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We study coupling of vibrational relaxation and chemical reactions in nonequilibrium viscous multitemperature
flows. A general theoretical model is proposed on the basis of the Chapman-Enskog method modified for strongly
nonequilibrium reacting flows; the model differs from models commonly used in computational fluid dynamics
since it is able to capture additional cross-coupling terms arising in viscous flow due to compressibility and mutual
influence of all nonequilibrium processes occurring in a mixture. The set of fluid dynamic equations is derived
starting from the Boltzmann equation; the relaxation terms in these equations are described using the kinetic
transport theory formalism. Reaction and relaxation rates depend on the distribution function and thus differ in
the zero-order and first-order approximations of the Chapman-Enskog method. An algorithm for the calculation
of multitemperature reaction and relaxation rates in both inviscid and viscous flows is proposed for the harmonic
oscillator model. This algorithm is applied to estimate the mutual effect of vibrational relaxation and dissociation
in binary mixtures of N2 and N, and O2 and O, under various nonequilibrium conditions. It is shown that
modification of the Landau-Teller expression for the VT relaxation term works rather well in nitrogen, whereas
it fails to predict correctly the relaxation rate in oxygen at high temperatures. In oxygen (in contrast to nitrogen),
the first-order cross effects of dissociation and VT relaxation are found to be significant. A method for calculation
of vibrational relaxation time based on the kinetic theory definition is suggested. Two-temperature dissociation
rate coefficients are calculated in the zero- and first-order approximations and compared to other models.
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I. INTRODUCTION

Modeling of vibrational-chemical coupling in viscous high-
temperature flows still remains a challenging task in modern
nonequilibrium gas dynamics. Although dozens of papers
are devoted to this subject, starting from the widely known
works by Hammerling [1] and Treanor-Marrone [2] (see also
Refs. [3–9] for multitemperature and [10–18] for state-to-state
models), most of models are derived for the case of inviscid
gas flows. Viscous effects in nonequilibrium chemical kinetics
appear as cross-coupling terms between the rates of various
reactions and velocity divergence resulting in the violation of
the mass action law [19]. These coupling terms were discussed
in Refs. [20–23] for one-temperature chemically reacting
flows. However, the viscous effects and corresponding cross-
coupling terms in vibrationally nonequilibrium flows have not
been well studied up to the present time. There are only a few
papers dealing with some aspects of vibrational-chemical cou-
pling in viscous multitemperature [24–27] and state-to-state
[28–30] flows. Nevertheless, taking into account the above-
mentioned cross effects can be important in two-dimensional
(2D) and 3D simulations of high-temperature flows.

In our recent paper [27], a self-consistent treatment of reac-
tion rates in viscous multi-temperature flows was proposed and
the methods described applied to study vibration-translation
(VT) relaxation in a single-component molecular nitrogen
flow. However, the complexity of the resulting equations in
the general case makes it fairly nontrivial and computationally
expensive to study first-order effects in viscous flows, espe-
cially in multicomponent mixtures, where numerous chemical
reactions need to be accounted for. Thus, the objective of the
present paper is to derive a simplified set of equations for the
harmonic oscillator model and to study the cross influence of
vibrational and chemical relaxation in binary mixture flows
under various conditions.

The paper is organized as follows: First, we derive the
closed set of fluid-dynamic equations for a nonequilibrium
multitemperature gas mixture flow with vibrational relaxation
and chemical reactions. Molecules are simulated by harmonic
oscillators. Then we define the transport and relaxation terms.
The relaxation terms are calculated in the zero-order (inviscid)
and first-order (viscous) approximations of the Chapman-
Enskog method [19]. In the zero-order approximation, we
assess the limits of applicability of the commonly used
Landau-Teller relaxation equation. For this purpose we in-
troduce the vibrational relaxation time on the basis of a
strict kinetic theory definition, as the integral of vibrational
energy variation in VT transitions. We calculate this integral
using advanced models of collisional cross sections and
compare the obtained relaxation times to the commonly used
theoretical values and experimental results. In the first-order
approximation, we derive linear integral equations specifying
the first-order (viscous) corrections to the reaction rates and
develop the method for their solution. The rates of vibrational
relaxation and dissociation are then calculated for N2-N and
O2-O binary mixture flows under various thermal conditions
and mixture compositions. The mutual influence of vibrational
relaxation and dissociation in viscous flows is assessed, and
some distinctive features of vibrational-chemical coupling in
nitrogen and oxygen are discussed. Thermally nonequilibrium
dissociation rate coefficients calculated using the zero- and
first-order Chapman-Enskog solutions are compared to those
commonly used in computational fluid dynamics.

II. GOVERNING EQUATIONS

We consider a nonequilibrium flow of gas mixtures
taking into account vibrational and rotational energies of
molecules and chemical reactions. Electronic excitation [31]
and coupled rotational-vibrational nonequilibrium [15,16]
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are not accounted for, since we limit our considerations to
temperatures below 15 000 K.

In order to simplify the flow description we simulate
molecular vibrations in the frame of a harmonic oscillator
model. For harmonic oscillators, the vibrational energy εc

i

(c is chemical species, i is the vibrational state) is given by

εc
i = hνc

(
i + 1

2

) = (
i + 1

2

)
εc

1, (1)

where h is the Planck constant and νc is the frequency.
For strongly nonequilibrium flows, when both rapid and

slow processes occur in the gas, the Boltzmann equation for
gas mixtures with internal degrees of freedom in the absence
of external forces takes on the following form

∂fcij

∂t
+ uc · ∇fcij = 1

ε
J

rap
cij + J sl

cij , (2)

where fcij is the distribution function of particles of species
c at the i-th vibrational and j -th rotational levels, uc is
the velocity of particles of species c, J

rap
cij and J sl

cij are the
integral operators of rapid and slow processes, respectively,
ε = τrap/τsl ∼ τrap/ϑ is the small parameter in which the
distribution function is expanded in the Chapman-Enskog
framework, τrap and τsl are the characteristic times of rapid
and slow processes, respectively, and ϑ is the gas-dynamic
time.

We would like to emphasize that for our study we use
a quasiclassical approach proposed by Wang Chang and
Uhlenbeck in Ref. [32] treating the translational degrees of
freedom classically and internal degrees of freedom in the
frame of quantum mechanics. The expressions for collision
integrals of chemical reactions in the quasiclassical approach
are obtained, for instance, in Refs. [19,20]. More rigorous
approach for writing the Boltzmann equation with chemical
reactions based on purely quantum-mechanical approach is
considered in Ref. [33]. However, implementation of this
approach for derivation of fluid-dynamic equations for viscous
flows appears to be too complicated.

