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Relaxation of plasma waves in Fermi-degenerate quantum plasmas
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Plasma waves in a Fermi-degenerate quantum plasma are studied in the framework of the Vlasov-Poisson
self-consistent-field theory. A complete time-dependent analytical solution of the initial-value problem is obtained
for a multistream model both by stationary-wave and Laplace-transform methods. In the continuum limit, the
excitation spectrum can be expressed by the imaginary part of the response function to the initial perturbations.
The relaxation of plasma waves is discussed for one-dimensional systems with both Fermi and Maxwellian
statistics. Apart from the usual exponential Landau damping, regimes of sub- and superexponential damping can
be identified due to the phase relaxation of single-particle excitations. In addition, beat waves and echoes are
discussed.
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I. INTRODUCTION

An ideal quantum plasma consists in the simplest case of
a Fermi-degenerate electron gas with a charge-neutralizing
homogeneous ion background. Its dynamics can be described
in the framework of kinetic theory by the well-known Vlasov-
Maxwell theory [1]. For classical plasmas, both the Vlasov-
Maxwell theory and the computational particle-in-cell (PIC)
method [2–4] are widely used, in particular for the analysis of
plasma-based accelerators [5] and short-pulse beam-plasma
interactions [6,7]. For quantum plasmas, the Vlasov approach
is computationally less well established. A general framework
is provided by the multistream approach approximating the
one-particle statistical operator by an ensemble of representa-
tive quantum states [8,9]. In this work, we wish to address
the basic question of how the many-particle problem can
be approximated in the framework of the Vlasov theory by
a relatively small number of representative states. How do
collective behavior and Landau damping arise from individual
electron streams? For this purpose, attention will be restricted
to small-amplitude perturbations. In a first step, the linear
multistream model will be treated by analytical methods. In a
second step, the continuum limit is performed and compared
with the well-known results for the degenerate electron gas.
It will be shown explicitly that the excitation spectrum of
the electron gas can be well-approximated by the multistream
model. Exponential Landau damping of collective modes as
well as nonexponential relaxation processes of single-particle
excitations can be demonstrated in this framework. These
results are in good agreement with a previous outline of the
relationship between single-particle and collective excitations
in finite-size systems [10]. Specific numerical results for the
evolution of initial perturbations may also provide a useful
benchmark test for general computational methods in this field.

We first give a brief summary of customary quantum-
statistical methods for electron gases. The Vlasov-Maxwell
theory is a mean-field approach that neglects exchange
interactions and correlations. The many-particle theory can
be reduced to the Vlasov approximation by applying the
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famous Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy to the density matrix [1]. The Vlasov theory of
plasma oscillations is also confirmed by other approaches
using quantum-field theory [11], temperature Green’s func-
tions, and diagrammatic expansion methods [12,13]. More
general kinetic equations include correlations by a collision
term. The quantum Boltzmann equation for bosons and
fermions has been derived by Uehling and Uhlenbeck [14].
Other extensions accounting for exchange interactions and
external laser fields have also been considered [15,16]. Related
self-consistent-field theories are the Hartree theory and the
Hartree-Fock theory, which are applied mostly in atomic and
nuclear physics as well as in molecular chemistry. The standard
time-independent Hartree-Fock theory for pure quantum states
can also be generalized to thermal [17] and time-dependent
systems [18].

Computational methods for quantum plasmas are often
based on ab initio molecular dynamics. Classical molecular
dynamics for ions is combined with density-functional theory
(DFT) for electrons. Minimization of the Hohenberg-Kohn
density functional [19] leads to the Kohn-Sham equations for
single-particle orbitals with exchange-correlation potentials
[20]. The physical density can be expanded in terms of
Kohn-Sham orbitals. The basic formulation of DFT can also be
extended to thermal DFT [21–24] and to time-dependent DFT
[25]. Many of these computational challenges are presently
explored in the fields of warm dense matter (WDM) and
high-energy density plasmas (HEDPs) [26]. In this context,
general computational methods for nonequilibrium electron
gases are of basic importance.

Within the framework of the Vlasov approximation, grid-
based computational methods are quite expensive and there-
fore mostly limited to one-dimensional (1D) systems [27–29].
For this reason, particle-in-cell methods (PIC) have become the
standard approach. However, these methods cannot be adopted
to quantum systems without making restrictive semiclassical
approximations. Such semiclassical procedures consist, e.g.,
in the use of pseudopotentials [30–32] or of parametrized
wave packets [33,34]. In a previous work we proposed a
computational approach, namely the carrier-envelope-wave
(CEW) method [9], to overcome these semiclassical limita-
tions. The CEW method treats the electrons by an ensemble
of representative quantum states, more specifically by a
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set of carrier-envelope waves, without using any classical
particle trajectories. The Wigner function of the ensemble
automatically satisfies the quantum Vlasov equation. The
CEW method is a variant of the hydrodynamic multistream
approach for plasmas that has been used in the past by
various authors [8,35–37]. Single-stream models governed by
effective nonlinear Schrödinger equations have been widely
studied [38], and two-stream or three-stream models have been
investigated occasionally in the framework of the quantum
streaming instability [8,39–42]. For more general distribution
functions, multistream models have received less attention,
although they have been investigated to some extent for
weak nonlinearities [43] and for strong nonlinearities at
wave-breaking [9].

In Sec. II, the multistream model is introduced. The wave
functions for each stream are expressed by hydrodynamic
variables for the density and velocity. A linear perturbation
analysis yields a set of ordinary differential equations for the
wave amplitudes in momentum representation.

In Sec. III, the linearized multistream model is treated
analytically by a stationary-wave method. The complete time
evolution of initial perturbations is analyzed, including gen-
eralized stationary-wave solutions for degenerate eigenvalues.
This method is closely related to the stationary-wave method
of van Kampen [44] and Case [45] for classical plasmas. It is
noted that it was recognized by van Kampen that a complete
solution of the initial-value problem leads to a variety of
stationary solutions that are not subject to a dispersion relation.
Van Kampen modes and their relation to collective plasma
modes have been a topic of wide interest in classical plasma
theory; see, e.g., [35,45–48]. There is also a large literature
on nonlinear stationary waves, known as Bernstein-Greene-
Kruskal (BGK) modes [49]. While van Kampen modes have
been widely explored in classical plasmas, their presence in
quantum plasmas apparently has only been considered recently
[43].

In Sec. IV, the initial-value problem is treated by the
more conventional Laplace-transform method, which was
introduced in the theory of classical plasmas by Landau
[50]. Both the stationary-wave and the Laplace-transform
method are shown to lead to identical results provided that
the dielectric function of the discrete multistream model is
used and also that generalized stationary-wave solutions for
degenerate eigenvalues are included.

In Sec. V, the continuum limit is considered. In the
continuum theory, plasma oscillations are described by the
well-known Lindhard dielectric function [51]. It has been
derived with different methods by various authors [52–58].
A generalization to collisional plasmas is widely known as
the Lindhard-Mermin dielectric function [59]. In the present
work, the continuum limit of the multistream model is treated
following an approach by Dawson [35]. From this limiting
procedure, a dielectric function can be obtained that agrees
with the Lindhard function in the upper complex plane and
with its complex conjugate in the lower complex plane. The
general solution for the electrostatic potential can be expressed
by this dielectric function. Collective plasma oscillations and
Landau damping can be shown to arise from the imaginary
part of a response function, in close analogy to the fluctuation-
dissipation theorem [60,61].

