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Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
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The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within
the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard
dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use
the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by
treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross
section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static
conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross
sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated
in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high
energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The
relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by
comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard
and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging
from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
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I. INTRODUCTION

X-ray Thomson scattering [1] is a very promising technique
for measuring the temperature, density, and ionization state in
dense plasmas. Measuring these quantities is very important
for understanding and modeling high-energy density physics
experiments. The importance of including finite relaxation
times in calculations of the dynamic structure function for
x-ray Thomson scattering in warm dense plasmas is well es-
tablished [2–7]. In this paper, the influence of finite relaxation
times on Thomson scattering from warm dense plasmas is
examined within the framework of the average-atom approx-
imation. Presently, most calculations use the Lindhard [8]
dielectric function ε0(k,ω), which describes a collision-free
electron gas, to evaluate the free-electron contribution to the
Thomson cross section. In this work, the Lindhard dielectric
function is replaced by the Mermin [9] dielectric function
εM(k,ω), which includes effects of collisions and conserves
the local electron number:

εM(k,ω) = 1

+ (1 + i/ωτ )(ε0(k,ω + i/τ ) − 1)

1 + (i/ωτ )(ε0(k,ω + i/τ ) − 1)/(ε0(k,0) − 1)
,

(1)

where τ is the relaxation time.
Schemes for including relaxation effects in the dynamic

structure function have been reviewed in Ref. [1]. In
Refs. [2–6], the Born approximation in a screened Coulomb
potential was used to obtain τ . As an alternative, in Ref. [7],
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the frequency-dependent conductivity was evaluated using
quantum molecular dynamics and the relaxation time was
determined by fitting the frequency-dependent conductivity
σ (ω) to the classical Drude model [10,11],

σD(ω) = nI e
2

m

τ

1 + (ωτ )2
, (2)

where e and m are the electron charge and mass and nI is the
ion density.

In the present study, the relaxation time is determined using
a model developed to treat scattering from impurities in a
uniform electron gas [12]. In this model, the relaxation time
is expressed in terms of the transport cross section, which is
evaluated in the average-atom potential.

For comparison purposes, an estimate of τ is made by
equating the average-atom version of Ziman’s formula for
the static conductivity [13] with the static Drude conductivity
σD(0), which contains τ as a parameter. A somewhat different
estimate of τ is obtained, following the scheme used in Ref. [7],
by fitting the dynamic conductivity σ (ω) to σD(ω). In the
present study, σ (ω) is obtained from an average-atom version
of the Kubo-Greenwood [14–16] equation. The resulting two
estimates are found to agree well with the direct calculation
over a wide range of densities and temperatures.

Inasmuch as the Born approximation is widely used in
calculations of transport cross sections, the present calcula-
tions are also compared with calculations carried out using the
Born approximation to the transport cross section. The Born
approximation converges to the exact cross section as energy
increases; however, differences found at low energies lead to
differences in the relaxation rates.

The utility of the average-atom approach rests on its
simplicity and wide range of applicability. The present version
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of the average-atom model was used in Refs. [17–21] to
investigate anomalous dispersion in C, Al, Ag, and other
plasmas in the soft x-ray region of the spectrum and has been
used to investigate Thomson scattering in Refs. [22–30].

In the following section, calculations of transport cross
sections, relaxation times, and conductivities are described
and relaxation times for Be plasmas are evaluated as functions
of temperature and density. Comparisons are made with
estimates obtained from static and dynamic conductivities.
Comparisons are also made with rates obtained using the
Born approximation. Finally, in Sec. III, the Mermin dielectric
function is discussed and free-electron contributions to the
Thomson scattering structure function obtained using Mermin
and Lindhard dielectric functions are compared for Be plasmas
with temperatures ranging from 2 to 32 eV and densities
ranging from 2 to 64 g/cc.