In the present study, we take into account elastic and
inelastic processes resulting in the exchange of internal energy
and chemical reactions; each collisional process has its own
characteristic time. Thus the following microscopic processes
are considered: elastic collisions with the characteristic time
τtr, rotational energy exchanges with the characteristic time
τrot, VV exchanges of vibrational quanta between molecules
of the same species (τVV), VV′ exchanges of vibrational quanta
between molecules of different species (τVV′ ), VT transitions
of vibrational energy into translational (τVT), and chemical
reactions (τreact). We assume that the characteristic times
satisfy the relation [19]

τtr < τrot < τVV � τVV′ < τVT < τreact ∼ ϑ. (3)

Under this relation the small parameter in the Boltzmann
equation is chosen as ε = τVV/ϑ ; this yields the basis for
multitemperature flow modeling. During the rapid relaxation
stage, quasistationary vibrational distributions establish de-
pending on the model for molecular vibrations: the Treanor
or Boltzmann distributions for anharmonic and harmonic
vibrations respectively [19,34].

The set of macroscopic variables providing the closed
description of a strongly nonequilibrium flow is introduced on

the basis of the collision invariants of rapid processes [19,34].
Under condition (3) mass, momentum, and total energy are
conserved in any collision; an additional invariant of the
most frequent collisions is the vibrational energy εc

i (since it
remains constant in VV collisions due to equidistant locations
of vibrational levels).

The macroscopic parameters corresponding to quantities
conserved during rapid processes are defined in terms of the
distribution function as follows:

nc =
∑
ij

∫
fcij duc, c = 1, . . . ,L, (4)

ρv =
∑
cij

∫
mcucfcij duc, (5)

ρU = 3

2
nkT +

Lm∑
c=1

ρcErot,c +
Lm∑
c=1

ρcEvibr,c +
L∑

c=1

ρcEf,c

=
∑
cij

∫ (
mcc

2
c

2
+ εc

ij + εc

)
fcij duc, (6)

ρcEvibr,c =
∑
ij

εc
i

∫
fcij duc, c = 1, . . . ,Lm, (7)

where nc, mc are the number density and mass of particles of
species c; v is the flow velocity; i and j are the vibrational and
rotational levels of a molecule of species c; ρ is the mixture
density; U is the total energy per unit of mass; ρc is the density
of particles of species c; L is the number of chemical species
in the mixture; Lm is the number of molecular species; cc =
uc − v is the peculiar velocity of a particle of species c; εc

ij =
εci
j + εc

i ; εci
j is the rotational energy of a molecule c in the

vibrational state i and rotational state j ; εc is the formation
energy; and Erot,c, Evibr,c, and Ef,c are the specific rotational,
vibrational, and formation energies of molecular species c.

The governing flow equations for a multitemperature
mixture of harmonic oscillators can be derived from the
Boltzmann equation multiplying it by the collision invariants
of rapid processes, integrating over velocities and summing
over internal states and chemical species. The set of equations
is obtained in the following form [7,19,34]:

dnc

dt
+ nc∇ · v + ∇ · (ncVc) = Rreact

c , c = 1, . . . ,L, (8)

ρ
dv
dt

= ∇ · P, (9)

ρ
dU

dt
= −∇ · q + P : ∇v, (10)

ρc

dEvibr,c

dt
+∇ · qvibr,c = Rvibr

c −Evibr,cmcR
react
c

+Evibr,c∇ · (ρcVc),

c = 1, . . . ,Lm, (11)

Here Vc is the diffusion velocity of particles of species c,
P is the stress tensor, q is the energy flux, and qvibr,c is the
flux of vibrational energy of molecules of species c. The set
of governing Eqs. (8)–(11) includes conservation equations
for the momentum and total energy (9) and (10) coupled to
the equations of multitemperature chemical kinetics (8) and
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relaxation equations for specific vibrational energies Evibr,c.
Conservation of mass follows from Eqs. (8).

The transport terms in Eqs. (8)–(11) Vc, P, q, qvibr,c are
defined by the following expressions:

ncVc =
∑
ij

∫
ccfcij duc, (12)

P = −
∑
cij

∫
mcccccfcij duc, (13)

q =
∑
cij

∫ (
mcc

2
c

2
+ εci

j + εc
i + εc

)
ccfcij duc, (14)

qvibr,c =
∑
ij

εc
i

∫
ccfcij duc. (15)

The relaxation terms are defined as follows [19]:

Rvibr
c =

∑
ij

εc
i

∫
J sl

cij duc, Rreact
c =

∑
ij

∫
J react

cij duc, (16)

where J sl
cij = J VV′

cij + J VT
cij + J

2�2
cij + J

2�3
cij is the integral op-

erator of slow processes (J VV′
cij , J VT

cij , J
2�2
cij , and J

2�3
cij being

the operators corresponding to slow VV′ exchanges, VT
transitions, bimolecular exchange reactions, and dissociation-
recombination reactions; correspondingly, [19,27]) and
J react

cij = J
2�2
cij + J

2�3
cij is the collision operator for chemical

reactions.
The integral operator of slow processes can be split into

several terms in the form proposed in Refs. [22,27]:

J sl
cij =

NVV′∑
r=1

νr,ciJ
VV′,r
cij +

NVT∑
r=1

νr,ciJ
VT,r
cij +

N2�2∑
r=1

νr,ciJ
2�2,r

cij

+
N2�3∑
r=1

νr,ciJ
2�3,r

cij . (17)

Here NVV′ , NVT, N2�2, N2�3 denote respectively the amount
of VV′ exchanges, VT transitions, chemical exchange reac-
tions, and dissociation-recombination reactions occurring in
the mixture; J VV′,r

cij , J VT,r
cij , J 2�2,r

cij , and J
2�3,r

cij are the operators
for the r-th VV′ exchange, VT transition, chemical exchange,
and dissociation reactions, correspondingly. The expressions
for these integral operators are given in Ref. [27]; νr,ci are
the global stoichiometric coefficients for the r-th transition.
It should be noted that when using such a representation, it
is sufficient to explicitly consider reactions of only one kind
(“forward” reactions), as the corresponding reverse processes
are included via the stoichiometric coefficients.

Based on this representation, one can introduce the reaction
rate for a specific reaction r [22]:

ξ̇r = 1

Na

∑
j

∫
J r

cij duc (18)

and the corresponding reaction rate coefficient:

kr = Na

∑
j lj ′l′

∫
fcij fdkl

ncindk

gσ̃f,rdudduc, (19)

where g is the colliding particles relative velocity; σ̃f,r =
σ̃f,r (g) is the integral cross section for the r-th process (i.e.,
the differential cross section integrated over velocities of
particles after collisions [19]); Na is the Avogadro number;
and vibrational levels i, i ′, k, k′ are fixed for each particular
reaction r .