The theoretical results are illustrated in Secs. VI and VII
by numerical examples for 1D plasmas with Fermi and
Maxwellian statistics. For a 1D quantum plasma with Fermi
statistics, the standard dielectric theory predicts only one single
undamped collective mode for all wave numbers [51,61,62].
Using the stationary-wave method, we find the undamped
mode at small wave numbers, however with increasing wave
numbers a broad spectrum of stationary waves leads to
unexpected physical phenomena such as subexponential phase
relaxation, beat-wave oscillations, and echoes. In contrast, for a
1D plasma with Maxwellian statistics one obtains conventional
exponential Landau damping at intermediate wave numbers,
and superexponential damping at large wave numbers. Accord-
ingly, the relaxation dynamics depends strongly on the electron
distribution function and is basically different for degenerate
and nondegenerate electron gases.

II. MULTISTREAM MODEL

The multistream model is based on significant simplifica-
tions of the many-body problem for quantum plasma. The
ions are treated as a homogeneous positive charge density.
This approximation is often useful for collisionless plasmas
with negligible ion motion. The electrons are described by a
statistical ensemble of single-electron wave functions ψs(r,t)
occurring with probabilities ws . This approach neglects cor-
relations and exchange interactions among the electrons and
is generally considered valid in the high-density regime of
weak coupling at low temperatures when the Fermi energy
exceeds the temperature. Restricting attention to the finite
volume V = L3 of a cube of edge length L and assuming
periodic boundary conditions, the single electron states are
quantized and can be labeled by a discrete quantum number s.
The multistream model restricts the quantum numbers further
to a finite set s = 1, . . . ,N . In the present work, it is our
goal to describe plasma oscillations within the framework
of the multistream model by linear perturbation theory. In
the linear approximation, one can obtain explicit analytical
solutions of initial-value problems for comparison with more
advanced nonlinear computational methods. It is also feasible
to perform the continuum limit N → ∞,L → ∞ at constant
density n0 = N/V = const for comparison with continuum
models based, e.g., on the Vlasov equation for the Wigner
function. Such a treatment appears to be essential to validate
the use of the multistream model for macroscopic plasmas, but
it also leads to further insight into the relaxation behavior in
collisionless quantum plasmas.

The wave functions ψs(r,t) and the electrostatic potential
φ(r,t) are determined self-consistently by the Schrödinger-
Poisson equations,

i∂tψs = −1

2
�ψs − φψs, (1a)

�φ =
∑

s

ws |ψs |2 − 1, (1b)

written in terms of the dimensionless variables

ψs = ψ̃s√
n0

, φ = eφ̃

�ωp

, r =
√

mωp

�
r̃, t = ωpt̃.
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Dimensional quantities are expressed in Gaussian cgs units and
are denoted by a tilde, h = 2π� is Planck’s constant, e is the
elementary charge, m is the electron mass, ωp =

√
4πe2n0/m

is the plasma frequency, and n0 is the equilibrium electron
density. The probability densities |ψs |2 are normalized to 1
within the unit volume. The statistical operator

ρ =
N∑

s=1

ws |ψs〉〈ψs | (2)

of the quantum states |ψs〉 related to the wave functions ψs =
〈r|ψs〉 satisfies the quantum Vlasov equation

i∂tρ = [H,ρ], H = − 1
2� − φ. (3)

Any solution of the Schrödinger-Poisson system is therefore
also a solution of the Vlasov-Poisson system.

In equilibrium, the charge density and the potential both
vanish and the wave functions can be chosen as plane waves
satisfying periodic boundary conditions,

ψ (0)
s = eiϕs , ϕs = ps · r − Est,

Es = 1

2
p2

s , ps = 2π

L
(sx,sy,sz). (4)

For convenience of notation, the integers sx,sy,sz =
0,±1,±2,±3, . . . for the three coordinate directions are
summarized by the collective index s.

In nonequilibrium, the plane waves are conveniently gen-
eralized to carrier-envelope waves [9],

ψs = As(r,t)ei( ps ·r− 1
2 p2

s t). (5)

In the framework of linear perturbation theory, each envelope
is written in the form As(r,t) = 1 + χs(r,t), where χs(r,t)
describes a small-amplitude perturbation, subject to the lin-
earized Schrödinger-Poisson system,

i(∂t + ps · ∇)χs = −1

2
�χs − φ, (6a)

�φ =
N∑

r=1

wr (χr + χ∗
r ). (6b)

The real and imaginary parts of χs(r,t) can be further
related to the density perturbation ns = |ψs |2 − 1 = 2 Re{χs}
and to a source strength us = −i∇ · vs = −i� Im{χs} of a
velocity perturbation defined by vs = ∇ Im{χs}. Using these
hydrodynamic variables, one obtains the set of equations

i(∂t + ps · ∇)ns = us, (7a)

i(∂t + ps · ∇)us = �

(
φ + 1

4
�ns

)
, (7b)

�φ =
N∑

r=1

wrnr . (7c)

The first equation is the equation of continuity for the density
perturbation, while the second one is the divergence of the
equation of motion for an electron moving with velocity
vs . In addition to the classical electrostatic potential energy
qφ = −φ, it includes the quantum potential − 1

4�ns . The latter
is the linearized form of the well-known quantum potential

− 1
2|ψs |�|ψs | [63,64]. These equations form the (linearized)

multistream model [8]. Quantum effects are expressed by
the quantized momenta, the quantum potentials, and the
probabilities ws of a degenerate equilibrium state.

Performing a spatial Fourier transform, one obtains from
(7) for the Fourier amplitudes

f̂ (k,t) =
∫

dVf (r,t)e−ik·r (8)

a set of ordinary differential equations,

i∂t n̂s − k · ps n̂s = ûs , (9a)

i∂t ûs − k · ps ûs = k4

4
n̂s + y, (9b)

y = −k2φ̂ =
N∑

r=1

wrn̂r . (9c)

III. STATIONARY-WAVE APPROACH

The momentum representation of the linearized multi-
stream model (9) has the form of a first-order system of
differential equations with constant coefficients,

i∂t X(t) = L · X(t), (10)

where X(t) is a 2N -dimensional vector whose components
are given by the set of n̂s and ûs variables, and L is a
time-independent nonsymmetric matrix with real coefficients.
Particular stationary solutions v(t) = ve−iωt of such systems
are readily obtained from the time-independent eigenvalue
problem

L · v = ωv. (11)

First, we restrict attention to the case in which all eigenvalues
are nondegenerate. To each nondegenerate eigenvalue ωα there
exists one eigenvector vα . Then the stationary waves form a
complete fundamental system of solutions. However, since L
is a non-Hermitian operator, the right-hand eigenvectors are in
general not orthonormal to each other. It is therefore useful to
determine a dual basis of left-hand eigenvectors,

u · L = μu. (12)

Defining M = L − ωI , we obtain the following identity:

0 = u · M · v = μu · v − ωu · v = (μ − ω)u · v. (13)

For eigenvectors with different eigenvalues μ �= ω, we obtain
the orthogonality relation u · v = 0. Therefore, the dual basis
{uα} can be chosen orthonormal to the original basis {vβ}
by choosing a convenient normalization of vβ and by setting
uα · vβ = δαβ . Then the complete solution X(t) to the initial
value X(0) = C can be expanded in the stationary-wave basis
as

X(t) =
∑

α

cαvαe−iωαt , cα = uα · C. (14)

The stationary-wave approach was originally introduced by
van Kampen and Case [44,45] for the corresponding classical
continuum problem. In the present work, this method is
applied to quantum systems with discrete momenta, and it
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will now also be extended for degenerate eigenvalues. As will
be seen below, degeneracy occurs generically for 1D Fermi
distributions.

