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Theory of density fluctuations in strongly radiative plasmas
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Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work
in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing
hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion
of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be
taken into consideration in such regimes.
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I. INTRODUCTION

Strongly radiative environments can be found in both
laboratory and astrophysical systems. For example, in the labo-
ratory, radiation transport must be considered in hohlraums [1]
and more generally in inertial confinement fusion experiments
[2], as well as in tokamaks [3]. In astrophysics, radiation
plays an important role in jets from young stellar objects
[4], molecular clouds in star-forming regions [5], and plasmas
surrounding active galactic nuclei, just to cite a few examples.
In all of these cases, it is reasonable to expect that radiation
changes the spectrum of the density fluctuations in some
nontrivial manner, and thus neglecting radiation effects when
diagnosing laboratory plasmas could significantly distort the
inferred properties.

To illustrate this effect, we consider the special case of a
dense plasma in thermodynamic equilibrium, the warm dense
matter (WDM) regime, characterized by strongly correlated
ions and degenerate electrons [6]. These plasmas are found in
the core of Jovian planets [7], in white dwarves, and in the crust
of neutron stars [8]. Due to the high density, the radiation mean
free path is small and the system is optically thick. Simulation
and modeling of the dynamical behavior of WDM states,
however, remains difficult, though there have been advances
stemming from the availability of accurate laboratory data
using high-intensity lasers and pulsed power facilities [9–11],
as well as newer computational approaches that allow density
functional theory techniques to directly simulate the dynamics
of thermal density fluctuations [12,13], albeit a full inclusion of
radiation processes is beyond current computational capabili-
ties. In view of these limitations, a simplified theoretical model
of density fluctuation in equilibrium with the radiation field
could provide an important tool to benchmark computation
models and to help the interpretation of experimental data.

The fundamental thermodynamic quantity that describes
the microscopic space- and time-dependent behavior of WDM,
and other dense plasmas, is the dynamic structure factor
(DSF), which is also proportional to the x-ray scattering
cross section [14] and thus can be measured experimentally.
X-ray Thomson scattering is an important diagnostic in many
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plasma physics experiments, both in the WDM regime and
beyond (see Ref. [14] and references within). The comparison
between the experimental and calculated DSF provides an
important tool for the validation of theoretical models, toward
a comprehensive understanding of these systems [15,16]. The
DSF, S(k,ω), is formally defined as [6]

S(k,ω) = 1

2πN

∫
eiωt 〈ρ(k,t)ρ(−k,0)〉 dt, (1)

which characterizes thermal density fluctuations ρ(k,ω) of
wave vector k, frequency ω, where N is the total number
of particles and 〈· · · 〉 represents an ensemble (or thermal)
average.

An important case of density fluctuations is the one that
corresponds to hydrodynamic fluctuations. By hydrodynamic
we mean the regime where the spatial and temporal scales
of the fluctuations are much larger than the mean particle
separation and the mean time between collisions, respectively.
This implies k → 0, ω → 0. However, in practice, for hy-
drodynamics to be applicable, both the wave number and the
frequency do not need to be negligibly small as long as the
detailed kinetic behavior of the system can be ignored [17]. The
hydrodynamic description of density fluctuations is important
because it can be solved analytically [18,19]. Moreover, the
analytical results for the DSF in a dense viscous plasma are
in very good agreement with molecular dynamics simulations
[20]. On the other hand, there are several astrophysical and
laboratory conditions where viscous hydrodynamics (i.e., the
Navier-Stokes equations) may not be sufficient to capture all
the relevant physical processes. These include, for example, the
presence of dynamically strong magnetic fields and radiation
transport as well as quantum effects [21,22].