II. RELAXATION TIMES AND CONDUCTIVITIES

The relaxation rate ν = 1/τ in the average atom picture is
given by a finite-temperature version of the impurity scattering
rate [12,31],

ν = −nI

m

∫ ∞

0
dE

df (E)

dE
p σ tr(p), (3)

with p = √
2mE. In the above, f (E) is the Fermi distribution

function

f (E) = 1

1 + exp[β(E − μ)]
, (4)

where β = 1/kBT and μ is the chemical potential. In Eq. (3),
σ tr(p) is the transport cross section, which is given in terms of
scattering phase shifts δl(p) by

σ tr(p) = 4π

p2

∞∑
l=0

(l + 1) sin2[δl+1(p) − δl(p)]. (5)

In panel (a) of Fig. 1, the transport cross section σ tr(p)
is illustrated for a Be plasma at temperature T = 16 eV and
density ρ = 8 g/cc. The ion potential is taken to be the finite-
range average-atom potential V (r): V (r) → −Ze2/r as r →
0 and V (r) = 0 for r � RWS, where RWS is the Wigner-Seitz
radius. In this example, Z = 4 and RWS = 1.444 a0. In panel
(b) of Fig. 1, we show the phase-shifts δl(p) for continuum
states in the average-atom potential V (r). These phase shifts
are used in Eq. (5) to obtain the cross section shown in panel
(a) of Fig. 1. Since the K shell of the Be ion is occupied
in the average-atom model under the present conditions of
temperature and density, the fact that the s-wave phase-shift
δ0(0) = π , whereas δl(0) = 0 for l > 0 is in harmony with
Levinson’s theorem. The ion density in the present example
is nI = 0.07932 a−3

0 and the chemical potential is μ = 1.160
a.u. The relaxation frequency from Eq. (3) is ν = 0.4510 a.u.
and the corresponding relaxation time is τ = 2.217 a.u. (Note
that a.u. refers to atomic units in which e = � = m = 1, with
1 a.u. in time = 2.4189 × 10−17 s and 1 a.u. in cross section
= 2.800 × 10−17 cm2.)

In Table I, we list values of effective ionic charge Z∗,
chemical potential μ, relaxation rate ν, and relaxation time

0.01 0.1 1 10 100
p (a.u.)

0

1

2

3

4

5

σtr (p
)  

(a
.u

.)

0 10 20 30 40
p (a.u.)

1

2

3

4

δ(
p)

 (r
ad

) l=0

l=1
l=2

(a)

(b)

FIG. 1. (a) Transport cross section σ tr(p) for a warm dense
Be plasma at density ρ = 8 g/cc and T = 16 eV. (b) Electron-ion
scattering phase shifts δ(p) in the average-atom potential used to
calculate the cross section shown in panel (a).

τ for a Be plasma at temperatures ranging from T = 2 to
32 eV and densities ranging from ρ = 2 to 64 g/cc. For each
fixed temperature, the relaxation time decreases systematically
with density.

In the following subsection, we compare the rates obtained
from Eq. (3) with rates estimated from conductivity calcula-
tions.

A. Estimates from conductivity calculations

An average atom version of the Kubo-Greenwood (KG)
equation for the frequency-dependent conductivity was de-
rived in Ref. [13] by considering linear response of the average
atom to a time-varying electric field:

σ (ω) = 2nIπe2

mω

∑
ij

(fi − fj ) |〈j |pz|i〉|2 δ(εj − εi − ω). (6)

In this equation, nI is the ion density, εi and fi are the energy
and Fermi distribution function of average-atom state i, and pz

is the z component of the momentum operator. Contributions
to the conductivity arise from three distinct processes: free-free
transitions, bound-bound transitions (discrete spectra), and
bound-free transitions (photoionization). The free-free contri-
bution to the conductivity, which diverges at low frequencies,
was regulated in an ad-hoc manner in Ref. [13]. It was later
shown [32] how the free-free contribution to the KG equation
could be reformulated to include finite collision times and that
the resulting free-free contribution was regular at ω = 0. The
modified free-free contribution to the KG equation is given by
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TABLE I. Properties of warm dense Be at density ρ and
temperature T : Z∗ effective ionic charge, μ chemical potential, ν

collision rate, and τ relaxation time are given in a.u.