The general solution of non-Hermitian first-order systems is
well known from the theory of ordinary differential equations
[65]. It can be based on the generalized eigenvectors of L. A
generalized eigenvector vl of rank l is defined by the condition

M l · vl = 0 and M (l−1) · vl �= 0. (15)

Ordinary eigenvectors are generalized eigenvectors of rank
l = 1. Formally, the time evolution X(t) of any initial vector
X(0) = C given at time t = 0 can be expressed as X(t) =
U (t) · C with the time-evolution operator

U(t) = e−iLt . (16)

The time evolution becomes particularly simple if the initial
vector corresponds to a generalized eigenvector of L. For
each generalized eigenvector vl of rank l with eigenvalue ω, a
specific solution of (10) is given by

vl(t) = U(t) · vl = e−iωt e−iMt · vl

= e−iωt

l−1∑
k=0

(−it M)k · vl . (17)

The series representation of the operator exponential function
can be terminated at the power l − 1 due to the definition (15)
of generalized eigenvectors. The time dependence of these
solutions is given by stationary waves with polynomial co-
efficients. According to a well-known mathematical theorem,
there exist g linearly independent generalized eigenvectors for
each g-fold degenerate eigenvalue ω of the matrix L. As a
consequence, the time evolution of the generalized eigenvec-
tors forms a complete fundamental system of solutions of the
differential equation.

The generalized eigenvectors and their dual basis can be
easily generated if there exists only one eigenvector to each
eigenvalue, and we will restrict attention to this case. For each
eigenvalue ωα with a degree of degeneracy gα , there exists a
basis of generalized eigenvectors vαl , l = 1, . . . ,gα , and one
can determine an orthonormal dual basis of generalized left-
hand eigenvectors uαl with uαk · vβl = δαβδkl (Appendix). The
expansion of the initial vector X(0) = C is then generalized
to

C =
∑

α

gα∑
l=1

cαlvαl, cαl = uαl · C, (18)

and the time evolution of the solution vector assumes the form

X(t) =
∑

α

gα∑
l=1

cαlvαl(t)

=
∑

α

(
gα∑
l=1

l−1∑
k=0

cαl(−it M)kvαl

)
e−iωαt . (19)

In this manner, the complete solution of the initial-value
problem for the multistream model can be obtained.

In the present case, the matrix L is a real nonsymmetric
matrix. The eigenvalues therefore are either real or they occur
in complex-conjugate pairs. For complex-conjugate pairs, one

of the solutions is exponentially growing, corresponding to
an instability of the system. An example is the two-stream
instability that occurs in a two-stream model. It is also
found that for a one-dimensional Fermi distribution, the
ordinary eigenvectors are not complete. There exist generically
twofold-degenerate eigenvalues that require one generalized
eigenvector of rank 2.

We now specifically consider the set of Eqs. (9) of the
multistream model. Rather than transforming these equations
to a first-order system, a simple elimination procedure proves
more convenient. Looking first for ordinary stationary-wave
solutions of the form X ∝ e−iωt and eliminating ûs , one
obtains a set of equations for the densities and the potential,

Ps(ω,k)n̂s = y, y =
∑

r

wr n̂r , (20)

with the definitions

y ≡ −k2φ̂, Ps(ω,k) ≡ (ω − k · ps)
2 − k4

4
.

First, consider the special case of a vanishing potential, y = 0.
Such solutions correspond to neighboring equilibrium solu-
tions with different populations of the streams. Obviously, one
can change the equilibrium solution (4) in a straightforward
way by transferring the population between any pair of waves
with momenta ps and ps ′ = ps + k in such a way that the
total population is conserved. The corresponding solutions
will be called ballistic modes. For a nonvanishing density
perturbation to exist for y = 0, the first equation of (20)
requires Ps(ω,k) = 0. This condition determines the excitation
frequencies

ωs1 = k · (
ps + 1

2 k
)
, ωs2 = k · (

ps − 1
2 k

)
. (21)

For a physical explanation of these frequencies, it is noted
that a momentum change p′

s = ps ± k of a free particle with

momentum ps and energy Es( ps) = p2
s

2 leads to excitation
energies E′

s( ps + k) − Es( ps) = ωs1 and Es( ps) − E′
s( ps −

k) = ωs2, respectively. We now consider a pair of carrier waves
with momenta ps and p′

s = ps + k. Noting that ωs1 = ωs ′2,
the condition Ps(ω,k) = 0 can be satisfied for both waves, and
the condition of zero potential requires

y = wsn̂s + ws ′ n̂s ′ = 0. (22)

These pair excitations just exchange the population between
two carrier waves without disturbing the total density or the
potential.

We now consider solutions of (20) with nonzero potential,
y �= 0, which will be called electrostatic modes. The sum
over carrier momenta ps can be simplified by using coor-
dinates parallel and perpendicular to the momentum vector
k. According to the first equation, the density perturbations
of electrostatic modes do not depend on the perpendicular
momenta. Introducing new weights for the parallel momenta
by summing over the perpendicular momenta

Ws‖ =
∑
s⊥

ws, (23)

and denoting the parallel momenta again by the labels s,r and
their total number by N , one arrives at a reduced system for
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the set of parallel momenta,

Ps(ω,k)n̂s = y, y =
N∑

r=1

Wrn̂r . (24)

Electrostatic solutions have by definition a nonzero potential,
and the fluid variables can then be expressed as

n̂s = 1

Ps(ω,k)
y, ûs = ω − k · ps

Ps(ω,k)
y. (25)

Eliminating the densities from (20) and (25), one arrives at a
single equation for the electrostatic potential,

y =
∑

s

Wsn̂s =
∑

s

Ws

Ps(ω,k)
y. (26)

Accordingly, electrostatic modes with y �= 0 can only exist if
the solubility condition

DN (ω,k) ≡ 1 −
N∑

s=1

Ws

Ps(ω,k)
= 0 (27)

is satisfied. The function DN (ω,k) will be called the dispersion
function of the N -stream model. The zeros ωα of DN (ω,k) are
eigenfrequencies of the electrostatic modes that correspond to
the eigenvalues ωα of L. The eigenvectors are given by the
components of (25) evaluated for ω = ωα .

