity ξ+

m with Eq. (22).
(3) Compute the streaming time step δt by using Eq. (28)

and the dimensionless collision time τ0 with Eq. (19).
(4) Use Eq. (21) to calculate the conservative variables at

the discrete points on the circle Wcir
m , and further compute the

particle velocities, particle potential energy, and equilibrium
distribution function with Eq. (23).

(5) Calculate the flux FII by using Eq. (24) and the
conservative variables at the cell interface Wface with Eqs. (25)
and (26), and further compute the flux FI with Eq. (27).

(6) Compute the total flux across the cell interface F by
using Eq. (20), and further convert F from the local coordinate
system to the global coordinate system with Eq. (17).

(7) Use Eq. (29) to calculate the heat flux q, and make
correction for F correct

4 with Eq. (30).
(8) Solve Eq. (13) in the global coordinate system by

using the three-stage Runge-Kutta method. This step gives

TABLE I. Comparison of computational effort for different
discrete velocity models.

Discrete velocity models Computational effort

D2Q4 1
D2Q8 1.539
D2Q12 1.820

Note: The computational effort of the D2Q8 and D2Q12 models is
normalized by that of the D2Q4 model.

the conservative variables at the cell centers at the new time
step.

(9) Repeat steps (1)–(8) until the converged solution is
reached.

IV. NUMERICAL EXAMPLES

To validate the present scheme, several viscous incom-
pressible and compressible flows are simulated. In the sim-
ulation, the conservative variables at two sides of the cell
interface are interpolated from those at the cell centers
and the Venkatakrishnan limiter [35] is used. For tempo-
ral discretization of Eq. (13), the three-stage Runge-Kutta
method is applied. Unless otherwise stated, in all numerical
examples reported in this work, the Courant-Friedrichs-
Lewy (CFL) number is set as 1, the specific heat ratio is
chosen as 1.4, and the Prandtl number is taken as 0.72.
In addition, all the computations were done on a PC with
3.2 GHz CPU.

A. Case 1: Couette flow

The first test case is the Couette flow, which is used to
validate the present D2Q4 model for different specific heat
ratios, Prandtl numbers, and Mach numbers. This problem can
be considered as a viscous fluid flow between two infinite
parallel plates separated by a distance of H . The bottom plate
is stationary and the top one is moving at a speed U in the
horizontal direction. The temperature at the bottom and top
walls is fixed as T0 and T1, respectively. In a steady state,
under the assumption of constant viscosity and heat conduction
coefficient, the temperature profiles can be obtained as [36]

T − T0 = Pr
U 2

2cp

y

H

(
1 − y

H

)
, when T0 = T1, (31)

T − T0

T1 − T0
= y

H
+ Pr

Ec

2

y

H

(
1 − y

H

)
, when T0 �= T1,

(32)
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FIG. 10. (a) Partial view of computational mesh for NACA0012 airfoil. (b) Streamline pattern for transonic flow around NACA0012 airfoil.

where y is the distance from the bottom boundary, cp is the spe-
cific heat ratio at constant pressure, and Ec = U 2/cp(T1 − T0)
is the Eckert number. If the flow velocity is initialized to zero,
the velocity profile in the horizontal direction for T0 = T1 at
various instants can be expressed as [36]

ux

U
= y

H
+ 2

π

∞∑
n=1

[
(−1)n

n
exp

(
−n2π2 μt

ρH 2

)
sin

(
nπy

H

)]
.

(33)
In this case, we set the distance of two plates as H = 1 and

a uniform mesh with 10 × 40 cells is used. At the inlet and
outlet, a periodic boundary condition is implemented.

At first, the test case with different specific heat ratios,
γ = 5/3, 7/5, and 9/7, and Pr = 1.4, U = u0, T1 = T0, is

simulated. The temperature profiles obtained by the D2Q4
model along the vertical central line are compared with the
analytic results in Fig. 3. It is observed that all the results of the
present scheme exactly agree with the analytic data. Secondly,
the test case with different Prandtl numbers of Pr = 1, 1.4,
and 2, and γ = 7/5, U = u0, T1 = T0, is solved. As shown in
Fig. 4, the results of the D2Q4 model for these cases also agree
fairly well with the analytic solutions. Thirdly, the test case
with different top plate velocities, U = u0, 2u0, and 3u0, and
γ = 7/5, Pr = 2, T1 = (1 + 0.5)T0, is simulated. According
to the definition of the Mach number, Ma = U/

√
γp/ρ, the

Mach number of these test cases corresponds to 0.845, 1.690,
and 2.535, respectively. Figure 5 shows that the present
results match very well with the analytic ones, even when
the flow is supersonic. Finally, we simulate the test case with
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FIG. 11. (a) Comparison of pressure coefficient distribution for NACA0012 airfoil. (b) Comparison of skin friction coefficient distribution
for NACA0012 airfoil.
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TABLE II. Comparison of lift and drag coefficients for NACA0012 case.