ρ (g/cc) Z∗ μ ν τ

T = 2 eV
2 1.406 0.429 0.149 6.713
4 1.813 0.822 0.313 3.196
8 2.124 1.457 0.585 1.710
16 2.379 2.498 0.974 1.026
32 2.610 4.219 1.411 0.709
64 2.833 7.074 1.930 0.518

T = 4 eV
2 1.406 0.393 0.136 7.351
4 1.798 0.800 0.298 3.350
8 2.115 1.443 0.578 1.729
16 2.375 2.490 0.975 1.026
32 2.608 4.214 1.428 0.700
64 2.832 7.071 1.818 0.550

T = 8 eV
2 1.455 0.250 0.109 9.162
4 1.763 0.708 0.256 3.910
8 2.084 1.388 0.550 1.818
16 2.361 2.457 0.970 1.031
32 2.603 4.196 1.436 0.696
64 2.830 7.060 1.813 0.552

T = 16 eV
2 1.581 − 0.241 0.071 14.09
4 1.746 0.359 0.178 5.609
8 2.009 1.160 0.451 2.217
16 2.307 2.320 0.928 1.077
32 2.581 4.118 1.460 0.685
64 2.823 7.018 1.842 0.543

T = 32 eV
2 1.903 − 1.617 0.044 22.83
4 1.918 − 0.694 0.106 9.401
8 2.030 0.401 0.288 3.475
16 2.247 1.817 0.733 1.365
32 2.526 3.815 1.436 0.696
64 2.800 6.849 1.956 0.511

a frequency-dependent generalization of the Ziman formula,

σ (ω) = − 2e2

3m2

∫
d3p

(2π )3

(
∂f

∂E

)
p2 τp

1 + ω2τ 2
p

. (7)

It should be emphasized that τp in Eq. (7) is the mean time
between collisions for an electron with momentum p {τp =
V/[pσ tr(p)]}, not the frequency-independent parameter τ =
1/ν. Indeed, τp can be determined from the mean-free-path �p

by τp = �p/v, where v is the electron velocity. The mean-
free-path is related to the transport cross-section σ tr(p) by
�p = V/σ tr(p), where V = 1/nI is the volume of the WS
cell. In the static limit, σ (ω) reduces to the Ziman formula
[12, Eq. (7.25)]. Discussions of conductivity in the average-
atom approximation can be found in Refs. [13,32,33], while
comparisons of average-atom conductivities with experiment
and with other calculations are found in Refs. [33–35].

TABLE II. Relaxation rates ν for Be plasmas at temperature
T and density ρ are compared with rates ν1 inferred from static
conductivity calculations, with rates ν2 obtained by fitting dynamic
conductivity calculations and with rates νB obtained by using the
Born approximation to evaluate the transport cross section. Units for
relaxation rates are a.u.

ρ g/cc ν ν1 ν2 νB

T = 4 eV
4 0.298 0.318 0.314 0.839
8 0.578 0.585 0.584 0.952
16 0.975 0.971 0.971 1.067
32 1.428 1.423 1.422 1.174

T = 8 eV
4 0.256 0.327 0.320 0.741
8 0.550 0.579 0.578 0.934
16 0.970 0.958 0.958 1.069
32 1.436 1.409 1.407 1.176

T = 16 eV
4 0.178 0.338 0.333 0.486
8 0.451 0.561 0.559 0.793
16 0.928 0.913 0.911 1.039
32 1.460 1.361 1.354 1.181

T = 32 eV
4 0.106 0.297 0.289 0.253
8 0.288 0.488 0.480 0.504
16 0.733 0.790 0.780 0.844
32 1.436 1.212 1.192 1.129

In column 3 of Table II, we compare estimates of relaxation
rates ν1, obtained by equating σ (0) from Eq. (7) to σD(0) from
Eq. (2), with values of ν obtained from Eq. (3).