To simplify further notation, we denote the different sets of
types of slow processes as follows:

V = {V V ′, V T }, R = {2 � 2, 2 � 3},
VR = {V V ′, V T , 2 � 2, 2 � 3}. (20)

Then the relaxation terms Rvibr
c , Rreact

c can be expressed in
terms of reaction rates:

Rreact
c = Na

∑
i

∑
γ∈R

Nγ∑
r=1

νr,ci ξ̇γ,r , (21)

Rvibr
c = Na

∑
i

εc
i

∑
γ∈VR

Nγ∑
r=1

νr,ci ξ̇γ,r = Na

∑
γ∈VR

Nγ∑
r=1

�εc
i ξ̇γ,r ,

(22)

where �εc
i = εc

i ′ − εc
i and i ′ denotes the vibrational level after

the inelastic collision.
The relaxation terms in case of a binary mixture with

slow VT transitions and dissociation-recombination reactions
can be simplified taking into account the fact that only
single-quantum vibrational energy transitions are allowed for
harmonic oscillators. Thus instead of energy variation �εc

i ,
the constant value hνc appears in the reaction rates:

Rreact
c = −Na

N2�3∑
r=1

ξ̇2�3,r , (23)

Na

NVT∑
r=1

�εc
i ξ̇VT,r = −hνcNa

NVT∑
r=1

ξ̇VT,r , (24)

Na

N2�3∑
r=1

�εc
i ξ̇2�3,r = −hνcNa

N2�3∑
r=1

i ξ̇2�3,r , (25)

where in the last equation i is the vibrational level of the
dissociating molecule (fixed for a specific reaction r). In the
above expressions, only “forward” reactions appear, which in
this case are VT deactivation transitions (with i ′ = i − 1) and
dissociation reactions. As is mentioned before, “backward”
transitions are taken into account in the integral operators via
stoichiometric coefficients.

It is worth mentioning that in Eqs. (21) and (22), vibrational
relaxation and chemical reactions are coupled naturally and
self-consistently; the rate of vibrational energy production
Rvibr

c depends on the rates of all slow processes including
VT, VV′ transitions, and chemical reactions. There is no
need to introduce artificially some phenomenological coupling
factors like in commonly used coupled vibration-dissociation-
vibration (CVDV) and coupled vibration-chemistry-vibration
(CVCV) models [2,6]. Note also that in the present model, the
coupling factors depend on the order of the Chapman-Enskog
expansion and therefore differ in the zero-order (inviscid) and
first-order (viscous) approximations. The difference appears
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in the expressions for the reaction rates ξ̇ (0)
r and ξ̇ (1)

r calculated
on the basis of the zero- and first-order distribution functions.

III. ZERO-ORDER APPROXIMATION

In the zero-order approximation of the Chapman-Enskog
method in the multitemperature case, the distribution function
for a molecule with harmonic vibrations is a combination of
Maxwell-Boltzmann distributions over velocity and internal
energies with a vibrational temperature T c

v differing from the
temperature T :

f
(0)
cij =

(
mc

2πkT

)3/2
nc

Zint
c

sc
ij exp

(
−mcc

2
c

2kT
− εci

j

kT
− εc

i

kT c
v

)
,

(26)

where sc
ij is the degeneracy of the molecular state with internal

energy εc
ij = εci

j + εc
i , k is the Boltzmann constant, and Zint

c is
the internal partition function defined as follows:

Zint
c =

∑
ij

sc
ij exp

(
− εci

j

kT
− εc

i

kT c
v

)
. (27)

Considering the rotational energies to be independent of the
vibrational states (εci

j = εc
j , sc

ij = sc
j ), we can rewrite Zint

c :

Zint
c = Zrot

c Zvibr
c , (28)

where Zrot
c and Zvibr

c are the rotational and vibrational partition
functions, correspondingly, defined as

Zrot
c =

∑
j

sc
j exp

(
− εc

j

kT

)
, (29)

Zvibr
c =

∑
i

exp

(
− εc

i

kT c
v

)
. (30)

Thus, the vibrational level population nci is given by the
expression

nci = nc

Zvibr
c

exp

(
− εc

i

kT c
v

)
. (31)

A. Zero-order reaction and relaxation rates

By substituting the zero-order distribution function into the
integral reaction operators and applying microscopic laws of
energy conservation during collisions, it is possible to obtain
that

J
r(0)
cij = r

∑
lj ′l′

∫
f

(0)
cij f

(0)
dklgσ̃f,rdud . (32)

In the case of VT exchanges, one should omit summation over
l′ and in the case of dissociation reactions one should omit
summation over j ′l′. Here

r = 1 − exp

(
Ar

kT

)
, (33)

Ar are quantities introduced by analogy with affinities of
chemical reactions [25]. For the harmonic oscillator model,

these generalized affinities take on the following form:

AVV′,r = �εc
i

(
1 − T

T c
v

)
+ �εd

k

(
1 − T

T d
v

)
, (34)

AVT,r = �εc
i

(
1 − T

T c
v

)
, (35)

A2�2,r = 3

2
kT ln

mcmd

mc′md ′
+ kT ln

Zint
c Zint

d

Zint
c′ Zint

d ′

− kT ln
ncnd

nc′nd ′
+ εc′ + εd ′ − εc − εd

+ εc
i

(
T

T c
v

− 1

)
+ εd

k

(
T

T d
v

− 1

)
− εc′

i ′

(
T

T c′
v

− 1

)

− εd ′
k′

(
T

T d ′
v

− 1

)
, (36)

A2�3,r = 3

2
kT ln

mc

mc′,amf ′,a
− 3

2
kT ln(2πkT )

+ 3kT ln h + kT ln Zint
c − kT ln

nc

nc′,anf ′,a

+ εc′,a + εf ′,a − εc + εc
i

(
T

T c
v

− 1

)
, (37)

where indices c′,a and f ′,a denote the atomic products of
the dissociation reaction. Note that for harmonic oscillators
�εc

i does not depend on the vibrational state: �εc
i = ±hνc.

For a binary mixture of homonuclear molecules and atoms we
need only the expressions for AVT,r , A2�3,r ; the latter takes a
simplified form since mc′,a = mf ′,a = mc/2, nc′,anf ′,a = n2

a ,
εc′,a + εf ′,a − εc = Dc, Dc is the dissociation energy of a
molecule of species c.

Substituting Eqs. (26) and (32) into Eq. (18), we find
that reaction rates in the zero-order approximations are linear
functions of r ,

ξ̇ (0)
r = rk

(0)
f,r

L∏
c=1

Lc∏
i=1

(
nci

Na

)ν
(r)
r,ci

, (38)

and involve zero-order reaction rate coefficients k
(0)
f,r obtained

substituting distribution function (26) into the definition (19).
Here Lc denotes the number of vibrational levels in chemical
species c and ν

(r)
r,ci is the reactant stoichiometric coefficient.

It is evident that for the distribution function (26), Eq. (38)
differs from the mass action law since the reaction rate
depends on both temperatures T and T c

v through the vibrational
distributions. When the flow approaches thermal equilibrium,
vibrational level populations follow the equilibrium Boltz-
mann distribution, and Eq. (38) reduces to the mass action law.

Using Eq. (38), one can easily calculate the relaxation
terms (21) and (22) in the zero-order approximation. This
gives the reaction rate and vibrational energy production rate
in inviscid gas flows. Once again, we emphasize here that
Rvibr

c takes into account all slow processes occurring in a
flow and therefore provides a self-consistent coupling between
vibrational relaxation and chemical reactions.