In this paper we consider the equations of radiative hydro-
dynamics for matter in equilibrium with the radiation field [21]
and analytically derive a modified form of the DSF for both
optically thick and optically thin plasmas. We also assume, for
the optically thick case, that the thermally generated radiation
field is described in the diffusive limit. We will show that, under
certain conditions, radiation transport can induce significant
changes in the dynamical response of the medium. As we
have discussed above, this is particularly important since
numerical calculations (either based on molecular dynamics
or density functional theory) of the DSF in strongly radiative
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plasmas are not yet possible, due to the very demanding
computational efforts. This paper begins with the general form
of radiation hydrodynamic equations for an optically thick
fluid in Sec. 2. In Sec. 3 we then derive the DSF by considering
small fluctations in the plasma properties using a linearization
procedure. In Sec. 4 we examine an optically thin fluid. In Sec.
5 we discuss the specific conditions to when radiative effects
ought to be considered in the DSF. We summarize our work in
Sec. 6.

II. GENERAL EQUATIONS FOR AN OPTICALLY
THICK FLUID

The equations for the conservation of mass, momentum,
and energy, as discussed in Ref. [21], but considering only
viscous and radiative terms for an optically thick fluid (that is,
a fluid where the mean free path of radiation is less than the
spatial extent of the plasma) are given, respectively, by

∂ρ

∂t
+ ∇ · ρu = 0, (2a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · σ ν + frad, (2b)

ρ

(
∂ε

∂t
+ u · ∇ε

)
+ ∂ER

∂t

= −p∇ · u − frad · u − ∇ · [FR + (pR + ER) · u]

+∇ · σ ν · u − ∇ · q, (2c)

where ρ is the mass density, t is time, u the fluid velocity, p the
pressure, σ ν the stress tensor, frad the radiation force on matter,
ε the internal energy, ER the energy density of the radiation
field, FR the radiative energy flux, pR the radiation pressure,
and q the heat flux. (The radiation pressure is included for
completeness, but, as we will see later, it does not have a large
impact on the DSF in our example.) If radiation transport is
considered in the diffusive limit, the above quantities can be
written as

− ∇pR = frad, (3a)

FR = −16σT 3

3κRρ
∇T , (3b)

pR = ER

3
= 4σT 4

3c
, (3c)

where σ is the Stefan Boltzmann constant, T the temperature,
c the adiabatic sound speed, and κR the Rosseland opacity,
given the form [21]

κR = κ̃RρaT b, (4)

where κ̃R is a constant that depends on the material. In this
case we consider the thermally generated radiation field of
the plasma itself, rather than the action of an externally
applied field. Substituting these relations into Eqs. (2b) and
(2c), after some simplification (see the appendices for details),

we obtain

ρ

(
∂u
∂t

+ u · ∇u
)

= −
(

c2

γ
∇ · ρ + c2

γ
αT ρ∇T

)
+ η1[∇2u + ∇(∇ · u)]

+ η2∇(∇ · u) − 4σ

3c
∇T 4, (5a)

ρCV

(
DT

Dt
+ γ − 1

αT

∇ · u
)

+ ∂

∂t

(
4σT 4

c

)
= −∇ ·

(
16σT 4

3c
u
)

+ ∇ ·
(

16σT 3

3κRρ
∇T

)
− u∇ ·

(
4σT 4

c

)
+ ∇ · σ ν · u + κ∇2T , (5b)

where γ is the adiabatic index, αT the coefficient of thermal
expansion, η1,2 are the first and second coefficients of dynamic
viscosity, CV is the heat capacity at constant volume, and κ is
the thermal conductivity. We use D/Dt as the material deriva-
tive, defined as D/Dt = (∂/∂t + u · ∇). These are the general
equations for an optically thick plasma, with terms relating to
the radiative effects of the thermally self-generated radiation
field, viscous nature of the fluid, and convective heat transfer.

III. FLUCTUATIONS

We now consider small fluctuations, moving the system
away from the equilibrium state, and linearize the above
equations. We assume the system is at equilibrium at a density
ρ0, temperature T0, and velocity u0 = 0, and small perturba-
tions away from the equilibrium are added via

δρ = ρ − ρ0, δT = T − T0, δu = u,

which then allows us to rewrite Eq. (2a) as

∂ρ0

∂t
+ ∂δρ

∂t
+ ∇ · (ρ0u) + ∇ · (δρδu) = 0.