In Fig. 2, we show the free-free contributions to frequency-
dependent conductivities σ (ω) from Eq. (7) for Be plasmas
at temperature T = 16 eV and densities ρ ranging from 4 to
32 g/cc in the solid red lines. The dashed black lines show
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FIG. 2. Frequency-dependent conductivities σ (ω) calculated us-
ing the Ziman formula Eq. (7) are shown in the solid red lines
for warm dense Be plasmas with densities ρ = (4,8,16,32) g/cc
and temperature T = 16 eV. The lower curves correspond to lower
densities. The dashed black lines represent one parameter (ν2) fits
of the conductivities to the Drude formula, Eq. (8). Values of the
collision rates ν2 obtained from the fits are compared with those
obtained from Eq.(3) in Table II.
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FIG. 3. Exact transport cross sections for a Be plasma at
T = 16 eV (shown in solid lines) are compared with the Born
approximation (shown in dashed lines). At density ρ = 2 g/cc (shown
in black lines), the Born approximation cross section is much larger
than the exact cross section (shown in red lines) at small values
of momentum p, while at ρ = 32 g/cc, the Born approximation is
smaller at small p. In both cases, the Born approximation approaches
the exact cross section as p increases.

results of one-parameter (ν2) fits of σ (ω) to the function

σ (0)

1 + (ω/ν2)2
, (8)

which is obtained from Eq. (2) by requiring σD(0) = σ (0).
As can be seen from Fig. 2, the resulting fit reproduces σ (ω)

accurately for the cases considered. Estimates of relaxation
rates ν2 for Be over a range of temperatures and densities
are listed in column 4 of Table II. As can be seen from the
table, there is good agreement between the estimates ν1 and ν2

and agreement to better than a factor of 2 between the direct
calculation of ν and the two estimates.

B. Born approximation

In many studies of relaxation rates [2,4–6], the scattering
cross section σp(θ ) is evaluated using the Born approximation
for the scattering amplitude f (θ ):

f (θ ) = − 1

2π
V (q), (9)

where V (q) is the Fourier transform of the electron-ion
scattering potential V (r), which is typically assumed to be
an exponentially damped ion potential. In the above, q =
p1 − p2 is the momentum transferred to the ion. We have
omitted a factor of m/� in Eq. (9) since we use atomic units. For
elastic scattering p2 = p1 = p and q2 = 2p2(1 − μ), where
μ is the cosine of the angle between p1 and p2. The Fourier
transform of the potential V (r) is given by

V (q) = 4π

q

∫ ∞

0
r sin(qr)V (r) dr, (10)

and the transport cross section is

σ tr(p) = 1

4πp4

∫ 2p

0
q3 |V (q)|2 dq. (11)

In Fig. 3, we compare the Born-approximation transport cross
sections for a Be plasma at T = 16 eV, which are shown in
dashed lines, with “exact” cross sections, which are shown in

solid lines. The average-atom potential is used to evaluate
the Born cross section. For small values of p, the Born
cross section for density ρ = 2 g/cc is larger than the exact
cross section, while for ρ = 32 g/cc, the Born cross section
is smaller than the exact cross section. As p increases, the
Born approximation approaches the exact cross section in
both cases. Differences between the Born and exact cross
sections at small values of p are reflected in the relaxation rates.
Thus, for T = 16 eV and ρ = (2, 32) g/cc, Eq. (3) gives ν =
(0.0710, 1.460) a.u., using the exact transport cross section,
whereas Eq. (3) gives νB = (0.2433, 1.181) a.u. using the Born
transport cross section. Born approximation calculations of
relaxation rates in Be plasmas for other values of temperature
and density are compared with direct calculations and with
values inferred from conductivity calculations in Table II.

