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The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in
this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation
is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between
approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict
the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its
equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on
the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as
the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This
effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge
distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy
loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that
in the same cold target of about, ∼42–62.5% and increases with carbon plasma ionization. This confirms the
well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement
is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized
plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at
plasma state than to the bound electrons at solid state of about, ∼38.8–57.4%, where higher values correspond
to a fully ionized carbon plasma.
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I. INTRODUCTION

Energy loss of ions propagating in matter has been subject
of research in recent decades. Specifically, energy loss in solids
and gases has been studied and developed for almost a century,
so there are numerous models that reproduce and explain
adequately experimental data [1–4]. However, the interaction
of charged particles with partially and fully ionized matter
(plasma) is still not totally understood and there are so far only
a few experimental data that support the theoretical predictions
[5–12].

The energy loss of ions in plasmas is relevant for many
applications in different fields of science from fast ignition
inertial fusion to medical applications [13–15]. Therefore,
a large number of laboratories are presently accomplishing
experiments on the interaction of ion beams with ionized
matter [16–21].

Experiments often carry out have following setup: A thin
foil of solid material (i.e., carbon) is irradiated with a laser
pulse so it becomes a hot dense plasma. Simultaneously, an
ion beam is sent into the material in opposite direction (to the
target rear side). The ions penetrate the rear side that is still
cold (solid) and arrive subsequently the hot dense plasma part
at the front side, which expands and cools, leading to density
and temperature gradients. In order to study the energy loss of
ions in plasmas generated by a laser, it is important to know
the transition from solid to plasma state in the target, which
depends on the type of material and the excitation energy used.
There are numerous codes that simulate laser interaction with
the target and subsequent hydrodynamic expansion [22–27]. A
set of diagnostics is also necessary that enable us to measure the
conditions of the target with respect to temperature and density

during the interaction time, such as laser interferometry for
measuring displacement of the free electron density and x-ray
spectroscopy for determination of the temperature [28].

The energy loss of projectiles in plasmas differs in solids
and from that in gases due to the specific properties of
the plasma. In the plasma case, projectiles interact not only
with neutral atoms and bound electrons but also with ions
and free electrons. Experiments presented in the literature
[5,11,29,30] have shown that the energy loss of ions in
plasmas is higher than in cold matter mainly for two reasons:
an increase of projectile charge state and a more efficient
energy transfer with the free electrons of the plasma. In
this paper we focus on analyzing the first reason for the
increase of energy loss, the increase of the projectile charge
state.

Then, when calculating energy loss, an important aspect is
to know the projectile charge state. There are various processes
that modify the projectile charge state when it travels through
the target. As it is impossible to measure this parameter for
any projectile at any position during its propagation, it has
to be determined theoretically. Whereas the charge state of
the projectile principally increases when it loses electrons by
collisions with target ions, it decreases due to the capture of
the electrons bound to ions (recombination). There are also
other effects that can change the charge state of the projectiles,
but these two are the most dominant mechanisms. Finally, an
equilibrium charge state is reached if the distance projectile
traverse through the target is long enough. This equilibrium
charge state is mainly a function of the projectile velocity
[3,31–34].

Projectile charge state traversing fully ionized plasmas
was first studied by Nardi and Zinamon [35], who showed
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theoretically that the charge state is significantly higher than
when they pass through cold matter. Later, this effect was
experimentally verified [11,30,36,37]. This increase is mainly
due to the reduction in the recombination processes of the
projectile. This is caused by the smaller number of bound
electrons in plasmas, which are captured by the projectiles as
in case of a solid or a gas (direct free electron capture from
a moving projectile violates a simultaneous conservation of
energy and momentum). Charge-state enhancement affects
the value of the energy deposited in the target, resulting in
an increase of the energy loss in plasmas compared with cold
matter.

In this work, the charge state and the energy loss of
argon projectiles will be analyzed when traveling through
two different ionized carbon plasmas, a partially and fully
ionized one. This energy loss at the projectile velocities
is due to the stopping with the free, mainly, and bound
electrons of the plasma target. The contribution due to free
electrons will be calculated through a dielectric formalism. The
target (plasma) will be characterized by its dielectric function
in the random-phase approximation (RPA) (Sec. II A). The
contribution due to bound electrons will be obtained from
an interpolation between an approximation for low and high
energies (Sec. II B).

Regarding the description of the projectile (Sec. III A), as it
is multielectronic, the model of Brandt-Kitagawa (BK) will be
used, where the projectile electron density is set by a generic
orbital which depends on a variational parameter. To define
the equilibrium charge state of a heavy projectile, a method
will be developed where the number of electrons bound to
the projectile depends on the relative velocity between the
projectile and the target electrons. The target electrons velocity
will be defined by a function of the Fermi velocity (as in solids)
plus a thermal velocity; and then the influence of the plasma
properties on the charge state of the projectile will be studied.
Both the increase in temperature and in electron density of
the plasma contribute to an increase in the charge state, since
these two effects lead to an increase of the target electron
velocity and hence a reduction of the relative velocity. By
decreasing this relative velocity, the number of electrons bound
to the projectile core will be reduced, i.e., increasing its charge
state.