Macroscopic equations (8)–(11) can be written in terms of
variables nc, v, T , and T c

v instead of nc, v, U , and Evibr,c,
which is useful for the derivation of the first-order distribution
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function. The specific energies U and Evibr,c can be expressed
using the zero-order distribution function

ρU = 3

2
nkT +

Lm∑
c=1

ρcErot,c(T ) +
Lm∑
c=1

ρcEvibr,c
(
T c

v

)

+
L∑

c=1

ρcEf,c = U
(
nc,T ,T c

v

)
, (39)

Evibr,c
(
T ,T c

v

) = 1

ρc

∑
i

εc
i nci

= 1

mcZvibr
c

(
T c

v

) ∑
i

εc
i exp

(
− εc

i

kT c
v

)
. (40)

Then, introducing the specific heats

cu = ∂U

∂T
= ctr + crot = 3

2

kn

ρ
+

∑ ρc

ρ

∂Erot,c

∂T
, (41)

cv,c = ∂Evibr,c

∂T c
v

, (42)

one can obtain the expressions

dU =
L∑

c=1

∂U

∂nc

dnc + cudT +
Lm∑
c=1

ρc

ρ
cv,c dT c

v , (43)

dEvibr,c = cv,c dT c
v . (44)

Calculation of the derivatives is straightforward and is omitted
for the sake of brevity. Thus one can see that the sets of
macroscopic variables (nc, v, U , Evibr,c) and (nc, v, T , T c

v )
are equivalent.

B. Landau-Teller equation and relaxation times

In nonequilibrium fluid dynamics, the rate of vibrational
energy production caused by VT transitions is commonly
calculated using the Landau-Teller expression [35]:

Rvibr,VT
c = ρc

E
eq
vibr,c(T ) − Evibr,c

(
T c

v

)
τV T
c

, (45)

where E
eq
vibr,c(T ) is the equilibrium vibrational energy per unit

of mass and τVT
c is the VT relaxation time for species c. Derived

initially [35] for the conditions of sound dispersion assuming
weak deviations from equilibrium and harmonic vibrations, it
became very popular in computational fluid dynamics due to its
simplicity and now is commonly used for arbitrary deviations
from equilibrium without justification.

In Ref. [27] it was shown that the Landau-Teller expression
can be obtained from a strict kinetic-theory definition of the
relaxation terms (by expanding the expressions in a power
series and keeping only linear terms) under the following
assumptions: (1) the vibrational spectrum of molecular species
is harmonic, (2) deviations from vibrational equilibrium are
weak (T/Tv ≈ 1), and (3) vibrational specific heats are
constant.

An intermediate version of the Landau-Teller expression
was also obtained:

Rvibr,VT
c = T

T c
v

(
T − T c

v

)
ρccv,c

∑
d

nc

nτV T
cd

, (46)

where τVT
cd is the VT relaxation time for collisions of molecules

of species c with particles of chemical species d. It was
shown that such an expression for the relaxation terms provides
significantly better agreement with strict kinetic theory results
for a harmonic oscillator case. Thus, it is of interest to compare
results obtained using different versions of the Landau-Teller
formula, since the modified expression can be considered
an easy-to-implement and more accurate replacement of the
classic Landau-Teller formula.

A model for calculation of vibrational relaxation times is
also needed. The Millikan-White formula is commonly used
(often with the high-temperature correction proposed by Park
[4]), but, as shown in Ref. [8], it does not provide a satisfac-
tory agreement with experimental data at high temperatures
(T > 6000 K). VT relaxation times can be calculated using
a rigorous kinetic-theory definition if the cross sections of
various VT transitions are known. The strict kinetic-theory
definition of the VT relaxation time τVT

cd for collisions between
molecules of species c and particles of species d is as follows
[19]:

1

τV T
cd

= 4kn

mccv,c

〈(
�Evibr

c

)2〉V T

cd
, (47)

where �Evibr
c = (εc

i ′ − εc
i )/kT and averaging is defined by:

〈F 〉VT
cd =

(
kT

2πmcd

)1/2 ∑
iki ′j lj ′l′

sc
ij s

d
kl

Zint
c Zint

d

∫
Fcij g

3
0 exp

×
(

− g2
0 − Ec

j − Ed
l − εc

i

kT c
v

− εd
k

kT d
v

)

× σ
i ′j ′kl′

cd,ijkl d2�dg0, (48)

where mcd = mcmd/(mc + md ) is the collision reduced mass,
g0 = √

mcd/2kT g is the dimensionless relative velocity, Ec
j =

εc
j /kT is the dimensionless rotational energy, and σ

i ′j ′kl′
cd,ijkl is

the cross section of a VT transition in which the vibrational
level i and rotational level j of a molecule of species c change
to i ′ and j ′ after colliding with a particles of species d with
vibrational level k and rotational level l, the latter of which
changes to l′. It is worth noting that this strict definition of
relaxation times includes a dependence both on T and on
T c

v , while the Millikan-White formula does not. However, the
calculation of relaxation times using formula (47) requires
significant computational effort and is not very well suited for
implementation in practical CFD solvers, but the results of
calculations using formula (47) may be precomputed for the
chemical species of interest and approximated numerically in a
wide range of temperatures, and these approximations are used
instead of the Millikan-White formula. The obtained formula
for the VT relaxation time is similar to the general formula
given in Ref. [36] for relaxation times of internal degrees of
freedom.

To calculate the vibrational relaxation times using formula
(47), the VT cross sections were calculated using the method
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FIG. 1. VT relaxation times in molecular oxygen (a) and nitrogen (b) as a function of temperature; solid line, definition (47) with Tv = T ;
dashed line, definition (47) with Tv = 6000 K; dots, Millikan-White formula; dotted line, Millikan-White formula with Park’s high-temperature
correction; triangles, approximation of experimental results [8] for the case of oxygen (a) and relaxation times calculated using definition (47)
with Tv = 1000 K for the case of nitrogen (b).

detailed in Ref. [27], using the forced harmonic oscillator
(FHO) model [37] for VT transition probabilities and the
variable soft sphere (VSS) model [38] for elastic cross
sections.

Relaxation times calculated as a function of temperature
using various models in molecular oxygen and nitrogen are
shown on Fig. 1, along with an approximation of experimental
data for oxygen VT relaxation times given in Ref. [8]. It
can be seen that vibrational nonequilibrium has a noticeable
effect on vibrational relaxation time which increases as the
difference between T and Tv grows. At temperatures lower
than 6000 K, relaxation times calculated using definition (47)
with T = Tv give a good agreement with the Millikan-White
formula (the discrepancy between approximation [8] and the
Millikan-White formula at temperatures lower than 6000 K
can be neglected, since the approximation was made for
temperatures between 6000 and 11 000 K), while at higher
temperatures definition (47) shows a nonmonotonic behavior
of the relaxation times, providing qualitative agreement with
both the Park correction and experimental results, while the
Millikan-White formula gives physically unrealistically low
VT relaxation times. However, the values given by formula
(47) are higher than those obtained using other models (in
Ref. [39] it was also shown that accounting for vibrational
anharmonicity when using formula (47) leads to higher values
of vibrational relaxation times at high temperatures). The
method of calculation of relaxation times using definition (47)
can be expanded to other gas species if the VT transition
cross sections (or probabilities) are known. In Ref. [9],
precomputed values of vibrational relaxation times calculated
using definition (47), depending on both the translational and
vibrational temperatures, were used in conjunction with the
modified Landau-Teller formula (46), and it was shown that

such a model provides good agreement with experimental data
on temperatures behind shock waves [8].