C. Comparisons

Plagemann et al. [7] obtain frequency-independent values
of ν by fitting the frequency-dependent conductivity obtained
from a quantum molecular dynamics calculation to the
Drude model. For uncompressed Be at density 1.85 g/cc and
temperature 12 eV and compressed Be at density 5.5 g/cc
and temperature 13 eV, values ν = 0.357 and 0.703 a.u.,
respectively, were obtained. The present calculation using
Eq. (3) predicts values ν = 0.0800 and 0.317 a.u., respectively.
The value of ν at ρ = 1.85 g/cc is substantially smaller than
that value predicted in Ref. [7].

The “mathematical” reason for the relatively small value of
ν at metallic density is strong interference at small values
of p between partial waves with l = 0 and l = 1 in the
expression for σ tr(p), resulting in a corresponding reduction
in the value of the relaxation frequency. This reduction is
evident in the black curve in Fig. 3, where the partial-wave
expression for the transport cross section at ρ = 2 g/cc and
T = 16 eV is compared with the Born approximation. One
consequence of the interference, pointed out earlier, is a
substantial increase in the size of νB relative to ν; a second
consequence is that substantial differences arise between
relaxation frequencies ν, ν1, and ν2. In that regard, average-
atom relaxation rates obtained by fitting frequency-dependent
conductivities to the Drude formula ν2 = 0.244 and 0.426 are
somewhat closer to the values obtained in Ref. [7]. Differences
between the respective values of ν2 reflect differences between
average-atom and QMD calculations of frequency-dependent
conductivities.

Faussurier and Blancard [36] determined values of ν for
Be at metallic density and temperature T = 10 eV within
the framework of the SCAALP [37] average-atom model.
The value νKG = 0.153 a.u. was obtained using the Kubo-
Greenwood theory; the corresponding value from the present
calculation is ν2 = 0.246. Furthermore, νB = 0.363 a.u. was
obtained in Ref. [36] using an expression for the frequency-
dependent conductivity based on the Born approximation, and
νLB = 0.278 a.u. was obtained using the Lenard-Balescu the-
ory together with the average-atom electron-ion potential. The
present calculation gives ν = 0.0896 a.u. for ρ = 1.85 g/cc
and T = 10 eV, which is again much smaller than the values
obtained in Ref. [36] for reasons mentioned in the previous
paragraph. It should be mentioned that the average-atom Born
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FIG. 4. Contributions to dielectric functions of a Be plasma at
temperature T = 16 eV and density ρ = 8 g/cc. The collision rate
is ν = 0.4510 a.u. Dashed and solid lines illustrate contributions
to the Lindhard and Mermin dielectric functions, respectively.
(a) Re[ε(k,ω)] (black lines), Im[ε(k,ω)] (red lines), and
−Im[1/ε(k,ω)] (green lines) are shown for k = 0.838 a.u. cor-
responding to scattering of a 9000 eV x-ray at angle 20◦. (b)
−Im[1/ε(k,ω)] for k = 4.18 a.u. corresponding to scattering of a
9000 eV x-ray at 120◦.

approximation result gives νB = 0.369, in good agreement
with the value νB = 0.363 obtained in Ref. [36].

III. DIELECTRIC FUNCTION

Expressions for the Lindhard and Mermin dielectric func-
tions are reduced to single integrals suitable for numerical
studies in the Appendix. In Fig. 4, we compare these two
functions of ω at fixed values of k for a Be plasma at temper-
ature T = 16 eV and density ρ = 8 g/cc. The corresponding
collision rate, given in Table I, is ν = 0.4510 a.u. The lower
panel of the figure shows the real and imaginary parts for the
Lindhard and Mermin dielectric functions together with the
function −Im[1/ε(k,ω)], which occurs in the expression for
free-electron dynamic structure function. These functions are
evaluated at k = 0.838 a.u., corresponding to scattering of a
9000 eV x-ray at 20◦. The Lindhard function −Im[1/ε(k,ω)],
shown in the dashed green line, resonates (plasmon resonance)
near the second zero of Re[ε(k,ω)], shown by the dashed
black line. This resonance is seen to be strongly damped in
the Mermin dielectric function shown in the solid green line.
The upper panel of Fig. 2 compares Lindhard and Mermin
calculations of −Im[1/ε(k,ω)] at k = 4.18 a.u. corresponding
to scattering a 9000 eV x-ray at 120◦. The resulting values
of Re[ε(k,ω)] are close to 1 and those of Im[ε(k,ω)] are
indistinguishable from the green lines in the figure. It is
particularly interesting to note that the maximum of Im[ε(k,ω)]
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FIG. 5. Free-electron dynamic structure functions See(k,ω) for
Thompson scattering of 9000 eV x-rays at 120◦ from Be plasmas with
temperatures ranging from 8 to 64 eV and plasma densities ranging
from 4 to 32 g/cc. The dashed curves describe calculations done
using the Lindhard dielectric function and the solid curves represent
those done using the Mermin dielectric function. The curves with
smaller amplitudes describe plasmas with higher density at a given
temperature and with higher temperature at a given density.