Atomic units (a.u.), e = � = me = 1, are used through all
the work, unless other units are stated.

II. STOPPING POWER

A. Free electrons

The main reason of the energy loss for a projectile at
high energies is the stopping caused by target electrons.
Many models have been dedicated to calculate the electronic
stopping power of different targets. One of the most common is
the dielectric formalism introduced by Fermi [38] and further
developed by Fermi and Teller [39].

In the dielectric formalism, the electron response of an
isotropic and homogeneous material to a perturbation pro-
duced by an external charge density, ρext(r,t), is contained
in the dielectric function (DF), ε(r,t), of the medium. In this
formalism, the expression to calculate the electronic stopping

is well known [40], in a.u.,

Sfe(v) = 2

πv2

×
∫ ∞

0

dk
k

∫ kv

0
dw w [ρext(k,w)]2Im

[ −1

ε(k,w)

]
,

(1)

where ρext(k,w) and ε(k,w) are Fourier transforms of the
projectile charge density and the target dielectric function,
respectively.

The DF, ε(r,t), of a free electron gas without considering
collisions between the target electrons, was calculated first by
Lindhard [41] in the RPA. The RPA is usually valid at high
projectile energies and when these electron collisions are not
significant in the gas [42]. But as we here consider all kinds of
plasmas, one has also these collisions to be taken into account.
Recently, a new DF which includes these collisions for plasmas
at any degeneracy has been obtained [43]. Differences in
energy loss were only around 2% for plasmas with very high
collision frequencies [44]. Then, in this work, RPA DF will be
used for simplicity’s sake.

RPA DF is developed in terms of the wave number k and of
the frequency w provided by a consistent quantum mechanical
analysis,

ε(k,w) = 1 + 1

π2k2

∫
d3k′ f (k + k′) − f (k′)

w + iυ − (Ek+k′ − Ek′)
, (2)

where Ek = k2/2. The temperature dependence is included
through the Fermi-Dirac function

f (k) = 1

1 + exp[β(Ek − μ)]
, (3)

where β = 1/kBT and μ the chemical potential of the plasma
with the free electron density nfe and the temperature T . As
electron collisions are not considered in the RPA DF, the
collision frequency approaches zero, υ → 0.

An analytic RPA DF for plasmas at any degeneracy can be
obtained directly from Eq. (2) [45,46],

εRPA(k,w) = 1 + 1

4z3πkF

[g(u + z) − g(u − z)], (4)

where g(x) corresponds to

g(x) =
∫ ∞

0

ydy

exp(Dy2 − βμ) + 1
ln

(
x + y

x − y

)
, (5)

where u = w/kvF and z = k/2kF are the common dimen-
sionless variables [41]. D = EF β is the degeneracy parameter
and vF = kF = √

2EF is Fermi velocity in a.u.
According to the Eq. (1), the electronic stopping of the

projectile depends on its velocity and the Fourier transform of
its charge density ρext(k,w) that will be estimated in the next
sections.

B. Bound electrons

In partially ionized plasmas, the stopping power of the
electrons still bound to the target plasma ions must be taken
into account. For a plasma target with atomic density nat, the
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projectile stopping due to bound electrons has the forms [47]

Sbe = (Z − N )24πnat

v2
Lbe (6)

and

Lbe =
∑

i

PiLi, (7)

where Z is the atomic number of the projectile, N is the
number of electrons bound to the nucleus, and Lbe and Li are
the stopping number for whole electrons and each shell-bound
electron of the target ion, respectively, and Pi is the average
electron population in the shell of the target atom [48]. Li

is the reckoned interpolating between the asymptotic Bethe
formulas valid either for low or for high projectile velocities
[49]

Li(v) =

⎧⎪⎨
⎪⎩

LiH (v) = ln 2v2

Ii
− 2Ki

v2 for v > vinti

LiB(v) = αiv
3

1+Giv2 for v � vinti

, (8)

vinti =
√

3Ki + 1.5Ii, (9)

where Gi is given by LiH (vinti) = LiB(vinti).
Mean excitation energy, Ii , quantifies the energy exchanged

in excitation and/or ionization processes of the electron shells.
It is determined using

Ii =
√

2Ki

〈r2〉i , (10)

where 〈r2〉i is the average of the square of the radius and
Ki is the electron kinetic energy, for the electron in the i

shell. The friction coefficient for low velocities of each shell
is given within the hydrogenic approximation [50] by αi =
1.067

√
Ki/Ii .

Using Eq. (10), Ii can be easily estimated from the atomic
parameters Ki and 〈r2〉i . These parameters can be determined
through several atomic methods like Hartree-Fock (HF) or
oscillator strength (OS). The HF and OS methods have been
already employed to calculate the stopping power of Xe, CH2,
LiH, and Al partially ionized plasmas, finding a very good
agreement with experimental data [47,51].