The denominators in (27) can be factorized as Ps(ω,k) =
(ω − ωs1)(ω − ωs2), and an expansion into a partial fraction
then yields

DN (ω,k) = 1 − 1

k2

∑
s

Ws

ω − ωs1
− Ws

ω − ωs2
. (28)

Setting ps = s�p, k = n�p, �p = 2π/L, and n even, one
can rewrite the dispersion function in the form

DN (ω,k) = 1 − 1

k2

(N+n)/2∑
s=−(N+n)/2

Ws−n/2 − Ws+n/2

ω − psk
. (29)

Each denominator increases the order of the characteristic
polynomial by 1, yielding altogether N + n electrostatic
solutions. The missing N − n solutions are ballistic modes. For
each quantum number within −(N − n)/2 � s � (N − n)/2,
there exists a ballistic mode with the frequency ωs = kps . For
these frequencies one has Ps±n/2 = 0, and (20) can be satisfied
by setting

n̂s±n/2 = ±Ws∓n/2,

ûs±n/2 = −(k2/2)Ws∓n/2 (30)

with n̂r = 0 and ûr = 0 for r �= s ± n/2. These ballistic modes
just exchange the population Ws+n/2Ws−n/2 between any two
carrier waves satisfying the momentum relation ps+n/2 −
ps−n/2 = k. In a macroscopic description, the populations of
the ensemble states are not necessarily limited by the Pauli
exclusion principle, and we therefore include these modes for
mathematical consistency. Our main results concerning large
wave numbers are not affected by this choice.

There is one more special case to be considered. If Ws−n/2 −
Ws+n/2 = 0, the dispersion function (29) for electrostatic
modes has a zero at the frequency ω = kps of a ballistic

mode. In this case, the frequency ω = kps becomes twofold
degenerate and there exists a generalized eigenvector of
rank 2 with a nonzero electrostatic potential. Note that all
N − n ballistic frequencies are twofold degenerate for a 1D
Fermi distribution, and there remain N + n − (N − n) = 2n

nondegenerate electrostatic solutions.
The electrostatic potential has been calculated by this

stationary-wave approach for the initial conditions

n̂s(0) = n̂0, ûs(0) = û0. (31)

Choosing the same initial perturbation for all streams is just
one way of realizing a superposition of many modes. Later it
will be seen from (57) that the spectral weights of the modes are
primarily influenced by the dielectric function. The resulting
potential is given by

y =
∑

α

cαe−iωαt (32)

with

cα = n̂0
∂DN

∂ω
|ωα

(
ωα −

∑
s

Ws k · ps

Ps(ωα)

)
+ û0

∂DN

∂ω
|ωα

(33)

for nondegenerate and

cα = k4Ws−n/2n̂0

k4D′
N (ωα) + 2Ws−n/2

(34)

for degenerate eigenvalues. D′
N denotes the dispersion func-

tion (29) without the contribution s = α of the degenerate
frequency ωα .

IV. LAPLACE-TRANSFORM METHOD

The Laplace-transform method is another convenient ap-
proach to obtain the solution of the initial-value problem (9). It
was introduced by Landau for classical plasmas, leading to the
famous result of Landau damping. We therefore first show that
the Laplace-transform method leads to the same result as the
stationary-wave approach for the discrete multistream model.
In the following section, we then use the Laplace-transform
approach to derive Landau damping in the continuum limit.

The Laplace transform of the function f (t) will be defined
by

f̃ (ω) =
∫ ∞

0
dtf (t)eiωt . (35)

Here it is assumed that f̃ (ω) converges above the line Im{ω} =
c in the upper complex ω plane for some constant c > 0. Using
the well-known derivative rule

∂̃t f (ω) = −f (0) − iωf̃ (ω), (36)

the Laplace transform of the multistream model (9) is given
by

(ω − k · ps)ñs = ũs + in̂s0, (37a)

(ω − k · ps)ũs = k4

4
ñs + ỹ + iũs0, (37b)

ỹ =
∑

r

Wr ñr , (37c)
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with the initial values n̂s0 = n̂s(k,0) and ûs0 = ûs(k,0). Elim-
inating ũs leads to an inhomogeneous equation for ñs ,

Ps(ω,k)ñs = ỹ + i[ûs0 + (ω − k · ps)n̂s0], (38)

where the definition of Ps(ω,k) given in (20) is now extended
to the upper ω plane. Since Ps(ω,k) �= 0 above Im(ω) = c >

0, the Laplace transform of the electrostatic potential can be
obtained in the form

ỹ = i
SN (ω,k)

DN (ω,k)
(39)

with

DN (ω,k) = 1 −
∑

s

Ws

Ps(ω,k)
,

SN (ω,k) =
∑

s

Ws

Ps(ω,k)
[ûs0 + (ω − k · ps)n̂s0].

The Laplace transform of the potential has now been expressed
by the dispersion function DN (ω,k) of the N -stream model
and by a source function SN (ω,k) describing the dependence
on the initial conditions.

The time-dependent potential is obtained by the inverse
Laplace transform

ŷ(k,t) =
∫ +∞+is

−∞+is

dω

2π
ỹ(ω,k)e−iωt . (40)

The integration contour can be closed by parallel lines to
the imaginary axis for Im{ω} � 0 and Re{ω} → ∞ and by
a semicircle in the lower ω plane with radius r → ∞. Along
the parallel lines, the integral vanishes since SN (ω,k) → 0
for Re{ω} → ∞. Along the semicircle, the integral vanishes
because |e−iωt | → 0 for ωit < 0. According to the residue
theorem, the integral along the closed contour becomes a
sum over the residue of the integrand within the contour.
Specifically, for a negatively oriented contour and simple poles
ω = ωα , one has

ŷ(k,t) = (−1)2πi
∑

α

i lim
ω→ωα

(ω − ωα)SN (ω,k)

2πDN (ω,k)
e−iωt

=
∑

α

lim
ω→ωα

(ω − ωα)SN (ω,k)

DN (ω,k)
e−iωt . (41)

First consider the poles that arise from the zeros of
DN (ωα,k) = 0. Obviously, these zeros coincide with the
frequencies of the electrostatic stationary waves, and their
contribution to the integral becomes

ŷ(k,t) =
∑

α

SN (ωα,k)

∂ωDN (ωα,k)
e−iωαt . (42)

For the initial conditions (31) used in the present work, the
source function becomes particularly simple at the zeros ω =
ωα of DN (ω,k),

SN (ωα,k) =
∑

s

Ws

Ps(ωα,k)
[û0 + (ωα − k · ps)n̂0]

= û0 +
(

ωα −
∑

s

k · psWs

Ps(ωα,k)

)
n̂0. (43)

The result (42) evaluated with the initial condition (43) is
in complete agreement with the stationary-wave solution for
nondegenerate eigenvalues (33).

In addition, contributions arise from the poles of SN (ω,k)
at the zeros of Ps(ω,k). These zeros correspond to ballistic
modes and degenerate electrostatic modes. Only the latter give
rise to an electrostatic potential, and we therefore consider this
case. As previously discussed, these modes can arise if two
carrier momenta pq and pq ′ with equal weights Wq = Wq ′

are separated by the wave momentum pq ′ − pq = k. Then the
ballistic mode frequencies (21) become

ωq1 = ωq ′2 = k · (
pq + 1

2 k
)
,

ωq2 = ωq1 − k2, ωq ′1 = ωq1 + k2. (44)

Defining S ′ as the sum S without the two terms s = q and
s = q ′ and setting cs = Ws[ûs0 + (ω − k · ps)n̂s0], one can
separate the pole at ω = ωq1 as

S − S ′ = 1

ω − ωq1

(
cq

ω − ωq1 + k2
+ cq ′

ω − ωq1 − k2

)
. (45)

For the present initial conditions, the corresponding residue is
given by

ResS = lim
ω→ωq1

(ω − ωq1)SN (ω,k) = cq − cq ′

k2
= n̂0Wq. (46)

Choosing the same notation for the restricted sum in D(ω,k),
one obtains

DN − D′
N = − Wq

ω − ωq1

(
1

ω − ωq1 + k2
+ 1

ω − ωq1 − k2

)
= 2Wq

k4 − (ω − ωq1)2
. (47)

Using (46) and (47) in (41), one finds for each degenerate
ballistic wave the contribution

ŷ(k,t) = Wqk
4

D′
Nk4 + 2Wq

n̂0e
−iωαt , (48)

which is in complete agreement with the result (34) of the gen-
eralized stationary-wave method for degenerate eigenvalues.
It is therefore concluded that both approaches are completely
equivalent for the solution of the initial-value problem of
the discrete multistream model for both nondegenerate and
degenerate eigenvalues.