is reduced in amplitude and shifted to lower energies in the
Mermin calculation.

IV. THOMSON SCATTERING

We now turn to applications of the Mermin dielectric
function to Thomson scattering. The contribution to the
dynamic structure function S(k,ω) from inelastic scattering
by free electrons is given by

See(k,ω) = − 1

1 − exp(−ω/T )

Z∗k2

4πne

Im

[
1

ε(k,ω)

]
. (12)

It should be noted that Z∗/ne = V , the volume of an average-
atom Wigner-Seitz cell.

In Fig. 5, we compare free-electron dynamic structure
functions for Thompson scattering of 9000 eV x-rays at
120◦ from Be plasmas with temperatures ranging from 8 to
64 eV and densities ranging from 4 to 32 g/cc. The solid
curves describe calculations done including relaxation time
and the dashed curves represent those done ignoring relaxation
effects. The maxima of the curves evaluated using the Mermin
dielectric function are shifted to higher energy and reduced
in amplitude compared to those evaluated using the Lindhard
dielectric function.

The size of the shift increases with density at a fixed temper-
ature and decreases with temperature at a fixed density. Since
the peak of structure function is downshifted from the incident
photon energy ω0 by approximately 2(ω0/c)2 sin2(θ/2) a.u.,
the effect of including relaxation time is similar to ignoring
relaxation time and decreasing the scattering angle. (In this
regard it should be noted that the horizontal axis in Fig. 4 is ω

and in Fig. 5 is ω0 − ω.)
In Fig. 6, we compare See(k,ω) for scattering of 2960 eV

x-rays at 40◦ from Be plasmas with temperatures ranging from
4 to 32 eV and density 1.84 g/cc. The solid curves describe
calculations done including relaxation time and the dashed
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FIG. 6. Free-electron dynamic structure functions See(k,ω) for
Thompson scattering of 2960 eV x-rays at 40◦ from Be plasmas
with temperatures ranging from 4 to 32 eV and metallic density.
The dashed curves describe calculations done using the Lindhard
dielectric function and the solid curves represent those done using
the Mermin dielectric function.

curves represent those done ignoring relaxation effects. As
in the previous examples, maxima of the curves evaluated
including relaxation effects are shifted to higher energy and
reduced in amplitude compared to those in which relaxation is
ignored. The size of the shift increases with density at a fixed
temperature and decreases with temperature at a fixed density.
The relative importance of including finite relaxation times in
the coherent scattering regime (at small momentum transfer)
becomes obvious on comparing Figs. 5 and 6.

V. SUMMARY AND CONCLUSIONS

The influence of finite relaxation times on the free electron
contribution to x-ray Thomson scattering is examined within
the framework of the average-atom theory. For this purpose, the
Lindhard dielectric function, which describes a collision-free
electron gas, was replaced by the Mermin dielectric function,
which includes the relaxation time and conserves the local
electron number. The relaxation time used in the Mermin
function was obtained by treating the average atom as an
impurity in a uniform electron gas. The relaxation rate depends
crucially on the transport cross section, which is evaluated in
terms of phase shifts in the average-atom potential.