III. PROJECTILE

A. Charge distribution

To calculate the electronic stopping of the projectile, it is
necessary to know its charge. If the projectile is not considered
pointlike, then the projectile charge density ρext(r,t) can be
regarded as a nucleus with a charge Z, which is pointlike, and
an electron cloud with a charge density ρe(r,t) that will move
with the velocity v, provided that the relative velocity between
the nucleus and the electron cloud is negligible. This is written
as

ρext(r,t) = Z δ(r − vt) − ρe(r − vt), (11)

and its Fourier transform is

ρext(k,w) = 2π δ(w − kv)[Z − ρe(k)], (12)

where ρe(k) is the Fourier transform of the electron density of
the projectile in an absolute value, because the minus sign in
the equations above indicates the negative value of the electron
charge. The BK model will be used to describe this electron
charge distribution.

In the BK model [52], the density of electrons bound to the
projectile is established by a generic orbital that depends on
the variational parameter 	,

ρeBK(r) = N

4π	3

	

r
e− r

	 , (13)

where N is the number of electrons bound to the projectile, r

is the distance to the nucleus, and 	 is

	(Z,N ) = 0.48N2/3

Z − 1
7N

. (14)

The Fourier transform of the BK electron charge density
needed in Eq. (1) is

ρeBK(k) = N

1 + (k	)2
. (15)

B. Equilibrium charge state

If the projectile is considered pointlike, then as in most
papers the definition of the equilibrium charge state, Qeq, is
used in order to estimate the energy loss. The equilibrium
charge state is the charge state that the ion projectile achieves
after traveling inside the target till the electron capture and
loss processes of the projectile are balanced. Our procedure
to determine the equilibrium charge state of a projectile is
based on the stripping criterion of Kreussler et al. [33]. They
suggested that the equilibrium charge state of the projectile
depends on the relative velocity of the projectile v to the
electrons of the target ve, i.e., vr = |v − ve|. Considering all
the possible orientations of vector v − ve gives

vr = |v − ve| = v2
e

6v

[(
v

ve

+ 1

)3

−
∣∣∣∣ v

ve

− 1

∣∣∣∣
3
]
. (16)

Kreussler has reported only on studies of solid materials
and, therefore, only the valence electrons were considered for
the calculation of the target electron velocity, ve = (2 3

5EF)
1/2

.
In the case of a plasma, the target electron velocity is defined
by its corresponding Fermi velocity, as for solids, plus a term
due to temperature,

ve =
(

2
3

5
EF + 3kBT

)1/2

=
(

3

5
v2

F + 3v2
the

)1/2

=
(

3

5

)1/2

vF

(
1 + 5

2
θ

)1/2

, (17)

where T is the plasma temperature, vthe = √
kBT is the thermal

velocity, kB is the Boltzman constant, vF , is the Fermi velocity
EF = 1/2v2

F in a.u., and θ = kBT /EF = 2v2
the/v

2
F is the

reduced plasma temperature. By substituting this expression
into Eq. (16), the relative velocity between the projectile and
the plasma electrons is obtained.

The equilibrium charge state is then calculated as

Qeq = Z − Neq = Z − Ze−vr /Z
2/3

, (18)
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FIG. 1. Equilibrium charge state of argon projectiles (Z = 18) as
a function of their energy, traveling through carbon at solid state or
at different plasma states, partially or fully ionized.

where Z is the atomic number of the projectile, Neq is
the equilibrium number of bound electrons, and Z2/3 is
the velocity of the electrons bound to the projectile in the
Thomas Fermi model (a.u.). The equilibrium charge state of the
projectile increases together with its relative velocity, unless
it achieves the limit value Qeq = Z when the velocity is high
enough.

Figure 1 shows the dependence of the equilibrium charge
state of an argon projectile (Z = 18) on its velocity when
traversing a solid or plasma carbon target. The differences
between them are significant at low energies; the equilibrium
charge state of the projectile is higher when it travels through
the plasma, because the relative velocity in plasma also
includes the thermal velocity of the electrons, see Eq. (17).
The influence of the plasma conditions on the equilibrium
charge state of argon ions can be also seen. When the plasma
temperature increases, the equilibrium charge state of the
projectile also increases, i.e., the number of electrons bound to
the projectile is reduced. This effect is also more significant at
low energies, because an increase of the plasma temperature
implies an augmentation of the electron thermal velocity,
Eq. (17) and thus a reduction in the relative velocity, Eq. (16)
[40].

After obtaining the equilibrium number of electrons bound
to the projectile Neq = Ze−vr /Z

2/3
, it can be replaced in the BK

electron charge distribution and also in the stopping formula,
Eq. (1),

Sfe(v) = 2

πv2

∫ ∞

0

dk

k

[
Z − Neq

1 + (k	)2

]2

×
∫ kv

0
dw w Im

[ −1

ε(k,w)

]
, (19)

where

	(v) = 0.48N
2/3
eq

Z − 1
7Neq

.

IV. PARTIALLY IONIZED CARBON PLASMAS

Experimental data of energy loss of argon ions in a laser-
generated carbon plasma have been reported in the paper [53].
It was shown that the argon ion loses its initial bound electrons
but it simultaneously captures plasma electrons. In order to
study the projectile charge state at any step inside the carbon
plasma, Frank et al. [53] have used a Monte Carlo code. For
this purpose, a code describing the evolution of the charge
state of ions in cold matter, ETACHA [54], was extended to
describe the special case of a plasma [55]. These codes use
charge exchange cross sections for each projectile charge.