Therefore, we can see that the Millikan-White formula,
even with the Park corrections, significantly underestimates
the vibrational relaxation times at high temperatures and is
poorly suited for modeling of strongly nonequilibrium high-
temperature flows (see also Ref. [9]).

For molecular-atom collisions in oxygen, relaxation times
have recently been calculated using an accurate three-body
potential surface [18], and it is shown that at high temperatures
they are indeed nonlinear functions of temperature; however,
there is a discrepancy between results obtained in Ref. [18] and
other models, namely the fact that at lower temperatures, the
vibrational relaxation times do not decrease as the temperature
rises. Comparisons to vibrational times calculated in Ref. [18]
are not presented in this paper, since we consider only VT
relaxation via molecule-molecule collisions, for which there
is experimental data and which is correctly described by the
Millikan-White formula at low temperatures.

IV. FIRST-ORDER APPROXIMATION

The first-order correction to the distribution function can
be written as f

(1)
cij = f

(0)
cij φcij , where function φcij satisfies the

integral equation,

−
∑

d

ncndIcijd (φ) = Df
(0)
cij − J

sl(0)
cij , (49)

where Icijd is the linearized integral operator of rapid processes
and Df

(0)
cij is the streaming operator [19].

Calculating the streaming operator on the basis of the zero-
order distribution function (26) and zero-order fluid dynamic
equations, one can rewrite the first-order distribution function
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in terms of the gradients of macroscopic variables:

f
(1)
cij = f

(0)
cij

n

⎛
⎝−Acij · ∇ ln T −

Lm∑
d=1

Ad(1)
cij · ∇ ln T d

v

−
L∑

d=1

Dd
cij · dd − Bcij : ∇v

− Fcij∇ · v −
∑

γ∈VR

∑
r

G
γ,r

cij γ,r

⎞
⎠, (50)

where dc are diffusive driving forces:

dc = ∇
(

nc

n

)
+

(
nc

n
− ρc

ρ

)
∇ ln p. (51)

Acij , Ad(1)
cij , Bcij , Dd

cij , Fcij , G
γ,r

cij , γ ∈ VR are unknown
functions of the peculiar velocity and macroscopic variables.
It must be noted that such a form for the first-order correction
(50) differs from the usual one reported in Ref. [19] since
instead of one term Gcij we have a combination of four
sums, which explicitly include the generalized affinities VV′,r ,
VT,r , 2�2,r , and 2�3,r .

A. Integral equations

Integral equations for functions Acij , Ad(1)
cij , Bcij , Dd

cij , Fcij ,
G

γ,r

cij are obtained by substituting representation (50) into (49)
and equating corresponding terms in the right- and left-hand
sides of the resulting equation. For Fcij , these terms are the
ones appearing in front of ∇ · v, while for G

γ,r

cij the terms
appearing in the right-hand side of corresponding equations
(49) are multipliers in front of the generalized thermodynamic
forces γ,r .

The equations for Fcij can be found in Ref. [19], while the
equations for G

γ,r

cij are as follows:

∑
d

ncnd

n2
Icijd (Gγ,r ) = 1

n
f

(0)
cij �

γ,r

cij , r = 1, . . . ,Nγ , γ ∈ VR,

(52)
where �

γ,r

cij are defined as:

�
γ,r

cij = −Na

Hcj

cu

Lm∑
d=1

�εd

ρd

ξ̇ (0)
γ,r + Na

[
εc
i

kT c
v

]′

vibr

× 1

T c
v

c−1
v,c

�εc

ρc

ξ̇ (0)
γ,r − J̃γ,rc, γ ∈ V, (53)

�
γ,r

cij = −Na

Hcj

cu

Lm∑
d=1

�εd − νr,dEvibr,dmd

ρd

ξ̇ (0)
γ,r

−Na

Hcj

cu

L∑
d=1

νr,d

∂U

∂nd

ξ̇ (0)
γ,r

+Na

[
εc
i

kT c
v

]′

vibr

1

T c
v

c−1
v,c

�εc − νr,cEvibr,cmc

ρc

ξ̇ (0)
γ,r

+ Na

nc

νr,cξ̇
(0)
γ,r − J̃γ,rc, γ ∈ R. (54)

Here νr,c = ∑
i νr,ci , J̃γ,rc = νr,ci

∑
lj ′l′

∫
f

(0)
dklgσ̃

γ

f,rdud (for
the case of γ = 2 � 3 summation over j ′, l′ is omitted),
[ζj ]

′
rot = ζj − 〈ζj 〉rot, and [ζi]

′
vibr = ζi − 〈ζi〉vibr, where 〈ζj 〉rot

and 〈ζj 〉vibr denote averaging over the rotational and vibrational
energy spectrum, respectively:

〈ζj 〉rot = 1

Zrot
c

∑
j

sc
j ζj exp

(
− εc

j

kT

)
, (55)

〈ζi〉vibr = 1

Zvibr
c

∑
j

sc
i ζi exp

(
− εc

i

kT c
v

)
, (56)

The function Hcj is defined as follows:

Hcj = 1

T

(
−3

2
+ mcc

2
c

2kT
+

[
εc
j

kT

]′

rot

)
. (57)

It can be seen that the equations defining functions G
γ,r

cij

for a flow with molecules with harmonic vibrational spectra
are less complicated than those in the general case, as given
in Refs. [26,27]. This leads to a simplified set of equations
for calculation of first-order corrections to normal mean stress
and reaction rates.

For a binary mixture of molecules and atoms with
slow single-quantum VT transitions and dissociation-
recombination reactions, the definitions of functions �

γ,r

cij :

�
VT,r
Mij = − Na

ρM

hνMξ̇
(0)
VT,r

(
HMj

cu

−
[

εM
i

kT M
v

]′

vibr

1

T M
v

c−1
v,M

)
− J̃VT,rM, (58)

�
VT,r
A = − Na

ρM

hνMξ̇
(0)
VT,r

HA

cu

, (59)

�
2�3,r

Mij = − Na

ρM

ξ̇
(0)
VT,r (�εM + Evibr,MmM )

×
(

HMj

cu

−
[

εM
i

kT M
v

]′

vibr

1

T M
v

c−1
v,M

)
− Na

nM

ξ̇ (0)
γ,r

− Na

HMj

cu

(
2

∂U

∂nA

− ∂U

∂nM

)
ξ (0)
γ,r − J̃VT,rM, (60)

�
2�3,r

A = − Na

ρM

ξ̇
(0)
VT,r (�εM + Evibr,MmM )

× HA

cu

+ 2
Na

nA

ξ̇ (0)
γ,r − Na

HA

cu

(
2

∂U

∂nA

− ∂U

∂nM

)
ξ̇ (0)
γ,r

− J̃VT,rA. (61)

Here M and A denote the molecular and atomic species,
correspondingly.