References Cdp
Cdf

Cdtotal Cltotal

GAMM [41] 0.243–0.2868 0.4145–0.517
Jawahar and Kamath [39] 0.152 87 0.124 39 0.277 26 0.502 31
Roe 0.149 05 0.126 68 0.275 73 0.444 68
D2Q4 0.154 77 0.131 10 0.285 87 0.474 49

Note: Cdp
, Cdf

, Cdtotal , and Cltotal are the pressure drag coefficient, friction drag coefficient, total drag coefficient, and total lift coefficient,
respectively.

γ = 7/5, Pr = 2, U = u0, and T1 = T0 to compare the velocity
profiles at various instants. As shown in Fig. 6, the results
obtained by the present scheme are in excellent agreement
with the analytic data. This demonstrates that the effect of
Prandtl number and specific heat ratio can be well considered
in the present scheme.

B. Case 2: Lid-driven cavity flow

The second test case is the lid-driven cavity flow, in which
the Mach number is set as 0.15. Thus this test case can be
viewed as the incompressible fluid flow problem. For this test
example, the velocity of the lid is taken as U = 1, the initial
density of the fluid is set as ρ = 1, the cavity length-based
Reynolds number is chosen as 1000, and the dynamic viscosity
μ is determined from Re = ρUL/μ. In the simulation, the
square domain with length L = 1 is divided uniformly into
125 × 125 cells. Figure 7 shows the comparison of u-velocity
and v-velocity profiles along vertical and horizontal central
lines obtained by the present scheme with the D2Q4, D2Q8,
and D2Q12 models. Also displayed in this figure are the
results of Ghia et al. [37], which are obtained by solving
the incompressible Navier-Stokes equations, and the results
obtained by using the circular function-based GKS [25] and
the standard LBM with the D2Q9 model [32]. As shown in
this figure, the results of the present scheme with the D2Q4,

D2Q8, and D2Q12 models and circular function-based GKS
are close to each other, and they accurately agree with the
benchmark data [37]. However, by using the same grid, the
standard LBM with the D2Q9 model provides a poorer result
with large dissipation. Figure 8 compares the pressure contours
obtained from the present scheme with the D2Q4 model and
the standard LBM with the D2Q9 model. It is obvious that
the results of LBM for the pressure field have substantial
unphysical oscillations at the top left and top right corners
while those of the present scheme are smooth all over the
flow domain. The comparison of pressure profiles along the
vertical and horizontal central lines are shown in Fig. 9. It can
be seen that the results of the present scheme with the D2Q4,
D2Q8, and D2Q12 models also match very well with those of
circular function-based GKS, but all of them deviate slightly
from the results of Botella and Peyret [38] in the vicinity of
wall boundaries. In the meanwhile, obvious disparity between
the results of LBM and those of Botella and Peyret [38] can be
clearly observed near the wall boundaries. If the computational
mesh is refined uniformly to 256 × 256 cells, both the results of
the present scheme and circular function-based GKS compare
well with those of Botella and Peyret [38]. To make the figure
concisely, only the results of the D2Q4 model with refined
mesh are shown in Fig. 9. In addition, the comparison of
computational effort required by three discrete velocity models
is made in Table I. It can be seen that the computational

FIG. 12. (a) Partial view of computational mesh for biplane configuration. (b) Streamline pattern for transonic flow around biplane
configuration.
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FIG. 13. (a) Comparison of pressure coefficient distribution for
biplane configuration. (b) Comparison of skin friction coefficient
distribution for biplane configuration.

efficiency of the D2Q4 model is inherently better than those
of the D2Q8 and D2Q12 models. This test example shows
that the accuracy of the present scheme is better than that of
the standard LBM with D2Q9 model, and it is not affected

TABLE III. Comparison of computational effort for different
numerical schemes.

Schemes NACA0012 airfoil Biplane configuration

Roe 1 1
D2Q4 1.105 1.029

Note: The computational effort of the D2Q4 model is normalized by
that of the Roe scheme.

by the number of discrete velocities. As a consequence, in the
following test cases, only the D2Q4 model is applied.

C. Case 3: Transonic flow around NACA0012 airfoil and
biplane configuration

To validate the present scheme for simulation of flows with
complex geometry, the transonic flows around one NACA0012
airfoil and a staggered-biplane configuration are simulated.
This test example is taken from the work of Jawahar and
Kamath [39]. For all the simulations of this test case, the free-
stream Mach number is 0.8, the chord length-based Reynolds
number is 500, and the angle of attack is 10°.