On the other hand, their theoretical description of the energy
loss is to apply a modified version of the CASP code [56]
that calculates the energy transferred from the projectile (with
a defined charge state) to the free and bound electrons of
the ionized carbon. The combination of the CASP code with
the Monte Carlo calculation will be called MC CASP code.
This allows for the determination of the electronic stopping
of each projectile in its current charge state at each step when
propagating through the target. In this model, a description of
the equilibrium charge state of the projectile is not necessary.

The four experiments reported by Frank et al. [53] used
Ar ions with an energy of 4 MeV/u (v = 12.7 a.u.). They
investigated solid amorphous carbon foils with different line
densities, δ = 90, 94, 97, and 100 μg/cm2, respectively, and a
thickness of 0.5 μm, i.e., the volumetric density of this material
is between 1.8 and 2 g/cm3. In our case, the targets have
an average value of the areal density of 95.3 μg/cm2 ± 5%,
so the volumetric density is ρ = 95.3 μg/cm2/0.5 μm =
1.91 g/cm3 (it corresponds to an atomic density of nat =
9.585 × 1022 at/cm3 and a bound electron density of nbe =
6 × nat = 5.75 × 1023 e/cm3).

In this case is the solid foil converted into a plasma state by
irradiation with the nhelix laser system [53]. Figure 2 shows the
carbon plasma conditions at the end of the laser pulse at 12 ns,
when the ions traverse it. At this time, half of the plasma is fully
ionized; the rest remains partially ionized (plasma ionization
state, q ≈ 2–4). Observing the region (40–80 μg/cm2) in
which the plasma is fully ionized (q = 6), one can recognize
that the ion density decreases due to the plasma expansion.
In Table I are given parameters for several points taken from
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FIG. 2. Plasma parameters derived by the MC CASP code from
Ref. [53], 12 ns after starting the laser pulse.
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TABLE I. Plasma parameters derived from Fig. 2.

δ (μg/cm2) ni (ions/cm3) ρ (g/cm3) l (cm) T (eV) q nfe (e/cm3)

0 4.04 × 1019 8.05 × 10−4 0 2.76 2.14 8.65 × 1019

10 4.7 × 1020 9.37 × 10−3 0.0011 9.18 2.11 9.92 × 1020

20 4.89 × 1020 9.74 × 10−3 0.0021 13.54 3.06 1.50 × 1021

30 5.38 × 1020 1.07 × 10−2 0.0028 17.92 3.41 1.83 × 1021

40 1.23 × 1020 2.45 × 10−3 0.0163 72.97 4.82 5.93 × 1020

50 2.83 × 1019 5.64 × 10−4 0.0896 179 6 1.70 × 1020

60 1.64 × 1019 3.27 × 10−4 0.1836 219 6 9.84 × 1019

70 8.66 × 1018 1.73 × 10−4 0.4056 210 6 5.20 × 1019

80 2.92 × 1018 5.82 × 10−5 1.3749 156 6 1.75 × 1019

the ion density distribution in the partially and fully ionized
regions. For instance, the linear density of δ = 60 μg/cm2

corresponds to a density of ni = 1.64 × 1019 ions/cm3, which
is equivalent to ρ = 3.27 × 10−4 g/cm3. The corresponding
free electron density at this point will be nfe = q × ni =
6 × (1.6 × 1019) ions/cm3 = 9.84 × 1019 e/cm3. This value
is much less than the electron density calculated from the solid
carbon density, nbe = 5.75 × 1023 e/cm3, which is caused by
the plasma volumetric expansion. The corresponding electron
temperature at δ = 60 μg/cm2 is 219 eV.

A. Argon charge

In case of the argon projectiles, their charge state is one
of the most relevant parameter to calculate the electronic
stopping. The equilibrium charge state formula, Eq. (18) will
be used in order to take into account the variability of their
charge state depending on the conditions of plasma target. For
instance, for an argon ion with an energy 4 MeV/u (velocity
12.7 a.u.) at the carbon plasma distance of 80 μg/cm2, where
the free electron plasma density is nfe = 1.752 × 1019 e/cm3,
and the temperature is T = 156 eV, is the equilibrium
charge state Qeq = Z − Ze−vr /Z

2/3 = 15.35. This result can
be checked estimating the effective charge state from the
electronic stopping, defined as

Qeff ≡
√

Sfe(Ar)/Sfe(H+), (20)

evaluated at the same conditions as the last equilibrium charge
state, Qeq, i.e., at 80 μg/cm2, nfe = 1.752 × 1019 e/cm3

and T = 156 eV. From Fig. 4 at 80 μg/cm2, Sfe(Ar) =
0.02069 eV/Å, and doing the same calculations for protons,
Sfe(H+) = 8.613 × 10−5 eV/Å. For this case is the effective
charge state Qeff = 15.50, which is approximately 1% higher
than the equilibrium charge value, Qeq = 15.35. This can be
due to the use of the BK charge distribution, see Sec. III A,
which causes an increase of the electronic stopping comparing
with a pointlike charge distribution [40]. If we compare the
plasma equilibrium charge state with those at solid carbon
conditions, ne = 5.75 × 1023 e/cm3, one obtaines Qeqs =
Z − Ze−vr /Z

2/3 = 15.18, which is slightly lower than the value
for the last plasma state. As we do not calculate in this work
the stopping power of the carbon solid, we cannot estimate
the corresponding effective charge, Eq. (20). So the effective
charge in solid is supposed to be about 1% higher than the
equilibrium value, similary as in plasma state due to the BK
distribution, resulting in a Qeffs � 15.33.