Additional constraints for the functions G
γ,r

cij follow from
the normalization conditions imposed on the distribution
function [27]:

∑
ij

∫
f

(0)
cij G

γ, r

cij duc = 0, c = 1, . . . ,L,

r = 1, . . . ,Nγ , γ ∈ VR, (62)
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∑
cij

∫
f

(0)
cij

(
mcc

2
c

2
+ εc

ij

)
G

γ, r

cij duc = 0, r = 1, . . . ,Nγ ,

γ ∈ VR. (63)

∑
ij

εc
i

∫
f

(0)
cij G

γ, r

cij duc = 0, c = 1, . . . ,Lm,

r = 1, . . . ,Nγ , γ ∈ VR. (64)

The first-order correction to the reaction rates can be
expressed in terms of integral brackets of functions Fcij and
G

γ, r

cij :

Naξ̇
(1)
r,γ =

∑
β,s

[Gγ,r ,Gβ,s]β,s + [Gγ,r ,F ]∇ · v. (65)

The integral brackets are introduced similarly to Refs. [19,27]
on the basis of the linearized integral operator of rapid
processes.

One can see that in the first-order approximation, the
rates of all nonequilibrium processes depend on the velocity
divergence and affinities of other reactions; moreover, the
normal mean stress is also expressed in terms of the same ther-
modynamic forces. Such a coupling has been reported before
[20–22] for one-temperature flows and in our previous paper
[27] for multitemperature flows. Therefore, in viscous flows,
coupling of vibrational relaxation and chemical reactions is
much more complex compared to the case of inviscid flows

corresponding to the zero-order approximation. That is why,
commonly used in computational fluid dynamics, zero-order
CVDV and CVCV models similar to the Treanor-Marrone one
[2] are not able to capture these mutual effects of reactions,
relaxation, and flow compressibility.

B. Numerical solution methods

The general approach to numerical computation of first-
order corrections to the reaction rates is given in Refs. [19]
and [27], and the reader is referred to Ref. [27] for a detailed
description of the methods and quantities involved. However,
compared to the expressions for the general multitemperature
case [27], since we consider only harmonic vibrational spectra,
some simplifications can be made. The unknown functions
G

γ,r

cij are expanded in terms of Sonine polynomials S
(q)
1/2 and

Waldmann-Trubenbacher polynomials P
(p)
ij :

G
γ,r

cij =
∑
qp

gγ,r
c,qpS

(q)
1/2

(
mcc

2
c

2kT

)
P

(p)
ij

(
εc
j

kT
+ εc

i

kT c
v

)
, γ ∈ VR.

(66)

System of linear equations for the expansion coefficients g
γ,r
c,qp

are obtained by multiplying equations (52) by the quantity

Q
qp

cij = S
(q)
1/2

(
mcc

2
c

2kT

)
P

(p)
ij

(
εc
j

kT
+ εc

i

kT c
v

)
, (67)

integrating over uc and performing summation over i, j , which
results in the following equations:

∑
d

∑
q ′p′

β
cd,γ,r

qq ′pp′g
γ,r

d,q ′p′ = nc

n

[
3

2
δq1δp0M

γ,r

1 + δq0δp1

(
M

γ,r

1

mc

k
crot,c − M

γ,r

2,c

mc

k
cv,c

)]
− 1

n

∑
ij

∫
Q

qp,γ,r

cij f
(0)
cij J̃γ,rcduc, γ ∈ V,

(68)

∑
d

∑
q ′p′

β
cd,γ,r

qq ′pp′g
γ,r

d,q ′p′ = nc

n

[
3

2
δq1δp0M

γ,r

1 + δq0δp1

(
M

γ,r

1

mc

k
crot,c − M

γ,r

2,c

mc

k
cv,c

)]

+ δq0p0
Na

nc

νr,cξ
(0)
γ,r − 1

n

∑
ij

∫
Q

qp,γ,r

cij f
(0)
cij J̃γ,rcduc, γ ∈ R, (69)

where the bracket integrals β
cd,γ,r

qq ′pp′ are defined in the same
manner as in Ref. [19], crot,c is the specific heat capacity of
rotational degrees of freedom of species c, and the quantities
M

γ,r

1 , M
γ,r

2,c are given by the following expressions:

M
γ,r

1 = Na

T cu

Lm∑
d=1

�εd

ρd

ξ (0)
γ,r , γ ∈ V, (70)

M
γ,r

1 = Na

T cu

Lm∑
d=1

�εd − νr,dEvibr,dmd

ρd

ξ (0)
γ,r

+ Na

T cu

L∑
d=1

νr,d

∂U

∂nd

ξ (0)
γ,r ,

γ ∈ R, (71)

M
γ,r

2,c = Na

T c
v

c−1
v,c

�εc

ρc

ξ (0)
γ,r , γ ∈ V, (72)

M
γ,r

2,c = Na

T c
v

c−1
v,c

�εc − νr,dEvibr,cmc

ρc

ξ (0)
γ,r , γ ∈ R. (73)

Equations (68) and (69) have to be completed by constraints
arising from the normalization conditions (62)–(64):

g
γ,r

c,00 = 0, r = 1, . . . ,Nγ , γ ∈ VR, (74)

∑
c

nc

n

(
3

2
g

γ,r

c,10 + mc

k
crot,cg

γ,r

c,01 + mc

k
cv,cg

γ,r

c,01

)
= 0,

r = 1, . . . ,Nγ , γ ∈ VR.