Examples are given for Be plasmas with temperatures
ranging from 2 to 32 eV and densities from 2 to 64 g/cc.
Rates determined from the impurity scattering formula are
found to agree within a factor of 2 with rates inferred
from conductivity calculations. Average-atom calculations of
the conductivity σ (ω) are carried out using a frequency-
dependent generalization of the Ziman formula. One scheme
for determining relaxation times is to equate σ (0) to the static
Drude conductivity σD(0), which is proportional to τ . A second
scheme is to fit the frequency dependence of σ (ω) to the
frequency-dependent Drude model. Results from these two
methods agree well with one another.

The transport cross section used in the calculation of the
relaxation rate was compared with the Born approximation
cross section, often used in calculations of relaxation rates.
Significant differences between the Born and exact cross
sections were found at low momenta, leading to corresponding
differences in relaxation rates.

The Mermin function −Im[1/εM (ω,k)], which governs
the free-electron contribution to Thomson scattering, was
compared with its counterpart using the Lindhard dielectric
function ε0(ω,k). Plasmon resonance features that show up in
calculations based on the Lindhard dielectric function at small
values of k were significantly broadened using the Mermin
dielectric; moreover, the Compton feature that shows up at
large values of k was reduced in amplitude and shifted to
lower energy.

Finally, plots of the free-electron contribution to the
Thomson scattering structure function are presented for warm
dense Be plasmas over a range of temperatures and densities.
These plots illustrate that effects of finite relaxation times are
most important for low temperatures at fixed density and for
high density at fixed temperature.
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APPENDIX: REDUCTION OF THE MERMIN DIELECTRIC FUNCTION

The Mermin dielectric function is expressed in terms of the Lindhard dielectric function,

ε0(k,ω + iν) = 1 − 1

π2k2

∫
f ( p + k/2) − f ( p − k/2)

k · p − ω − iν
d3p, (A1)

with frequency ω replaced by ω + iν, where ν = 1/τ is the collision rate. The real and imaginary parts of the Lindhard function
can be reduced to the following integrals

Re[ε0(k,ω + iν)] = 1 + 2

πk3

∫ ∞

0
pf (p) dp

{
log

∣∣∣∣k
2 + 2ω + 2pk + 2iν

k2 + 2ω − 2pk + 2iν

∣∣∣∣ + log

∣∣∣∣k
2 − 2ω + 2pk − 2iν

k2 − 2ω − 2pk − 2iν

∣∣∣∣
}
, (A2)

and

Im[ε0(k,ω + iν)] = 2

πk3

∫ ∞

0
pf (p) dp{arctan(2ν,k2 + 2ω + 2pk) − arctan(2ν,k2 + 2ω − 2pk)

− arctan(2ν,k2 − 2ω + 2pk) + arctan(2ν,k2 − 2ω − 2pk)}. (A3)
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In Eq. (A3), arctan(y,x) is the phase of the complex number (x + iy). In the limit ν → 0, the sum of the terms in braces in
Eq. (A3) is π for |k2 − 2ω|/2k � p � (k2 + 2ω)/2k and 0 otherwise. The Lindhard dielectric function is the limiting value as
ν → 0 of ε0(k,ω + iν):

Re[ε0(k,ω)] = 1 + 2

πk3

∫ ∞

0
pf (p) dp

{
log

∣∣∣∣k
2 + 2ω + 2pk

k2 + 2ω − 2pk

∣∣∣∣ + log

∣∣∣∣k
2 − 2ω + 2pk

k2 − 2ω − 2pk

∣∣∣∣
}
, (A4)

Im[ε0(k,ω)] = 2

k3

∫ b

a

pf (p)dp = 2kBT

k3
log

[
1 + exp[(μ − a2/2)/kBT ]

1 + exp[(μ − b2/2)/kBT ]

]
, (A5)

where a = |k2 − 2ω|/2k and b = (k2 + 2ω)/2k.
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