Our results can be compared with those reported by Frank
et al. [53] for different plasma conditions, see Fig. 3, showing
a similar behavior: the charge state drop off in the partially
ionized zone and increase in the fully ionized zone. According
to their code MC CASP, the charge state of the projectile at
80 μg/cm2 is QMCCASP = 16.2, i.e., higher than both the
initial charge state of argon ions, Q0 = 16, and the value they
obtained for solids, Q MCCASPs = 15.6. These calculations for
the charge state from MC CASP code yielded quite higher
values as compared with those from our model, even in the
solid case. This can be checked comparing the results for
solid carbon with the SRIM code for equilibrium charge state
[3], Q eqSRIM = 14.73. Using SRIM code, it is also possible
to estimate the effective charge in solids, QeffSRIM = 14.87,
which is approximately 1% higher than the equilibrium value.
It is surprising that the effective charge obtained with the SRIM

code increases similar to our calculations. This fact, together
with the fact that the SRIM results are closer to our values
compared with those from the MC CASP code, confirms our
results.

The point that our result for effective charge state in
plasmas, Qeff = 15.50, is a bit lower than the one obtained
by the MC CASP code, QMCCASP = 16.2, can be due to the fact
that the latter minimizes the effect of electron capture by the
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Q
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Frank et al. (MC CASP)
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Ours
Solid
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FIG. 3. Equilibrium charge state of argon ions traveling through
the carbon plasma of Fig. 2. The red-square line was calculated with
the MC CASP code from Ref. [53] and the blue-triangle line was
calculated by us.
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FIG. 4. Electronic stopping of Ar ions in carbon plasma calcu-
lated with MC CASP code [53] (solid lines) and with our model (dashed
lines). SRIM data [3] for solid carbon and Bethe formula for free
electrons are also plotted.

projectile, whereas the formula for the equilibrium charge state
used in our model takes into account this effect in a similar way
as for solids, Qeffs = 15.33. Another reason because the argon
projectile does not reach the equilibrium charge state could
be that the plasma is not large enough. The value of the final
charge state will be normally higher than the equilibrium one,
if the initial charge is higher than the equilibrium value. But in
this work it is always supposed that the target is large enough
so the projectile can achieve its equilibrium charge state. More
surprising is the fact that our model with different charge
estimations yields similar energy loss values as compared to
those and experimentally shown in Ref. [53], see next section.

B. Argon energy loss

Next step to calculate argon projectile energy loss is to
estimate its stopping with the target electrons. The electronic
stopping estimated with the MC CASP code by Frank et al.
[53] is plotted in Fig. 4. The figure shows the total electronic
stopping (black solid line), the contribution of free (red solid
line) and bound (blue solid line) plasma electrons calculated
with the MC CASP code; additionally is also the solid carbon
electronic stopping given (green solid line), with a constant
value of 18.5 keV/(μg/cm2). The results shows that in the
coldest part of the plasma (partially ionized) both the bound
and the free parts contribute to the total electronic stopping
and the sum is only slightly higher than in the solid electronic
stopping. However, in the fully ionized part the total electronic
stopping is mostly caused by the free electron contribution and
its value exceeds those for the solid case. This comes from the
fact that energy transfer in the target is more efficient with free
electrons, i.e., a fully ionized plasma is a medium with a high
stopping power.

Our calculation results on electronic stopping are also
added to the Fig. 4. For the solid carbon, we have used the
SRIM code [3], SeSRIM(Ar, ρ = 1.91 g/cm3) = 353.3 eV/Å →
1/ρ × SeSRIM = 18.5 keV/(μg/cm2), the same as the value

of Frank et al. [53]. In the following, is the electronic
stopping in the carbon plasma 12 ns after the laser pulse
estimated as shown in Fig. 2. For example, at δ = 60 μg/cm2,
where plasma parameters are nfe = 9.84 × 1019 e/cm3 and
T = 219 eV, is the free electronic stopping according to
our theoretical model, Eq. (1), of Sfe(Ar, ne = 9.84 × 1019

e/cm3, T = 219 eV) = 0.1432 eV/Å → 1/ρ × Sfe = 43.82
keV/(μg/cm2). This value and other ones for the different
line densities are depicted in Fig. 4 in the same colors but
with dashed lines. Our results have similar behavior as those
obtained from the code, showing an increasing with areal
density, i.e., with degree of ionization. As it can be seen,
our values are also a bit higher for the fully ionized part as
compared to the values from their calculations. In their case is
the difference with the value for a solid target of a factor of 2,
whereas it is in our case a bit higher, 2.36. In order to find out
what the best estimation is, the Fig. 4 shows also the results
obtained with the well-known Bethe formula for high energies
(as in this work, 4 MeV/u) considering only free electrons,