(75)
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Introducing the generalized averaging operators [19,27]

〈F 〉γ,r

cd =
(

kT

2πmcd

)1/2 ∑
j lj ′l′

sc
ij s

d
kl

Zint
c Zint

d

∫
Fg3

0 exp

×
(

−g2
0 − Ec

j − Ed
l − εc

i

kT c
v

− εd
k

kT d
v

)
σf,rd

2�dg0,

γ = VV′,VT, 2 � 2, (76)

〈F 〉2�3,r

cd =
(

kT

2πmcd

)1/2 ∑
j l

sc
ij s

d
kl

Zint
c Zint

d

∫
Fg3

0 exp

×
(

−g2
0 − Ec

j − Ed
l − εc

i

kT c
v

− εd
k

kT d
v

)
σf,rdg0,

(77)

and the generalized collision integrals

�γ,r(l,m)
c,ν

′ =
〈
νr,cig

2l
0

(
P

(1)
ij

(
εc
j

kT
+ εc

i

kT c
v

))m〉γ,r

c

, (78)

we can write out the expressions for the bracket integrals
[F,Gγ,r ] and [Gγ,r ,Gβ,s] in terms of expansion coefficients of
functions G

γ,r

cij (considering only the zero-order and first-order
expansion coefficients):

[F,Gγ,r ] =
∑

c

nc

n

(
−g

γ,r

c,10 − p

ρT cu

g
γ,r

c,01

mc

k
cv,c

)
, (79)

[Gγ,r ,Gβ,s] =
∑

c

nc

n

{
−g

β,s

c,01

mc

k
cv,c

(
M

γ,h

1,r + M
γ,h

2,cr

)

− nd

[
12g

β,s

c,10

mcd

mc

(
�γ,r(0,0)

c,ν

′ − 2

3
�γ,r(1,0)

c,ν

′
)

+ 8g
β,s

c,01

〈
νr,ciP

(1)
ij

(
εc
j

kT
+ εc

i

kT c
v

)〉γ,r

c

]}
. (80)

Solving the linear systems (68)–(69), we can find the expansion
coefficients g

γ,r
c,qp, substitute them into expressions (79) and

(80), and thus calculate the first-order corrections to the
reaction rates (65).

The computational costs for solving the given linear sys-
tems are similar to those required for the calculation of trans-
port coefficients. The number of equations in the linear systems
is the same as in the systems for the calculation of bulk viscos-
ity. However, calculation of the right-hand sides of the systems
requires evaluation of integrals over the magnitude of the rela-
tive velocity of the colliding particles, which, coupled with the
large number of processes (for each of which a linear system
needs to be solved), leads to increased computational costs.

V. NUMERICAL RESULTS

We applied the model developed above to binary mixture
flows of nitrogen (N2-N) and oxygen (O2-O) under various
conditions (translational and vibrational temperatures, mixture
composition) to study the influence of first-order effects on
vibrational relaxation rates and the influence of cross-coupling
between dissociation-recombination reactions and VT tran-
sitions on the vibrational relaxation rates. We also studied

the influence of first-order effects and coupling between
vibrational relaxation and chemical reactions on chemical
relaxation rates.

For numerical modeling, VT transition cross section were
calculated using the FHO and VSS models, while dissociation
cross sections and dissociation rate coefficients were computed
using the rigid sphere model, accounting for the vibrational
energy of the dissociating molecule. While such a model for
dissociation cross sections gives less precise values of the rate
coefficients compared to other dissociation models, it allows
us to calculate higher-order generalized collision integrals (78)
[whereas other models, such as the Treanor-Marrone [2] or
Park [40] models, give only expressions for the dissociation
rate coefficients and do not provide a way to compute higher-
order integrals which appear in Eqs. (69)].

It should be mentioned that while expression (65) includes
a term depending on the velocity divergence, its influence on
nonequilibrium rates is found negligibly small (for the case
of a pure gas see also Ref. [27]). Therefore, this term is not
included in the following discussion.

Figures 2–5 give the ratio of vibrational relaxation terms
Rvibr,VT

c due to VT transitions in nitrogen and oxygen flows
to the Landau-Teller vibrational energy production term (45)
as functions of temperature T for various fixed values of the
vibrational temperature Tv and various mixture compositions.
It can be seen that under strongly nonequilibrium conditions,
such as those in Fig. 2, the modified Landau-Teller expression
does not provide accurate values for the vibrational energy
production terms. In nitrogen, first-order effects are significant
(a correction of up to 50%) at high temperatures and low
vibrational temperatures (strong vibrational nonequilibrium);
as the vibrational temperature increases, the influence of these
first-order effects diminishes. In addition, in nitrogen flows,
the influence of dissociation on VT transition rates (through
first-order coupling effects) is insignificant. In oxygen, at
low vibrational temperatures and high temperatures, the
influence of first-order corrections is even more significant
(a contribution of up to 300%). Moreover, as the vibrational
temperature increases, cross-coupling between dissociation
and VT transitions starts to play an important role. This can
be attributed to the low dissociation energy of oxygen and the
increase of numeric density of oxygen molecules at higher
vibrational levels (which leads to increased dissociation due
to preferential dissociation from levels with higher internal
energy). Therefore, while in nitrogen flows the modified
Landau-Teller formula provides a good approximation of
vibrational energy production due to VT transitions under
a wide range of conditions, in oxygen, strict kinetic theory
results which account for cross-coupling effects show that
variations on the Landau-Teller formula do not work, since
they do not account for the influence of dissociation on VT
transition rates.

Figure 6 shows the ratio of vibrational relaxation terms
Rvibr,VT

c due to VT transitions in nitrogen and oxygen flows to
the full vibrational energy production rate defined as

ρcĖvibr,c = Rvibr
c − Evibr,cmcR

react
c . (81)

Near the point of vibrational equilibrium T = Tv chemical re-
actions provide the main contribution to the vibrational energy
production, while at high temperatures and low vibrational
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FIG. 2. The ratio of relaxation terms due to slow VT transitions calculated using various models to the VT relaxation terms as given by the
Landau-Teller formula (45) as a function of temperature in N2-N (a) and O2-O (b) flows. Tv = 1000 K, xN = xO = 0.5.

temperatures, VT transitions play the more important role,
while the effect of chemical reactions is negligible. Combined
with the fact that for nitrogen the Landau-Teller formula works
in a wide range of flow conditions, these facts may be utilized
to simplify calculation of vibrational energy relaxation rates.
By contrast, in oxygen, when first-order effects are taken into
account, the relative contribution of VT transitions declines

at high temperatures due to strong cross-coupling effects, as
described earlier.

Figure 7 shows the ratio of Rvibr,VT
c due to VT transitions

in nitrogen and oxygen flows to the full vibrational energy
production rate ρcĖvibr,c under conditions of vibrational
equilibrium (T = Tv) for various mixture compositions. Due
to chemical nonequilibrium, first-order VT transition rates
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FIG. 3. The ratio of relaxation terms due to slow VT transitions calculated using various models to the VT relaxation terms as given by the
Landau-Teller formula (45) as a function of temperature in N2-N (a) and O2-O (b) flows. Tv = 5000 K, xN = xO = 0.5.
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FIG. 4. The ratio of relaxation terms due to slow VT transitions calculated using various models to the VT relaxation terms as given by the
Landau-Teller formula (45) as a function of temperature in a O2-O flow with xO = 0.25 (a) and xO = 0.1 (b). Tv = 5000 K.

are nonzero; however, their contribution to vibrational energy
production rates does not exceed 5%.

Figure 8 shows the ratio of the chemical relaxation terms
in the first-order approximation to the chemical relaxation
terms in the zero-order approximation (Rreact,(0)

c + Rreact,(1)
c )/

Rreact,(0)
c in nitrogen and oxygen flows in vibrational equilib-

rium. In nitrogen, even at high temperatures, the first-order
correction to the dissociation rates does not exceed 10%, while
in oxygen, where the effects of dissociation are more signifi-

cant, the first-order correction exceeds 200%. However, when
the number of atoms in the flow decreases, the first-order cor-
rections also become less significant (for oxygen the first-order
correction is less than 20% when xO = 0.1). This decrease is
due to the larger dissociation cross section for molecule-atom
collisions compared to molecule-molecule collisions.