As we consider the fluctuations to be small we disregard
fluctuation terms of order greater than one. Thus,

∂δρ

∂t
+ ∇ · (ρ0u) = 0. (6a)

Similarly we can write the momentum and energy equations,
respectively, as (see the appendices for further details)

ρ0
∂u
∂t

= − c2
0

γ0
(∇δρ + αT 0ρ0∇δT ) + η10 [∇2u + ∇(∇ · u)]

+ η20∇(∇ · u) − 16σT 3
0

3c0
∇ · δT , (6b)[(

16σT 3
0

c0ρ0CV 0
+ 1

)
∂

∂t
−

(
γ0

κ0

ρ0cV 0
+ 16σT 3

0

3κR0CV 0ρ
2
0

)
∇2

]
δT

= −∇ · u

(
γ0 − 1

αT 0
+ 16σT 4

0

3c0ρ0CV 0

)
. (6c)

In the above equations terms with the subscript “0” refer to
quantities for equilibrium conditions.
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To solve Eqs. (6a), (6b), and (6c) we take the space (Fourier)
and time (Laplace) transform,

δ̃xk(s) =
∫ ∞

0
dt e−st

∫ +∞

−∞
d3r eik·r δx(r,t),

where x is a chosen plasma property (either density, temper-
ature, or velocity), with the tilde indicating the transformed
property, and s = ε + iω is the complex Laplace variable.
Following the method discussed in Boon and Yip [23], we
define our independent variables as δρ, j M = ρ0u and g =
ρ0δT . This gives us the following equations:

sδ̃ρk(s) + ik · j M (s) = δρk(0), (7a)

(s + νl0k
2) j̃ M

k (s) + c2
0

γ0
ikδ̃ρk(s)

+ ik
(

c2
0αT 0

γ0
+ 16σT 3

0

3c0ρ0

)
g̃k(s) = j M

k (0), (7b)

[(
16σT 3

0

c0ρ0CV 0
+ 1

)
s + k2

(
γ0χ0 + 16σT 3

0

3κRρ2
0CV 0

)]
g̃k(s)

+ ik
(

γ0 − 1

αT 0
+ 16σT 4

0

3c0ρ0CV 0

)
· j M

k (s)

=
(

16σT 3
0

c0ρ0CV 0
+ 1

)
gk(0), (7c)

where νl0 = (2η10 + η20 )/ρ0 is the longitudinal viscosity, and
χ0 = κ0/ρ0CP 0 is the thermal diffusivity (CP 0 is the heat
capacity at constant pressure). These equations can be solved
for δ̃ρk(s) (see the appendices for details). Since terms
involving cross-correlation of δρ and j M , or g, vanish, as they
are all independent variables, the density-density correlation
function is given by

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 =

(s + νl0k
2)(�s + XT hk

2) + k2
( c2

0αT 0

γ0
+ 16TT h

)(
γ0−1
αT 0

+ 16TT hT0
CV 0

)
s
[
(s + νl0k

2)(�s + XT hk2) + k2
( c2

0αT 0

γ0
+ 16TT h

)(
γ0−1
αT 0

+ 16TT hT0
CV 0

)] + (c0k)2

γ0
(�s + XT hk2)

, (8)

where we have defined

� = 1 + 16σT 3
0

c0ρ0CV 0
,

XT h = γ0χ0 + 16σT 3
0

3κR0ρ
2
0CV 0

,

TT h = σT 3
0

3c0ρ0
.