V. CONTINUUM LIMIT

For a large number of stationary waves, the multistream
model is expected to converge to a unique continuum limit, and
thereby conventional Landau damping should be recovered
from the phase relaxation of the stationary waves. In this
section, the continuum limit is performed explicitly, and
thereby a collective mode subject to conventional Landau
damping can be obtained.

We first consider the continuum limit of the dispersion
function DN (ω,k) for N → ∞. The corresponding limit of
the classical multistream model has been discussed by Dawson
[35], and we partly follow these lines for the present quantum
treatment. It is advantageous to represent the dispersion
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function in the form of (29),

DN (ω,k) = 1 − 1

k2

(N+n)/2∑
s=−(N+n)/2

Ws−n/2 − Ws+n/2

ω − kps

. (49)

The momenta are taken on an equidistant grid as ps = sδ,
s = 0 ± 1, ± 2, . . . , ± N/2, and we perform the limit N →
∞, δ → 0. The probability density of states is defined as
a continuous function �(p), and Ws±n/2 = �(ps ± k/2)δ is
the probability of states within the momentum interval δ.
For simplicity of notation, we define Z(ps) = �(ps − k/2) −
�(ps + k/2) to obtain

DN (ω,k) = 1 − 1

k2

(N+n)/2∑
s=−(N+n)/2

Z(ps)δ

ω − kps

. (50)

To pass to the continuum limit, one can remove the singularity
in the sum by writing

DN (ω,k) = 1 − δ

k2

(N+n)/2∑
s=−(N+n)/2

Z(ps) − Z(ω/k)

ω − kps

− Z(ω/k)δ

k2

(N+n)/2∑
s=−(N+n)/2

1

ω − kps

. (51)

The terms of the first sum are regular at ω = kps . Setting
εs = ω − kps , ps = ω−εs

k
, and expanding the nominator about

ω/k, one obtains

Z(ps) − Z(ω/k)

ω − kps

= Z′(ω/k)
(− εs

k

) + O
(
ε2
s

)
εs

= −Z′(ω/k)

k
+ O(ε) = O(1). (52)

Passing to the continuum limit, the first sum can be replaced
by an integral in the usual manner,

∞∑
s=−∞

δ
Z(ps) − Z(ω/k)

ω − kps

→
∫ +∞

−∞
dp

Z(p) − Z(ω/k)

ω − kp
.

Noting that the Cauchy principal part of the integral of 1/x is
zero, one has∫ +∞

−∞
dp

Z(p) − Z(ω/k)

ω − kp
= P

∫ +∞

−∞
dp

Z(p) − Z(ω/k)

ω − kp

= P
∫ +∞

−∞
dp

Z(p)

ω − kp
. (53)

The second sum can be seen to be the expansion of cot(z)
in partial fractions. This expansion assumes the well-known
form [66]

π cot(πx) =
+∞∑

s=−∞

1

x − s
= 1

x
+

+∞∑
s=1

2x

x2 − s2
. (54)

The second form of the expansion is simply obtained by writing
the term with s = 0 separately and combining the sums over
negative and positive s values. Using this expansion yields

DN (ω,k) = 1 − 1

k2
P

∫ +∞

−∞
dp

Z(p)

ω − kp
− Z(ω/k)

k3
π cot

(
πω

kδ

)
.

One still has to pass to the limit δ → 0 in the last part of the
formula. For real frequencies ω and Z(ω/k) �= 0, there will
be infinitely many zeros of DN (ω,k) for N → ∞, since each
branch of cot x passes from +∞ to −∞ and there will be
a zero within each branch. The solution of the initial-value
problem then is just a superposition of these modes with real
frequencies. However, if the dispersion function is evaluated
for complex frequencies above (or below) the real axis, the
summation of the partial fraction series has to be taken formally
with a positive (negative) imaginary part β = Im{πω

kδ
}. For

δ → 0 it approaches β → ±∞, where the + sign corresponds
to an integration below and the − sign to an integration above
the pole. Substituting πω

kδ
→ x + iβ yields the limits

lim
β→±∞

cot(x + iβ) = i lim
β→±∞

eix−β + e−ix+β

eix−β − e−ix+β
→ ∓i. (55)

The continuum limit of the dispersion function for complex
frequencies is therefore

D±(ω,k) ≡ 1 − 1

k2
P

∫ +∞

−∞
dp

Z(p)

ω − kp
± iπ

Z(ω/k)

k3
(56)

for Im{ω} ≷ 0, respectively. The upper sign corresponds to
Landau’s integration contour, and it will be shown to determine
the asymptotic behavior of the initial perturbation.

We now consider the continuum limit of the solution
(40) for the time-dependent potential. In general, there are
contributions to this solution from isolated pairs of complex
conjugate zeros of the dispersion function. These complex
roots can be simply added and will not be considered further.
In addition, the dispersion function has infinitely many zeros
on the real axis, which are no longer isolated in the continuum
limit. The contribution of these poles can be found by choosing
a closed rectangular integration contour consisting of two
parallel lines immediately above and below the real axis with
infinitesimally small vertical boundaries at infinity. In the
continuum limit, the dielectric function above and below the
real axis is given by (56). Defining D(ω) = D± and similarly
S(ω) = S± for Im{ω} ≷ 0, respectively, the contour integral
around the poles on the real axis assumes the form

ŷ(k,t) = i

∫ +∞

−∞

dω

2π

(
S+

D+ − S−

D−

)
e−iωt , (57)

where the integration is now performed along the real ω

axis. This representation corresponds to the superposition
of stationary waves with real frequencies in the multistream
model. The continuous excitation spectrum can be defined by

c(ω) ≡ i

2π

[
S+

D+ − S−

D−

]
= − 1

π
Im

[
S+

D+

]
. (58)

It is found proportional to the imaginary part of the re-
sponse function S+/D+, in close analogy to the fluctuation-
dissipation theorem [60,61]. Setting D± = Dr ± iDi and
S± = Sr ∓ iSi , the excitation spectrum can be expressed by
the real and imaginary parts of D± and S± as

c(ω) = 1

π

SrDi + DrSi

D2
r + D2

i

. (59)

As a specific example, we consider a uniform velocity pertur-
bation ûs = û0, n̂s = 0. In this case, the source function can be
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expressed by the dispersion function itself, S± = (1 − D±)û0,
and the excitation spectrum then reduces to a simpler form with
response function 1/D+,

c(ω) = i

2π

[
1 − D+

D+ − 1 − D−

D−

]
û0

= i

2π

[
1

D+ − 1

D−

]
û0 = 1

π

Di

D2
r + D2

i

û0. (60)

This spectrum is further discussed in Sec. VI and compared to
the weights of the discrete multistream model in Fig. 3.