To compare the dissociation rate coefficients obtained in the
zero- and first-order approximations of the Chapman-Enskog
method to other models [2,40], we first computed effective
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FIG. 5. The ratio of relaxation terms due to slow VT transitions calculated using various models to the VT relaxation terms as given by the
Landau-Teller formula (45) as a function of temperature in N2-N (a) and O2-O (b) flows. Tv = 10 000 K, xN = xO = 0.5.
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FIG. 6. The ratio of relaxation terms due to slow VT transitions in the zero- and first-order approximation of the Chapman-Enskog method
to the full vibrational relaxation term ρcĖvibr,c (which takes into account the dissociation and recombination of molecules and the associated
change in specific vibrational energy) as a function of temperature in N2-N (a) and O2-O (b) flows. Tv = 1000 K, xN = xO = 0.5.

dissociation rate coefficients, based on expression (38):

keff
diss,r = 1

r
ξ̇r,2�3

L∏
c=1

Lc∏
i=1

(
nci

Na

)−ν
(r)
r,ci

, (82)

and then calculated an effective multitemperature rate coeffi-
cient by averaging the state-specific effective rate coefficients
over the nonequilibrium Boltzmann distribution (the vibra-

tional level i is a function of the specific reaction r , therefore,
summation over all the vibrational levels is interchangeable
with summation over all possible dissociation reactions):

keff
diss =

∑
r

1

Zvibr
c

keff
diss,r exp

(
− εc

i

kT c
v

)
, (83)

where c denotes the chemical species of the dissociating
molecule.
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FIG. 7. The ratio of relaxation terms due to slow VT transitions in the first-order approximation of the Chapman-Enskog method to the full
vibrational relaxation term ρcĖvibr,c (which takes into account the dissociation and recombination of molecules and the associated change in
specific vibrational energy) as a function of temperature in N2-N (a) and O2-O (b) flows in a state of vibrational equilibrium for various values
of the atom molar fractions.
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FIG. 8. The ratio of the chemical relaxation rates in the first-order approximation to the corresponding zero-order chemical relaxation term
as a function of temperature in N2-N (a) and O2-O (b) flows in a state of vibrational equilibrium for various values of the atom molar fractions.

Figures 9 and 10 show a comparison between the effective
multitemperature rate coefficients obtained using the approach
presented in the paper in both the zero- and first-order
approximations and Treanor-Marrone [2] and Park [40] models
for dissociation reactions of nitrogen and oxygen with different
collision partners (atoms and molecules). The Park model
underestimates the dissociation rate at lower temperatures,
but the discrepancy becomes lower at higher temperatures. A
comparison with the Macheret-Fridman model [5] was also

made, and the results given by it are very similar to our
calculations; however, so as not to complicate the plots, they
are not presented. It can be seen that for both oxygen and
nitrogen for temperatures lower than 10 000 K, the zero-order
and first-order dissociation rate coefficients are close to the
values given by the Treanor-Marrone model; the contribution
of viscous coupling terms becomes more important at high
temperatures and high ratio T/Tv (conditions specific for
strong shock waves). Thus, in shock-heated gases, taking into
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FIG. 9. A comparison between effective multitemperature dissociation rate coefficients computed using the approach present in the paper
and the Treanor-Marrone and Park’s models for dissociation of nitrogen, where the collision partners are N (a) and N2 (b) as a function of
temperature T . Tv = 1000 K, xN = 0.5.
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FIG. 10. A comparison between effective multitemperature dissociation rate coefficients computed using the approach present in the paper
and the Treanor-Marrone and Park’s models for dissociation of oxygen, where the collision partners are O (a) and O2 (b) as a function of
temperature T . Tv = 1000 K, xO = 0.5.

account first-order effects may result in higher dissociation
rates close to the shock front.

VI. CONCLUSIONS

Coupling of vibrational relaxation and chemical reactions
in nonequilibrium viscous multitemperature flows is studied
in this paper. The developed general theoretical model differs
from the well-known CVDV and CVCV models commonly
used in computational fluid dynamics since it is able to capture
additional cross-coupling terms arising in the first-order
approximation of the Chapman-Enskog method. The set of
fluid dynamic equations for reacting thermal nonequilibrium
flow is derived starting from the Boltzmann equation; the
relaxation terms in these equations are described using the
kinetic theory formalism similar to the procedures applied
for the calculation of the transport terms (heat flux, stress
tensor, etc.) and transport coefficients. It is shown that reaction
and relaxation rates depend on the distribution function and
thus differ in the zero-order and first-order approximations of
the Chapman-Enskog method. In viscous flows corresponding
to the first-order approximation, the rates of nonequilibrium
processes depend on the velocity divergence and affinities of
all reactions and energy transitions occurring in a flow.

An algorithm for the calculation of multitemperature
reaction and relaxation rates in both inviscid and viscous flows
is proposed for the harmonic oscillator model. This algorithm
is applied to estimate the mutual effect of vibrational relaxation
and dissociation in binary mixtures of N2 and N as well
as O2 and O under various nonequilibrium conditions. The
results are compared to those obtained using other models. It
is shown that modification of the Landau-Teller expression for
the VT relaxation term works rather well in nitrogen, whereas
it fails to predict correctly the relaxation rate in oxygen at high

temperatures. This is explained by the fact that in oxygen (in
contrast to nitrogen), the first-order cross effects of dissociation
and VT relaxation are found to be significant.

A method for calculation of vibrational relaxation time
based on the kinetic theory definition is suggested. The strict
definition does not involve any empirical parameters and
depends only on the cross sections of VT transitions. In
multitemperature flows, the relaxation time depends on both
translational and vibrational temperatures, and its temperature
dependence is nonmonotonic, which is in line with the recent
experimental studies. It is demonstrated that the Millikan-
White formula, even with the Park’s correction, cannot be
applied for temperatures higher than 10 000 K.

Two-temperature dissociation rate coefficients are calcu-
lated in the zero- and first-order approximations and compared
to other models. Our results are in agreement with the
Macheret-Fridman and Treanor-Marrone model; the Park
model underestimates the rate coefficients; the first-order
effects become noticeable at T > 10 000 K. It is interesting
to note that the first-order cross effects give a more important
contribution to the reaction rates than to the rate coefficients.
Accounting for the cross-coupling can be important in viscous
shock heated flows, when the temperature is high and Tv < T .

As we see, coupling of vibrational relaxation and disso-
ciation manifests in different ways in oxygen and nitrogen.
Including exchange reactions into consideration may consid-
erably change the rates of other processes. In future work we
plan to study the cross-coupling of relaxation, dissociation,
and exchange reactions in viscous air flows.
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