SBefe(v) = Z2w2
p

v2
ln

(
2v2

wp

)
, (21)

where wp = √
4πnfe is the plasma frequency, all in a.u.. As it

is seen, our results are more likely to the Bethe formula than
to those obtained with the MC CASP code, such confirming
our model. The Bethe QCasp and Qk results are obtained
for plasma free electrons with the charge-state values from
MC CASP code and also our model as given in Fig. 3. The
QCasp results differ from their former estimation for high
ionization degree in the plasma, whereas the Qk results agree
quite well with our model. On the other hand, Eq. (6) is used
to calculate the electronic stopping due to bound electrons. As
it can be seen, our estimation has due to bound electrons the
same tendency than the results from the MC CASP code.

Figure 5 shows the relative energy loss of argon ions in
carbon foils heated by the laser pulses. According to the
experimental data (blue up-triangles), one can state that as
soon as the laser reaches the carbon foil, at 0 ns, a reduction of
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the energy loss occurs, reaching a minimum value at 3–4 ns.
Subsequently it grows and an energy loss value in solid carbon
of 100% ≈ 1.8 MeV is achieved at 9 ns, reaching the maximum
value at 13 ns (130% ≈ 2.35 MeV). The reason why the initial
reduction in electronic stopping occurs is still unresolved,
although it seems to be related to the possible inhomogeneities
of the foil structure [53]. Anyway, to compare the experimental
data with the theoretical results, we are mainly interested in
the energy loss at 12 ns, since it is at this moment when we
know the plasma parameters, see Fig. 2.

Results of calculations using MC CASP code are also
included in the Fig. 5. It is clearly seen the difference between
the results from theoretical code (red down-triangle) and
the experimental data (blue up-triangles). Electronic stopping
calculated with this code, assuming that the target is a neutral
gas that expands with the same density distribution as the
plasma, is also plotted (black left-triangle). One can recognize
that their experimental as well as theoretical data (MC CASP

code) for plasmas agree well for the interval between 12 and
18 ns after the laser pulse. In this period, more than half of the
target is fully ionized, which explains the significant increase
regarding cold matter of the electronic stopping due to free
electrons.

In this Fig. 5 is the energy loss represented in percentages,
where 100% corresponds to the energy loss in solid carbon,
which is according to the data of Fig. 4 of 1.8 MeV.
Twelve nanoseconds after the laser pulse is the value of
the experimental energy loss of 127%, which corresponds to
2.29 MeV, whereas the MC CASP code calculation results in
140%, i.e., 2.52 MeV, which means the relative error is 13%.

To calculate the energy loss with our model, it is necessary
to multiply the estimation of the stopping by the distance the
projectile traveled in the target. For the solid, the distance is the
thickness of the foil, 0.5 μm, leading to an energy loss of �E =
SeSRIM × �x = 353.3 eV/Å × 0.5 × 104 Å = 1.8 MeV, as in
Frank et al. [53]. In case of the plasma state the distance is
not the thickness of the solid carbon foil since simultaneously
is the solid converted into plasma which expands conserving
the number of ions. Therefore here, it is required to take into
account the plasma areal density in its different states, i.e.,
the partially and the fully ionized parts. The energy loss in the
plasma is estimated by integrating the values from Fig. 4 along
areal density. Doing that for the total electronic stopping with
the MC CASP code, one obtains approximately the same value
as mentioned before, namely 2.53 MeV. On the other hand, the
total energy loss estimated with our model is 2.56 MeV, which
is exactly 142% of the energy loss in solid carbon. This result
is similar to their theoretical calculation but a bit higher than
the experimental result at 12 ns as shown in Fig. 5, �EExp =
127% × 1.8 MeV = 2.29 MeV. A reason for the difference
could be that their estimations using the hydrodynamical code
MIMOZA for plasma conditions at 12 ns were inaccurate. If
the plasma electron density would be slightly smaller or the
plasma temperature slightly higher, then the calculated energy
loss will be lower, better approaching the experimental value.

To conclude, the energy loss calculated with our methods
for the carbon plasma at 12 ns is 142% of the energy loss in
solid carbon, which is a value similar to that obtained with the
MC CASP code by Frank et al. [53], 140%, even though our
model gives different charge-state values compared with their

code as depicted in Fig. 3. It is notable that both theoretical
estimations are a bit higher than the experimental results,
127%, which could be due to the fact that their estimations on
the plasma conditions at 12 ns were inaccurate. Additionally,
our results for stopping power coincide better with the results
of the well-known Bethe formula at high energies, which also
supports the correctness of our theoretical model.