In general, the superposition of modes leads to exponential
Landau damping, as can be seen in the following way. Ac-
cording to the Landau theory, the complex frequencies of the
collective modes are given by the zeros ωα = ωα,r + iωα,i of
D+(ω) = 0. For small imaginary parts, the real and imaginary
parts of these frequencies are determined by

Dr (ωα,r ) = 0, ∂ωDr (ω)
∣∣
ω=ωα,r

ωα,i + Di = 0. (61)

The contribution of this pole to the integral (57) can be
evaluated by setting Dr (ω) ≈ ∂ωDr (ω)(ω − ωα,r ) near the zero
ωα,r , where ω now denotes the real integration variable. In the
nominator, one can approximate |DrSi | � |SrDi |, assuming
that Sr = O(1) for Dr → 0 and that the imaginary parts Di

and Si are of the same order of magnitude. Substituting (61),
one finds the pole spectrum,

cpole(ω) ≈ 1

π

DiSr

D2
r + D2

i

≈ 1

π

−ωα,i

(ω − ωα,r )2 + ω2
α,i

Sr (ω,k)

∂ωDr (ω,k)
. (62)

Assuming that Sr (ω)/∂ωDr (ω) varies only weakly over the
pole region, the pole spectrum is given by a Lorentzian profile.
Its Fourier transform leads to a damped oscillation with the
Landau plasmon frequency and damping constant as given by
(56) and (61),

ŷpole(k,t) = Sr (ω,k)

∂ωDr (ω,k)

∣∣∣∣
ω=ωα,r

e−iωα,r t−γαt ,

γα = −ωα,i = Di(ω,k)

∂ωDr (ω,k)

∣∣∣∣
ω=ωα,r

. (63)

Although exponential decay has been recovered in this way, it
is noted that the pole approximation is not always applicable,
and one then has to go back to the complete excitation
spectrum (58). The relaxation of plasma waves in a 1D
Fermi-degenerate electron gas provides one such example,
which will be discussed in the following section.

VI. FERMI STATISTICS

In this section, we consider as a specific example a
multistream model with N streams for a 1D Fermi-degenerate
electron gas with equal statistical weights Ws = 1/N for all
representative states. We have chosen a momentum grid ps =
−pF + (s − 0.5)�p, s = 1, . . . ,N with a Fermi momentum
pF = 1.5 and a momentum step �p = 2pF /N . The wave
number of the perturbation is also chosen on the grid,
k = n�p. Setting �p = 2π/L, all waves satisfy periodic

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ω
/
ω

p

k mωp
−1

Electrostatic modes

Ballistic modes

Lindhard ω

SPE-Boundary

FIG. 1. Eigenfrequencies of electrostatic and ballistic modes. The
mode frequencies are compared with the Lindhard dispersion relation
(solid line) and the boundaries of the SPE continuum (dashed lines).
Parameters: N = 30, pF = 1.5.

boundary conditions at the end points of a spatial interval
of length L.

The magnitudes of the eigenfrequencies (occurring in
positive-negative pairs) of a multistream model with N = 30
streams are illustrated in Fig. 1. The frequency of one electro-
static mode is clearly separated from all other frequencies for
small wave numbers. The other electrostatic-mode frequencies
lie between the cutoffs ω1 = EpF +k − EpF

= k(pF + k/2)
and ω2 = EpF

− EpF −k = k(pF − k/2) corresponding to the
maximum and minimum energies of single-particle mo-
mentum excitations above the Fermi level. The range of
energies between these cutoffs is called the single-particle
excitation (SPE) continuum. The isolated frequency above
the SPE continuum cannot be explained by single-particle
excitations, and therefore it corresponds to a collective mode.
In accordance with this interpretation, it is found to be in
excellent agreement with the plasmon frequency determined
by the Lindhard dispersion relation. For large wave numbers,
the plasmon frequency approaches asymptotically the SPE
continuum. The frequencies of the ballistic modes are located
beneath the lower cutoff of the SPE continuum.

Figure 2 shows the electrostatic potential y resulting from
an initial density perturbation n̂s(0) = δ(k − k0), ûs(0) = 0,
and the weights cα/�ω per frequency interval �ω = k�p of
the various modes for different values of the wave number
k0. For the isolated frequency outside the SPE continuum,
the weight cα itself is shown. For small wave numbers,
the collective mode is dominant, resulting in an undamped
oscillation with the Lindhard frequency. With increasing wave
number, the weights cα/�ω of the other modes increase.
The electrostatic potential then shows additional features.
A beat wave and nonexponential damping of the oscillation
is observed. In addition, the potential shows echoes after
time intervals Techo = 2π/(k�p) = L/k. The echo period
is the propagation time of the wave with momentum k

over the periodicity length L and is therefore specific for
finite-size systems. The initial decrease of the potential as
well as the weights cα/�ω per frequency interval converge
rapidly with the number of streams.
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FIG. 2. Electrostatic potential y = −k2φ̂ and weights cα/�ω per
frequency interval for (a) k0 = 0.1, (b) k0 = 0.9, and (c) k0 = 2.5.
Vertical dashed lines mark the frequency given by the Lindhard
dispersion relation (dark gray) and the cutoff frequencies of the
SPE continuum (light gray). For k0 = 2.5, the upper cutoff coincides
with the Lindhard frequency. Parameters: N = 30, pF = 1.5, n̂s(0) =
δ(k − k0), and ûs(0) = 0.

In Fig. 3, the specific weights cα/�ω of the multistream
model are compared with the excitation spectrum (60) in the
continuum limit. In this case, the results are already nicely
converged for a moderately large number of streams (N =
300). In summary, echoes and discrete momenta are specific
features of finite-size systems, while beat waves, decay, and
the specific weights of the excitation spectrum are common
features of infinite-size continuum systems.

The maximum of the weights occurs near the edge of
the Fermi distribution. Evidently, such an edge maximum is
only poorly represented by the Lorentzian distribution (62),
indicating nonexponential decay. To analyze relaxation for a
1D Fermi distribution in more detail, we consider the limit of
large wave numbers. The electrostatic potential for large wave
numbers can be derived in the free-particle approximation.

-0.8
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0.0

0.4

0.8

-3 -2 0 2 3

c α
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ω

p
)

ω/ωp

FIG. 3. Weights cα/�ω per frequency interval for a velocity
perturbation with k0 = 1.2. The weights of the multistream model
(dots) are compared with the excitation spectrum (60) of the
continuum theory. Parameters: N = 300, pF = 1.5, n̂s(0) = 0, and
ûs(0) = k2

0δ(k − k0).