Defining S(k) = 〈δρ∗
k (0)δρk(0)〉 (the static structure factor),

the dynamic structure factor is then obtained by taking the limit

S(k,ω)

S(k)
= 2�

[
lim
ε→0

〈δρ∗
k (0)δ̃ρk(s = ε + iω)〉

〈δρ∗
k (0)δρk(0)〉

]
. (10)

This can be separated into partial fractions and in the limit of
small k becomes

S(k,ω)

S(k)

=
[

1 − 1

γ0

(
�c0k

CQ

)2
]

2ξQXT hk
2

(XT hk2)2 + ω2
+ 1

γ0

(
�c0k

CQ

)2

×
⎧⎨⎩ �Rk2

(�Rk2)2+[
ω+( CQ√

�

)]2 + �Rk2

(�Rk2)2+[
ω − ( CQ√

�

)]2

⎫⎬⎭,

(11)

where we have defined

C2
Q = c2

0k
2

γ0

[
(γ0 − 1) + � + 16TT hT0αT 0

CV 0

]
+ k2

[
16TT h(γ0 − 1)

αT 0
+ 256T 2

T hT0

CV 0

]
,

ξQ = c2
0k

2

γ0

1

C2
Q

,

�R = XT h

(
1
�

− ξQ

) + ν�0

2
.

As we will discuss below, this representation of the structure
factor has a similar form as the one derived for the case of pure
hydrodynamic fluctuations.

IV. GENERAL EQUATIONS FOR AN OPTICALLY THIN
FLUID

Optically thin conditions can be found for tenuous plasmas
found in laboratory and astrophysical systems. For the sake
of generality, we will now derive the the density fluctuation
spectrum for an optically thin plasma but identify later that
changes induced in the DSF are minimal for this condition.
Following the same approach as before, we now focus on the
case of a fluid where the mean free path of radiation is far
greater than the spatial extent of the plasma [21]. The relevant
equations are

∂ρ

∂t
+ ∇ · ρu = 0, (13a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · σ ν, (13b)

ρ

(
∂ε

∂t
+ u · ∇ε

)
= −p∇ · u + ∇ · σ ν · u + κ∇2T − ��,

(13c)

where we assume that radiative losses are treated in terms of a
cooling function, ��, which is parametrized as

�� = ρκP σT 4,
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where κP is the Planck mean opacity, which we assume to have
the form κP = κ̃P ρaT b [21], with κ̃P a material dependent
constant. It is thus obvious that, for optically thin plasmas,
the radiation only acts as a loss term in the energy but has no
significant impact on the momentum of the plasma.

We now proceed by linearizing the above equations and take
small fluctuation of the equilibrium state, as for the optically
thick case, δρ = ρ − ρ0,δT = T − T0,δu = u, which gives

∂δρ

∂t
+ ∇ · (ρ0u) = 0, (14a)

ρ0
∂u
∂t

= − c2
0

γ0
(∇ · δρ + αT 0ρ0∇δT ) + η10 [∇2u + ∇(∇ · u)]

+ η20∇(∇ · u), (14b)[
∂

∂t
− κ0

CV 0ρ0
∇2 + (b + 4)

κP 0ρ0

CV 0
σT 3

0

]
δT + γ0 − 1

αT 0
∇ · u

= − κP 0σ

ρ0CV 0

[
ρ0T

4
0 + (a + 1)T 4

0 δρ
]
. (14c)

Taking again our independent variables to be δρ, j M =
ρ0u, and g = ρ0δT , and applying Laplace and Fourier trans-
forms to Eq. (14) gives

sδ̃ρk(s) + ik · j M (s) = δρk(0), (15a)

(s + νl0k
2) j̃ M

k (s) + c2
0

γ0
ik[δ̃ρk(s) + αT 0g̃k(s)] = j M

k (0),

(15b)[
s+γ0χ0k

2 + (b + 4)
κP 0

CV 0
σT 3

0

]
g̃k(s)+γ0 − 1

αT 0
ik · j M

k (s)

+ κP 0

CV 0
(a + 1)σT 4

0 δρ̃k(s) = gk(0). (15c)

As for the optically thick case, we can solve these equations
to get δ̃ρk(s) (for more details on the procedure see the
appendices) and then construct the normalized correlation
function:

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉

=
(s + νl0k

2)
[
s + γ0χ0k

2 + (b + 4) κP 0
CV 0

σT 3
0

] + γ0−1
γ0

c2
0k

2

s
{
(s + νl0k

2)
[
s + γ0χ0k2 + (b + 4) κP 0

CV 0
σT 3

0

] + γ0−1
γ0

c2
0k

2
} + c2

0k
2

γ0

[
s + γ0χ0k2 + (b + 4) κP 0

CV 0
σT 3

0 − αT 0
κP 0
CV 0

(a + 1)σT 4
0

] .