This energy loss enhancement is analyzed in terms of an
increase of the effective charge state of the projectile. Our
model gives a charge state increase of 1.1%, which corresponds
to a 2.2% surplus in the energy loss. However, this increase is
not large enough to explain the gain in the total energy loss.
It is supposed that the rest, ∼39.8%, will be due to a more
efficient energy transfer with the free electrons of the plasma.

V. FULLY IONIZED CARBON PLASMAS

As mentioned in the Introduction, experiments in the
literature show that the energy loss of ions in plasmas is higher
than the energy loss in cold matter mainly for two reasons: an
increase of projectile charge state and a more efficient energy
transfer with the free electrons of the plasma. Following a new
experiment of Frank et al. [57], where a fully ionized plasma
has been achieved, we can now focus on analyzing the increase
of the projectile charge state, neglecting the influence of the
target ionicity. In a plasma, the cross sections for ionization
and recombination of the projectile lead to different projectile
charge states than in the solid, directly affecting its electronic
stopping.

In the experiment the plasma was created by two laser
beams irradiating a thin carbon foil of 0.5 μm from opposite
sides, resulting in a fully ionized plasma of ne � 1020 e/cm3

and T � 180 eV. Then an argon ion beam with an energy of
4 MeV/u (v = 12.7 a.u.) penetrates the target plasma. The
diameter of the ion beam is reduced by a small pinhole to
500 μm. This assures that the ion beam interacts only with the
central and most homogeneous part of the plasma of the same
areal density.

A. Argon charge

The experimental charge state of argon ions evolves as
follows (see Fig. 6): For times earlier than 0 ns, a constant
mean charge state of 15.8 measured is for the solid target,
which is 0.2 times higher than values reported in Ref. [53];
and more than once higher than the expectation from the SRIM

code, QeqSRIM = 14.73, see Sec. IV A. However, due to the
nature of the plasma expansion, the target density decreases to
ne = 1020 cm3 after – ns. For this period, the charge state due
to the interaction of the argon projectile with the plasma starts
to exceed those in cold matter. The maximum mean charge
state measured is 16.2 and hence 0.4 charge states higher than
in solid target. The charge state in a gas compared to a solid
foil is a bit lower [3,58], which is often called the density
effect. This effect can be judged with the SRIM code [3] which
gives QeqSRIMg = 14.69, which is a bit smaller but does not
significantly differ from the value for the solid, and therefore
this density effect can be neglected. Thus, the experimental
increase of the equilibrium charge state of the projectile due
to the plasma transformation can be established as �Qexp �
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FIG. 6. Evolution of the equilibrium charge state of argon ions
traversing the fully ionized carbon plasma.

0.4 or 2.5%, which is significant, since this corresponds to a
change in the energy loss of 5.1%. But this is not the main
reason for the total increase in the energy loss, as will be seen
later.

For our model, the equilibrium charge state of argon ions at
these plasma conditions (ne � 1020 e/cm3 and T � 180 eV)
is Qeq = 15.37, whereas the effective charge, Eq. (20), is
Qeff = 15.52, which is still far from the experimental datum of
16.2. The equilibrium charge state at solid carbon conditions
(ne = 5.75 × 1023 e/cm3) is Qeqs = 15.18, and the effective
charge Qeffs = 15.33, which is quite lower than their value for
the solid of 15.8 but near the SRIM code with QeqSRIM = 14.73.
Assuming the experimental data for the charge states are
correct, the difference to our model could be explained with a
mistake in calculating the plasma conditions by their code
MIMOZA or by a difference in the incident energy of the
projectile. For example, if the initial projectile energy is higher,
then the charge state of the projectile in the targets also will be
higher. As mentioned before, another reason could be that the
argon projectile does not attain the equilibrium charge state if
the target is not large enough, resulting in a final charge higher
than the equilibrium one. This holds, of course, if the initial
charge is higher than the equilibrium one. But in this work it
is always supposed that the projectile achieves its equilibrium
charge state.

For this case a shift in the value of our solid charge state is
proposed in order to fit their experimental data for a solid (15.8)
[57]. In the result, our estimations for the plasma state coincide
quite well with the ones from experiments. In Fig. 6 shows
values to compare our rectified model with their experimental
and theoretical data depending on the plasma conditions at
each time.

B. Argon energy loss

The energy loss of argon ions in solid carbon can be
easily estimated multiplying the electronic stopping calculated
before with the solid foil length of 0.5 μm. For the equilibrium
charge state estimated by the SRIM code, QeqSRIM = 14.73, the
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FIG. 7. Energy loss of argon ions at 4 MeV/u traversing the fully
ionized carbon plasma.

energy loss is �E = S eSRIM × �x = 353.3 eV/Å × (0.5 ×
104) Å = 1.8 MeV. This value is a bit lower than the
experimental data, see Fig. 7, but equal to those obtained in
the latter Sec. IV, and therefore one can conclude that one
of them seems to be wrong. If the value of Frank et al. [57]
for the charge state, 15.8, is used, then the energy loss now
will be �E = SeSRIM × �x = 409.4 eV/Å × (0.5 × 104)
Å = 2.05 MeV, which fits wellwith the experimental data
for the solid state at short times, see Fig. 7.