For this purpose, the electrostatic potential is neglected in the
equation of motion of the electrons by setting y = 0 in (9b).
The electrostatic potential is then calculated perturbatively to
first order by inserting the zeroth-order densities in the Poisson
equation (9c). Choosing an initial density perturbation n̂s(0) =
n̂0 and using the free-particle excitation frequencies (21), the
evolution of the electrostatic potential is then found to be

φ̂(t) = − n̂0

2k2N

N∑
s=1

(e−iωs1t + e−iωs2t )

= − n̂0

2k2

sin(ω1t) + sin(ω2t)

N sin
(

πt
Techo

) . (64)

The electrostatic potential shows beat-wave oscillations with
the cutoff frequencies ω1,2 of the SPE continuum. In addition,
the electrostatic potential is modulated by an envelope
function 1/ sin ( πt

Techo
) that explains the observed damping and

the echoes occurring after time intervals Techo. For intermediate
wave numbers, qualitatively the same effects occur. In this
case, however, the collective mode still plays a crucial
role, and the beat wave and damping are less pronounced.
The subexponential damping is illustrated in Fig. 4 for a

10−1

100

(a) k0 = 0.9

10−3

10−2

10−1

100

101

10−2 10−1 100 101

e|y
|(

m
ω

2 p
)

t/Tp

(b) k0 = 2.5

FIG. 4. Magnitude of the electrostatic potential y = −k2φ̂ for
(a) k0 = 0.9 and (b) k0 = 2.5. For k0 = 2.5 it is compared to the
envelope (kpF t)−1 (dashed line). Parameters: N = 300, pF = 1.5,
n̂s(0) = δ(k − k0), ûs(0) = 0.
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multistream model with N = 300 streams. For large wave
numbers, the thermodynamic limit N → ∞, L → ∞, and
pF = πN

L
= 1.5 leads to a complete subexponential damping

proportional to t−1 for all times despite the absence of Landau
damping in the Lindhard plasmon-dispersion relation.

VII. MAXWELLIAN STATISTICS

In the following calculations, the system described in the
previous section is considered for nonzero temperature under
Maxwellian statistics. The statistical weights of the discrete
momenta ps are given by

Ws = exp
(− 1

2
p2

s

T

)∑N
r=1 exp

(− 1
2

p2
r

T

) . (65)

We chose temperature T = 1.52/2, the momentum step
between successive discrete momenta �p = 2pmax/N , and
wave numbers k = n�p. The discretization of the Maxwell
distribution is cut off at the cutoff momentum pmax = 4.5.
Since pmax is greater than three standard deviations σ = √

T

of the Maxwell distribution, only a negligible fraction of
momenta lie above the cutoff momentum. The magnitudes
of the eigenfrequencies of a multistream model with N = 90
streams are illustrated in Fig. 5.

For a Maxwellian velocity distribution, there is a continuum
of electrostatic modes without any isolated frequencies for
not too small wave numbers. For wave numbers that are odd
multiples of �p, there is a single degenerate ballistic eigenfre-
quency in the center of the SPE continuum at frequency zero.
The Lindhard dispersion relation for a plasmon in a quantum
plasma with Maxwellian velocity distribution lies inside the
continuum of modes. The cutoff of the SPE continuum and the
isolated frequency at very small wave numbers are explained
solely by the artificially introduced cutoff of the momentum
discretization at pmax.

Figure 6 shows the electrostatic potential y resulting from
an initial density perturbation n̂s(0) = δ(k − k0), ûs(0) = 0,
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FIG. 5. Eigenfrequencies of electrostatic and degenerate ballistic
modes. The mode frequencies are compared with the Lindhard
dispersion relation (solid line) and the artificial boundary of the
SPE continuum (dashed line). The artificial boundary of the SPE
continuum is introduced by the cutoff of the Maxwell distribution at
momentum pmax. Parameters: N = 90, T = 1.5, and pmax = 4.5.
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FIG. 6. Electrostatic potential y = −k2φ̂ and weights cα/�ω per
frequency interval for (a) k0 = 0.3 and (b) k0 = 0.5. Vertical dashed
lines mark the frequency given by the Lindhard dispersion relation
(dark gray). Parameters: N = 90, T = 1.5, n̂s(0) = δ(k − k0), and
ûs(0) = 0.

and the weights cα/�ω per frequency interval �ω = k�p of
the various modes for wave number k0 = 0.3 and 0.5. For
Maxwellian statistics, a damped collective mode is observed.
The damping gets stronger with increasing wave number. The
collective mode is created by a superposition of electrostatic
modes. The distribution of the weight per frequency interval of
the modes has a peak approximately at the Lindhard frequency
and broadens with increasing wave number of the perturbation.
The peak is asymmetric, however to a first approximation
its shape is close to the shape of a Lorentz peak. Thus for
intermediate wave numbers, the multistream model reproduces
very well the Landau-damped plasma oscillations in a quantum
plasma with Maxwellian velocity distribution given by the
Landau-Lindhard theory.

As an example, exponential Landau damping is shown in
Fig. 7 for the wave number k0 = 0.3 over more than 15 plasma
periods. The numerical solution of the multistream model is
compared to an exponential decay law with the decay constant
γ = 0.019 67 according to the Lindhard-Landau theory. There
is excellent agreement between the numerical result and the
theoretical decay law, indicating that discrete multistream
models can reproduce the usual Landau damping very well
by phase relaxation of a sufficiently large number of streams.

For large wave numbers, the electrostatic potential can
be calculated in the free-particle approximation as in

(64). For a Maxwellian distribution f (p) = 1√
2πT

e− p2

2T , one
obtains for the electrostatic potential caused by a den-
sity perturbation n̂0 in first-order perturbation theory the
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FIG. 7. Exponential Landau damping of a potential perturbation
y = −k2φ̂(k,t) with wave number k0 = 0.3 for a Maxwellian velocity
distribution. The numerical solution of the stationary-wave method
(solid line) is compared with exponential decay (dashed line) with a
damping constant γ = 0.019 67 according to the Landau-Lindhard
theory. Parameters: N = 90, T = 1.52/2, n̂s(0) = δ(k − k0), and
ûs(0) = 0.

expression

φ̂(t) = − n̂0

k2
cos

(
k2

2
t

)∫ +∞

−∞
dp f (p)e−ikpt

= − n̂0

k2
cos

(
k2

2
t

)
exp

(
−1

2
T k2t2

)
. (66)

The electrostatic potential shows oscillations with frequency
k2/2 corresponding to the asymptotic single-particle energies.
However, these oscillations are strongly damped with a
Gaussian function of width 1/(

√
T k). This superexponential

damping is illustrated in Fig. 8 for a multistream model with
N = 300 streams. Note that for a longer time period than
shown, echoes in the electrostatic potential occur due to the
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FIG. 8. Superexponential damping of a potential perturbation
y = −k2φ̂(k,t) with wave number k0 = 2.5 for a Maxwellian velocity
distribution. The stationary-wave solution (solid line) is compared
with the asymptotic approximation (66) for large wave numbers
(dashed line). Parameters: N = 90, T = 1.52/2, n̂s(0) = δ(k − k0),
and ûs(0) = 0.

finite number of streams, as in the case of Fermi statistics
considered above.

VIII. CONCLUSIONS

The quantum-kinetic treatment of ideal plasmas is com-
monly based on the Vlasov-Maxwell SCF theory. Alterna-
tively, one can solve the related SCF Schrödinger-Poisson
system for an ensemble of representative quantum states. Its
formulation in terms of hydrodynamic variables is known as
the multistream model.

In the present work, the analytical properties of the multi-
stream model have been studied in the linear approximation.
The initial-value problem has been addressed both by the
stationary-wave method and by the Laplace-transform method.
It is found that the solution consists of a superposition of
electrostatic modes whose frequencies are zeros of the disper-
sion function DN (ω,k) of the N -stream model. In addition,
there are contributions from degenerate electrostatic-ballistic
modes determined by the zeros of Ps(ω,k) for a pair of streams
coupled by the wave momentum. It is instructive to note that
the same modes are obtained by both methods. The difference
between collective modes of the Landau Laplace-transform
method and van Kampen modes of the stationary-wave method
is not present at the level of individual streams.