(16)

The corresponding dynamic structure factor is then ob-
tained by taking the same limit as in Eq. (10). Unlike in the
optically thick and hydrodynamic cases, this form of the DSF
cannot be separated into partial fractions.

V. DISCUSSION

It is helpful to compare our results to the pure hydrodynamic
case. In the latter it is straightforward to show that [23]

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉

=
(s+νl0k

2)(s+γ0χ0k
2)+ γ0−1

γ0
c2

0k
2

s
[
(s+νl0k

2)(s+γ0χ0k2)+ γ0−1
γ0

c2
0k

2
] + c2

0k
2

γ0
(s + γ0χ0k2)

.

(17)

By expanding in k and discarding term of order higher than
k2, the above expression can be expanded in partial fractions.
This leads to

S(k,ω)

S(k)
= γ0 − 1

γ0

2χ0k
2

ω2 + (χ0k2)2
+ 1

γ0

[
�k2

(�k2)2 + (ω + c0k)2

+ �k2

(�k2)2 + (ω − c0k)2

]
, (18)

where

� = (γ0 − 1)χ0 + ν�0

2
. (19)

Comparing Eq. (11) for an optically thick plasma, and
Eq. (18) for the hydrodynamic case without radiation, we
indeed recover the same structure of the DSF. In the hy-
drodynamic case this corresponds to two Brillouin peaks,
whose position is given by the dispersion relation and the
width determined by the parameter �. There is also an elastic
(entropy) peak, the strength of which is set by γ0 and χ0.
For an optically thick plasma, the same three-peak structure is
present, but additional factors related to radiation transport are
now affecting their position, width, and intensity.

The radiative modification of the structure factor for a
dense aluminum plasma is illustrated in Fig. 1, where we
have estimated the relevant transport coefficients as indicated
in Table I. The ionization state was taken from the PrOpacEos
tables [27]. In Fig. 1 the calculated DSFs have all been
normalized to the pure hydrodynamic case. In each case
the density is fixed at 7.0 g/cc, and the temperature is
allowed to change. As expected, at low temperatures there
is no effect on the shape of the structure factor. As we
increase the temperature the ion-acoustic resonance becomes
narrower. This effect can be related to the T 4 dependence
of the radiative terms: being too small at low temperature
to have a significant effect. Since the radiation acts as a
heat bath, it reduces the thermal fluctuations of the plasma
and thus sharpens the peaks. The opacity acts as a coupling
parameter and so explains why this effect is more pronounced
in the optically thick case. Assuming the same conditions,
but for an optically thin plasma, produces a DSF that is
essentially the same as the one we have calculated for ideal
hydrodynamics.
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FIG. 1. Dynamic structure factor versus frequency for a range of
temperatures, for an aluminium plasma with density fixed at 7 g cm−3.
The hydrodynamic case is shown with a solid line, while the (optically
thick) radiative case is shown with a dashed line. Each line is scaled
so that the hydrodynamic case has its maximum at 1.0. We notice
that the height of the peaks increases and their width narrows as the
temperature becomes larger.

Figure 2 also shows the effect of the radiation on the struc-
ture factor when moving to denser material. The conditions
are equivalent to those in Fig. 1, but the density is now varied
between 0.1 and 10 g/cc at a fixed temperature of 50 eV.
Again the all curves are normalized to the hydrodynamic
case. Similarly to the case of increasing temperature, we
see an increased effect of radiation upon going to higher
densities. The radiation acts to narrow the peaks and increase
the intensity. This is likely to be because of the increased
density improving the coupling to the radiation field.