For larger times, a plasma state is formed, resulting in
an increase of the argon energy loss. This is the so-called
EPS. In addition to the experimental data, Fig. 7 shows
the estimation performed with their MC CASP code. From
the figure, one can clearly recognize that, for shorter times,
after 4 ns, their theoretical results (MC CASP code) are quite
higher than the experimental values, while our calculations
fit very well. At the maximum values, around 7 ns, there is
not enough experimental information, but both their code and
our estimations yield similar values of ∼3.8 MeV, which is
higher than the unique experimental value of 3.2 MeV. For
the intermediate times, between 10 and 14 ns, their code and
our model agree very well with the experimental data. For the
last point measured, the theoretical estimations are over the
experimental datum.

The EPS is supposed to be achieved in the time interval
from 4 to 10 ns. In this interval, the difference between the
experimental energy loss in cold and in the plasma state
is approximately 46.7%, whereas the theoretical estimations
gave about 62.5%. Moreover, the relative error between the
experimental data and the theoretical models in calculating the
EPS is about 15.8%, which is near the error values obtained
for partially ionized carbon plasmas, 13–15%.

On the other hand, one has to remark that only a small
part of the energy loss increase of 5.1% is due to the effect of
the charge increase (as it is seen in last section), whereas the
major part is caused by the more efficient energy transfer with
the free electrons, ∼57.4%. This contribution is higher than
those corresponding to a partially ionized plasma of ∼32.2%,
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see Sec. IV B, because there are more free electrons in a fully
ionized plasma. This confirms that most of the EPS is due
to the transition from bound electrons in a solid state to free
electrons in a plasma state.

VI. CONCLUSIONS

The energy loss of atomic projectiles in plasmas have been
calculated with the models described above and compared
with experimental data from the literature. Specifically, our
calculations have been compared with the experimental data
of argon projectiles with energy of 4 MeV/u propagating
through a partially ionized carbon plasma [53]. Calculated
energy loss values are somewhat higher, 142%, than the
experimentally obtained one of 127%. Our value is similar
to the value estimated for plasma conditions investigated with
the MC CASP code from Ref. [53] of 140%. This could be
due to the fact that the hydrodynamical code MIMOZA used
by Frank et al. [53] yields plasma conditions that differ from
the real ones. Using in the theoretical models reduced values
of plasma electron density, which agrees with an expansion
of the plasma, the energy loss would also be lower. Or if real
plasma temperatures were higher than those obtained using
their code, the theoretical energy loss will be lower than those
in the experiments. Another reason could be that the initial
projectile energy was higher than the one employed in the
calculations, which also results in a small energy loss. Both
the experimental data and values from the theoretical models
indicate a considerable increase of the energy loss in plasmas
compared to the one in solids of 100%, which is known as EPS.

The EPS has been analyzed in terms of an increase of the
effective charge state of the projectile in the plasma target.
Our model gives an equilibrium charge state increase of 1.1%,
which is lower than the increase obtained by the code of
Frank et al. Surprisingly, different estimations of the increase
of the charge state gave similar results for the energy loss.
An enhancement of 1.1% in the equilibrium charge state
corresponds to an increase in the energy loss of 2.2%, which
is only a small part of the total energy growth of ∼42%, and
therefore it is supposed that the rest, ∼39.8%, will be caused
by a more efficient energy transfer with the free electrons of
the plasma.

To avoid the influence of the plasma ionization in any
calculation, the energy loss of argon ions is also analyzed
for a fully ionized carbon plasma of ne � 1020 e/cm3 and
T � 180 eV [57]. The charge state in solids calculated with
our model is 15.33, which is again lower than the calculated
one in the work of Frank et al. [57] of 15.8. Our value is more
similar to the SRIM code experimental data. This could mean
that the experiments have been done using initial projectile
energies or target conditions that differ from those applied in
the theoretical models. To solve this, our model was modified
to fit the Frank et al. experimental value for a solid target.
In this case our results for the fully ionized plasma were also
similar to their experiments. The increase of the argon charge
state in the plasma state is about 2.5% depending on the plasma
conditions, which means the increase in the energy loss in the
plasma target is 5.1%, i.e., it is larger than the 2.2% obtained for
the partially ionized plasma. This confirms that the projectile
charge state rises with the ionization of the plasma.

The energy loss using the modified charge state value has
adjusted quite well to the experimental data. The difference
between the experimental energy loss in cold and in the plasma
state, i.e., the EPS, is approximately 46.7%, while the
theoretical estimations yield about 62.5%. Then the relative
error between the experimental data and the theoretical models
in calculating the EPS is about 15.8%, which is similar to the
error obtained for partially ionized carbon plasmas, 13–15%.
Only a small part of the energy loss increase of 5.1% is due
to the effect of the charge increase, whereas the major part,
∼57.4%, corresponds to the more efficient energy transfer
of the projectile with the free electrons. This contribution is
higher than those of a partially ionized plasma of ∼39.8%,
because there are more free electrons in a fully ionized state.
This confirms again that most of the EPS is due to the transition
from bound electrons in the solid conditions to free electrons
in a plasma.
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