We then performed the continuum limit and thereby
obtained analytic continuations D±(ω,k) of the dielectric
function in the upper and lower complex planes, respectively.
The contribution from the continuum of modes on the real axis
can be expressed in terms of the Landau-Lindhard dielectric
function D+(ω,k), and the spectral weights of these modes
are given by the imaginary part of a response function.
Near complex zeros of D+(ω,k), the spectral weights can be
approximated by a Lorentzian profile, and thereby exponential
Landau damping is recovered.

Finally, numerical evaluations have been performed for
Fermi and Maxwell distributions to demonstrate dispersion
and relaxation of plasma waves. While Maxwellian distri-
butions lead to collective mode frequencies and exponential
Landau damping in accordance with the Landau-Lindhard
dispersion function, important differences arise for Fermi
distributions. Because of the separation of the collective
frequency from the continuum of single-particle excitations,
the Lorentzian profile of the spectrum becomes a poor approx-
imation, and as a consequence the relaxation behavior is in
general nonexponential. In particular, at large wave numbers,
when relaxation is determined by single-particle excitations,
subexponential damping and beat-wave oscillations have been
shown to occur in Fermi-degenerate plasmas. Under the
same approximations, Maxwellian statistics leads to super-
exponential damping, thus demonstrating a basically different
relaxation behavior in degenerate and nondegenerate plasmas.
This discrepancy arises from the different statistical weights
of the single-electron excitations. The normal distribution over
an infinite range of the weights in nondegenerate plasmas
gets replaced by a uniform distribution over a finite range in
the degenerate case. The corresponding change of temporal
relaxation is quite similar to the more familiar change of
spatial screening. In degenerate plasmas, exponential Debye
screening gets modified by long-range oscillations [67].
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Observation of subexponential temporal relaxation of beat-
wave oscillations might be an alternative interesting means to
diagnose the degeneracy of the plasma state.

APPENDIX

In this Appendix, we discuss the basis of generalized right-
hand eigenvectors and the dual basis of generalized left-hand
eigenvectors of a non-Hermitian operator L with degenerate
eigenvalues if there exists only one ordinary eigenvector for
each eigenvalue. In this case, the maximum rank of the
generalized eigenvectors to the eigenvalue ω corresponds to its
degree of degeneracy g. For the present multistream problem,
we will only need the special case g = 2. However, it is
instructive to show that the method remains valid for arbitrary
degeneracy g.

Starting from the ordinary eigenvector v1 of rank 1, the
g generalized eigenvectors can be obtained by defining M =
L − ωI and setting recursively

M · v1 = 0,M · v2 = v1, . . . ,M · vg = vg−1. (A1)

The generalized eigenvectors are not uniquely determined. If
vl is a generalized eigenvector of rank l > 1, one can always
add an arbitrary linear combination of generalized eigenvectors
of a lower rank to obtain another generalized eigenvector of
rank l,

v′
l = vl +

l−1∑
k=1

ckvk. (A2)

This follows from the fact that the defining conditions for a
generalized eigenvector of rank l remain invariant under this
transformation,

M l · v′
l = M l · vl = 0,

M l−1 · v′
l = M l−1 · vl �= 0. (A3)

It is noted that for each rank l, the new vector (A2) satisfies
the recurrence relation of (A1) with the chain of generalized
eigenvectors of lower rank m < l given by

v′
lm = vm +

m−1∑
k=1

cl−m+kvk. (A4)

The ambiguity in the definition of the generalized eigenvectors
can be used to obtain a set of mutually orthogonal generalized
eigenvectors v′

k · v′
l = δkl . The corresponding coefficients in

(A2) are simply given by ck = −vl · vk . These coefficients also
occur in (A4), but these nonorthogonal vectors are discarded
from the basis. In the following, we always use orthogonal
basis vectors and omit the prime for simplicity of notation.

The left-hand eigenvalue problem, being defined by the
transposed matrix of L, has the same eigenvalues with the same
algebraic and geometric degeneracy. For a given eigenvalue
ω, the generalized eigenvectors can be obtained in the same
recursive manner as

ug · M = 0,ug−1 · M = ug, . . . ,u1 · M = u2. (A5)

For later convenience, the left-hand eigenvectors have been
labeled in reverse order. The rank of ul is therefore 1 + g − l.

The left-hand eigenvectors will also be chosen mutually
orthogonal, ui · uj = δij .

Next, we consider the transformation matrix Rij = ui · vj

between the original and the dual basis. For the first column
and the last row of this matrix, one obtains the constraints

ui−1 · M · v1 = ui · v1 = 0, 1 � i < g, (A6a)

ug · M · vj+1 = ug · vj = 0, 1 < j � g. (A6b)

In addition, it follows that all elements along diagonals (from
upper left to lower right corners) are equal, since

ui · M · vj = ui · vj−1 = ui+1 · vj . (A7)

According to these constraints, all matrix elements below the
main diagonal are zero. The elements on the main diagonal can
be chosen for convenience as Rii = ui · vi = 1. Furthermore,
since both basis systems are orthogonal, the matrix has to
satisfy the orthogonality conditions∑

k

RikRjk = δij . (A8)

Applying this condition to neighboring rows, starting from
the rows g and g − 1, it then follows that all elements above
the main diagonal are also zero. In summary, the dual basis
can and will be chosen to satisfy the canonical orthonormality
conditions

ui · vj = δij . (A9)

Finally, it remains to be shown that the generalized dual
eigenvectors uαi for the eigenvalue ωα are always orthogonal
to the generalized eigenvectors vβj for a different eigenvalue
ωβ . Setting Mα,β = Lα,β − ωα,β I , one has

Mα = Mβ + (ωβ − ωα)I . (A10)

Consider the elements of the matrix Rij = uαi · vβj for ωα �=
ωβ . From

0 = uαg · Mβ · vβ1 = uαg · Mα · vβ1 + (ωα − ωβ)Rg1

= (ωα − ωβ)Rg1 (A11)

one obtains Rg1 = 0. Next, one can calculate the elements Ri1

of the first column with i < g from the identity

0 = uαi · Mβ · vβ1 = uαi · Mα · vβ1 + (ωα − ωβ)Ri1

= uαi+1 · vβ1 + (ωα − ωβ)Ri1

= Ri+11 + (ωα − ωβ)Ri1. (A12)

Starting with i = g − 1 one subsequently finds Ri1 = 0 for all
i. The elements of the second column now follow from the
substitution

0 = uαi · vβ1 = uαi · Mβ · vβ2

= uαi · [Mα + (ωα − ωβ)I] · vβ2

= Ri+12 + (ωα − ωβ)Ri2. (A13)

Starting with i = g and noting that Rg+12 = 0 according to the
eigenvector equation in (A5), one finds Rg2 = 0. Subsequently,
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there follows Ri2 = 0 for i < g. This procedure can be
continued for all columns leading to the result Rij = 0 for
all i and j . In summary, a dual basis can be chosen that is
orthonormal to the original basis for all eigenvectors and all

generalized eigenvectors,

uαi · vβj = δαβδij . (A14)
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