To determine under what conditions we would expect to
see a noticeable effect of the radiation on the DSF, it is
useful to estimate the relevant characteristic dimensionless
numbers [21]. The Mihalas number, R, gives the ratio of
the material (ram) pressure to the radiative pressure in the
fluid. The optically thick number, �Thick, gives the ratio of
the material enthalpy flux to the radiative energy flux. For the

TABLE I. List of plasma parameters used in generating Fig. 1.
The thermal diffusivity, kinematic viscosity, and opacity expressions
are taken from Refs. [24], [25], and [26], respectively.

Parameter Value

Atomic number A 13
Mass density ρ 7.0 g/cc
Temperature T 5–75 eV
Plasma frequency ωp 0.15 fs−1

Wave number k 2.1 × 1010 m−1

Adiabatic index γ 1.79
Coloumb logarithm � 10

Thermal diffusivity [m2/s] χth 3.3 × 10−7 AT 5/2

Z(Z+1)ρ�

Kinematic viscosity [m2/s] ν� 3.3 × 10−9 A1/2T 5/2

Z4ρ�

Planck mean opacity [m2/kg] κP 6.01 × 107ρ0.48T −2.42

Rosseland mean opacity [m2/kg ] κR 1.04 × 107ρ0.48T −2.48

FIG. 2. Dynamic structure factor versus frequency for a range of
densities, for an aluminium plasma with temperature fixed at 50 eV.
The hydrodynamic case is shown with a solid line, while the (optically
thick) radiative case shown with a dashed line. Each line is scaled
so that the hydrodynamic case has its maximum at 1.0. We notice
that the height of the peaks increases and their width narrows as the
density becomes larger.

case of a 7.0 g cm−3 aluminium plasma at 50 eV, as seen in
Fig. 1, we estimate values of R ∼ 104 and �Thick ∼ 10−10,
using the thermal speed as the typical fluid velocity. This
suggests that while the radiative pressure is not dominant,
there is a significant effect from radiative flux loss, which
dominates over the material flux. This explains the “thinning”
of the peaks in the DSF.

VI. CONCLUDING REMARKS

In this paper we have derived, using the relevant radiation
hydrodynamic equations, an analytical form of the dynamic
structure factor in the presence of either an optically thin
or thick fluid. Inclusion of radiation terms is shown to
have noticeable effects in the optically thick case at higher
temperatures. Under these conditions, the DSF is shown to
have the same three-peak structure as in the case of pure
hydrodynamic fluctuations. Radiation thus acts to modify
the width and heights of the ion-acoustic resonance, and
in particular, a narrowing of the resonances by cooling is
observed in presence of strong radiation. For the optically
thin case we have derived a general expression for the DSF, but
further expansion in partial fractions is not possible. Moreover,
in this regime, the changes induced by radiation play a modest
effect. The results suggest that experimentally, when using
x-ray scattering as a diagnostic, radiative effects must included
for hot and optically thick plasmas in order to accurately
infer plasma properties, but can be neglected in optically thin
plasmas.
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APPENDIX A: MOMENTUM EQUATION

Here we outline the procedure for calculating the dynamic
structure factor using, as an example, the radiation hydrody-
namic equations in an optically thin fluid.

We start from rewriting Eq. (13b) explicitly,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + η1[∇2u + ∇(∇ · u)]

+ η2∇(∇ · u), (A1)

where ρ is the mass density, t the time, u the velocity, p the
pressure, and ηi (i = 1,2) are the first and second coefficients
of viscosity, respectively. We then use the thermodynamic
relations:

∇p =
(

∂p

∂ρ

)
T

∇ρ +
(

∂p

∂T

)
ρ

∇T ,(
∂p

∂ρ

)
T

= CV

CP

(
∂p

∂ρ

)
S

= c2

γ
,(

∂p

∂T

)
ρ

=
(

∂p

∂ρ

)
T

(
∂ρ

∂T

)
p

= c2

γ
αT ρ,

where CV is the heat capacity at constant volume, CP is the heat
capacity at constant pressure,S is the entropy, c is the adiabatic
sound speed, γ is the adiabatic index, and αT is the coefficient
of thermal expansion.