At first, the test case of one NACA0012 airfoil is considered.
In the test, the O-type grid with 160 points on the airfoil and
70 points in the radial direction is utilized, and its partial
view is shown in Fig. 10(a). The computational domain is
about ten times the chord length. Figure 10(b) shows the
streamline pattern obtained by the D2Q4 model. It can be
observed that the main feature of the flow, a prominent vortex
that extends over 50% of the chord on the upper surface as
captured by the D2Q4 model, compares well with that reported
in [39,40]. The comparison of pressure coefficient and skin
friction coefficient distributions on the airfoil surface obtained
by the D2Q4 model and the Roe scheme [33] are respectively
shown in Figs. 11(a) and 11(b). Also presented in the figures
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FIG. 14. Simulation results for supersonic flow around a 5° ramp.
(a) Density contours. (b) Wall pressure distribution. (c) Skin friction
distribution.
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FIG. 15. Simulation results for supersonic flow around a 10°
ramp. (a) Density contours. (b) Wall pressure distribution. (c) Skin
friction distribution.

are the results of Jawahar and Kamath [39]. As can be seen
from these figures, the results of the D2Q4 model and the Roe
scheme are close to each other, and they basically agree well
with the published data. In the meantime, the lift and drag
coefficients obtained by the D2Q4 model and the Roe scheme
are compared in Table II with the reference data of Gesellschaft
für Angewandte Mathematik und Mechanik (GAMM) [41] and
Jawahar and Kamath [39]. The results of the D2Q4 model are
close to those of the Roe scheme and Jawahar and Kamath
[39] and are well within the range reported in the GAMM
workshop.

In addition, we consider the test case of a staggered
NACA0012 biplane configuration. This test case comprises
two NACA0012 airfoils, staggered by half a chord length
in the pitchwise as well as chordwise directions. In the test,
the unstructured grid containing 320 points on each airfoil
with 54 387 triangular cells in the computational domain is
utilized, and its partial view is shown in Fig. 12(a). The
streamline pattern obtained by the present scheme with the
D2Q4 model is shown in Fig. 12(b). By comparing Figs. 12(b)
and 10(b), it can be found that the separation region on the
upper surface of the top airfoil reveals two vortices in the
test case of biplane configuration. The secondary vortex is
introduced apparently by the bottom airfoil. This observation
is in line with the results reported in [39]. Figures 13(a) and
13(b) respectively show the comparison of pressure coefficient
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FIG. 16. Simulation results for supersonic flow around a −25°
ramp. (a) Density contours. (b) Wall pressure distribution. (c) Skin
friction distribution.

and skin friction coefficient distributions on the airfoil surface.
Once again, the results obtained by the D2Q4 model and the
Roe scheme are close to each other, and they compare well
with the results of Jawahar and Kamath [39]. In addition, as
reported in Table III, the computational effort of the D2Q4
model is almost the same as that of the Roe scheme as the
number of computational mesh increases. This test example
demonstrates that the present scheme can well simulate viscous
compressible flows on arbitrary meshes with roughly the same
computational cost as that required by the commonly used Roe
scheme [33].

D. Case 4: Supersonic flow around a ramp segment

Supersonic and hypersonic fluid flow problems have been
widely studied both experimentally [42,43] and numerically
[44–46]. In the last test case, the supersonic flow around a
ramp segment with 5°, 10°, and -25° is considered. For this
test case, the free-stream Mach number is 3.0, the Reynolds
number based on the length of the flat region is 1.68 × 104, the
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free-stream temperature is 216.7 K, and the wall temperature
is fixed as 606.7 K. Both the length of the flat region and the
ramp segment are taken as 1 m. The distance between the
upper boundary of the computational domain and the bottom
wall is fixed as 0.5 m. In the simulation, the nonuniform mesh
with 240 × 70 cells is utilized. In addition, the CFL number is
chosen as 0.5 to avoid divergence.

Figures 14–16 show the simulation results for the super-
sonic flow around a ramp segment with 5°, 10°, and -25°,
respectively. From the figure of skin friction distribution, it
can be found that only in the test case of the ramp angle
of 10° does a separated flow region appear near the corner.
For the test cases of the ramp angle of 5° and -25°, there
is no separated flow region observed, but the ramp induces
significant upstream effects. These observations are consistent
with the results of Miller [44]. Also displayed in the figures are
the results of Carter [45], Miller [44], Hung and MacCormack
[46], and OVERFLOW provided by Miller [44]. Clearly, the
results of the present scheme compare well with the published
data. This test example well shows the capability of the present
scheme for simulation of supersonic flows.

V. CONCLUSIONS

In this work, a platform for developing discrete velocity
models is presented from the circular function-based gas-
kinetic scheme (GKS). Based on the platform, the D2Q4,
D2Q8, and D2Q12 models can be easily constructed for
simulation of viscous incompressible and compressible flows.
By using the proposed models, the complicated formulations
of circular function-based GKS for viscous flows can be
replaced by a simple solution process. In addition, due to the
use of FVM, the present scheme is capable for simulation
of flows with complex geometry. Numerical experiments,
including the Couette flow, lid-driven cavity flow, transonic
flow around NACA0012 airfoil and biplane configuration, and
supersonic flow around a ramp segment, show that the viscous
incompressible and compressible flows can be well simulated
by the present scheme. It was also found that the number of
discrete velocities in the phase velocity space has no effect on
the accuracy of numerical results. Moreover, the computational
efficiency of the D2Q4 model is roughly the same as that of
the conventional Navier-Stokes solver [33].
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