We now use these relations in equation (A1) to give

ρ

(
∂u
∂t

+ u · ∇u
)

= −
(

c2

γ
∇ · ρ + c2

γ
αT ρ∇T

)
+ η1[∇2u + ∇(∇ · u)] + η2∇(∇ · u).

Linearizing with δρ = ρ − ρ0, δT = T − T0, δu = u, and
only keeping terms to first order in the fluctuations, gives
Eq. (14b).

APPENDIX B: ENERGY EQUATION

Starting from Eq. (13c) we use the thermodynamic relations

dε =
(

∂ε

∂ρ

)
S
dρ

+
(

∂ε

∂S

)
ρ

dS,

(
∂ε

∂ρ

)
S

= p

ρ2
,

(
∂ε

∂S

)
ρ

= T ,

where ε is the internal energy per unit mass, and thus the
continuity Eq. (13a) becomes

ρT
dS
dt

= ∇ · σ ν · u − ∇ · q − ��.

Next, we assume a specific form for the heat flux, q, and
then write the entropy in terms of ρ and T :

∇ · q = −κ∇2T , dS =
(

∂S
∂ρ

)
T

dρ +
(

∂S
∂T

)
ρ

dT ,(
∂S
∂ρ

)
T

= − 1

ρ2

(
∂p

∂T

)
ρ

,

(
∂S
∂T

)
ρ

= CV

T
,

(
∂p

∂T

)
ρ

= CP − CV

αT T
ρ,

where κ is the thermal conductivity.
Substituting these into the above equation, and making use

of the continuity equation again, gives

∂T

∂t
+ u · ∇T = 1

CV ρ
(∇ · σ ν · u + κ∇2T − ρκP σT 4)

− γ − 1

αT

∇ · u.

Linearizing with δρ = ρ − ρ0, δT = T − T0, δu = u, and
only keeping terms to first order in the fluctuations gives
Eq. (14c).

APPENDIX C: SOLVING FOR TRANSFORMED FLUCTUATION DENSITY, ˜δρk(s)

We can solve Eqs. (15a), (15b), and (15c) for δ̃ρk(s). Using Cramer’s Rule, we have

δ̃ρk(s) = |N (k,s)|
|M(k,s)| ,

where we define the matrices N (k,s) and M(k,s) from Eqs. (15a), (15b), and (15c) as (with independent variables ρ, j M = ρ0u,
and g = ρ0δT ):

M(k,s) =

⎡⎢⎢⎣
s ik 0

c2
0

γ0
ik s + νl0k

2 αT 0c
2
0

γ0
ik

κP 0
CV 0

(a + 1)σT 4
0

γ0−1
αT 0

ik s + γ0χ0k
2 + (4 + b) κP 0

CV 0
ρT 3

0

⎤⎥⎥⎦, (C1a)

N (k,s) =

⎡⎢⎢⎣
δρk(0) ik 0

j M
k (0) s + νl0k

2 αT 0c
2
0

γ0
ik

gk(0) γ0−1
αT 0

ik s + γ0χ0k
2 + (4 + b) κP 0

CV 0
ρ0T

3
0

⎤⎥⎥⎦, (C1b)
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which gives

δ̃ρk(s)

=
δρk(0)

{
(s + νl0k

2)
[
s + γ0χ0k

2 + (4 + b) κP 0
CV 0

σT 3
0

]+ γ0−1
γ0

c2
0k

2
} − ik · { j M

k (0)
[
s + γ0χ0k

2 + (4 + b) κP 0
CV 0

σT 3
0

] − gk(0) αT 0c
2
0

γ0
ik

}
s
{
(s + νl0k

2)
[
s + γ0χ0k2 + (4 + b) 4κP 0

CV 0
σT 3

0

]+ γ0−1
γ0

c2
0k

2
} − ik · { c2

0
γ0

ik
[
s + γ0χ0k2 + (4 + β) κP 0

CV 0
σT 3

0 − αT 0κP 0
CV 0

(a + 1)σT 4
0

]} ,

where ν�0 is the kinematic viscosity, and χ0 = κ0/ρ0CP 0 is the thermal diffusivity.
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