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Self-similarity of solitary waves on inertia-dominated falling liquid films
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We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately
accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves.
Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume
framework for interfacial flows in an open domain that was previously validated against experimental film-flow
data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary
waves on 34 different water films with Reynolds numbers Re = 20–120 and surface tension coefficients σ =
0.0512–0.072 N m−1 on substrates with inclination angles β = 19◦–90◦. Following a detailed analysis of these
cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly
proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving
mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary
waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface
tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films
considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and
gravity having a negligible influence.
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I. INTRODUCTION

Falling liquid films have been an active research topic
for several decades, starting with the pioneering experiments
by the father-son team of the Kapitza family [1,2], and
extending to more recent work in both planar [3–6] and
annular flow geometries [7,8]. A falling liquid film is an
open-flow hydrodynamic system that is convectively unstable
to long-wave disturbances at small flow rates. It can be studied
with the simplest experimental apparatus (e.g., [6]) while at
the same time the theoretical analysis of a falling liquid film
is facilitated by the substantial reduction of the complexity of
the governing equations offered by the long-wave nature of the
instability. The simplicity of the resulting model equations,
single evolution equations or coupled averaged evolution
equations, makes them useful prototypes for mathematical and
numerical scrutiny. Yet, it yields a rich variety of spatial and
temporal structures and a rich spectrum of wave forms and
wave transitions that are generic to a large class of open-flow
hydrodynamic and other nonlinear systems: a unique and
experimentally well-characterized sequence of nonlinear sec-
ondary transitions that begins with a selected monochromatic
disturbance and leads eventually to nonstationary and broad-
banded (in both frequency and wave number) “turbulent” wave
dynamics, a state of disorder or spatiotemporal chaos. At this
stage, despite the apparent complexity one can still identify
solitary waves in what appears to be a randomly disturbed
surface. It is then essential that in order to understand the
spatiotemporal evolution of the film, we fully understand the
properties of individual solitary waves which in turn can help
us understand the way they interact with each other. In fact,
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these coherent structures are truly elementary processes so that
(by using techniques from nonlinear dynamics and dynamical
systems theory) the dynamics of the film can be described by
their superposition [9–14]. As a matter of fact the evolution
of the film appears to be the result of interaction between
solitarylike coherent structures which are stable and robust and
interact indefinitely with each other as “quasiparticles.” Hence,
the falling liquid film can serve as a canonical reference system
for the study of weak or dissipative turbulence. This is further
facilitated by the substantial reduction of the complexity of
the governing equations offered by the long-wave nature of
the instability. Also, due to their typically small flow rates and
low pressure drops, their large contact area, and their excellent
heat and mass transport characteristics [15,16], falling films are
utilized in a wide spectrum of engineering and technological
applications, such as evaporators, heat exchangers, or chemical
reactor columns to name but a few.

Applying a periodic forcing at the inlet with a sufficiently
large amplitude, for instance by periodically changing the
flow rate of the liquid film, interfacial waves form as a
result of the long-wave instability mechanism [17,18] and
synchronize with the forcing frequency [19,20]. Depending
on the frequency of the forcing, two wave families can be
distinguished [19,21]: γ1 waves and γ2 waves. The γ1 waves
have a speed smaller than the corresponding spatially amplified
infinitesimal wave at the same frequency and are observed
close to the inlet at high forcing frequency, close but below
the cut-off frequency above which the film is stable. At low
forcing frequency, the exponential growth of the waves is
followed by the formation of fast solitary waves of γ2 type.
These solitary waves have a dominant elevation with a long
tail and steep front, typically with capillary ripples preceding
the main wave hump. The γ1 and γ2 waves are also observed
in falling films in the presence of various complexities, such
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as Marangoni effects due to heating, localized or uniform
[22–26], chemical reactions [27–29], surfactants [30], and
substrate curvature [31–35].

In inertia-dominated film flows, solitary waves exhibit a
separation of scales between the front of the main wave
hump, where gravity, viscous drag, and surface tension
balance, and the tail of the wave, characterized by a balance
between gravity, viscous drag, and inertia [21]. This leads to
a strongly nonparabolic velocity profile at the front of the
solitary wave [6,36,37], including flow reversal underneath
the trough preceding the solitary wave under certain condi-
tions [4,5,38,39]. Furthermore, if inertia is sufficiently high,
the maximum flow velocity of the film exceeds the phase
velocity of the solitary waves, leading to a recirculation zone
in the main wave hump with respect to the reference frame
moving with the wave [39–42]. This flow recirculation was
found to have a considerable impact on the heat and mass
transport in the film due to the increased mixing [15,42,43].

The long-wave instability mechanism drives the initially
exponential growth of the primary instability which via a sec-
ondary modulation instability leads to solitary waves [17,18],
yet it has a stabilizing effect after the onset of flow recirculation
in the main solitary wave hump as was shown recently by
Denner et al. [37]. As far as the saturated (“equilibrium”)
height of a solitary wave is concerned, it is governed by a
balance of inertia and the streamwise component of gravity
(destabilizing), with surface tension, viscous dissipation, and
the cross-stream component of gravity (stabilizing). In the
limit of zero wave number (i.e., for single isolated waves with
infinite wavelength), the phase velocity of solitary waves on an
inertia-dominated liquid film is only dependent on the Froude
number Fr = √

3 Re/ cot β [44], where Re is the Reynolds
number (defined in Sec. III) and β is the inclination angle of
the substrate. However, the dispersion of solitary waves with
finite wave number (i.e., waves with finite wavelength and
potentially interacting with each other) is more complex and
previous studies have focused on the relationship between the
phase velocity and the wave height (e.g., [3,20]) or between
the phase velocity and the wave number (e.g., [45,46]) of
the solitary wave, rather than on the governing physical
mechanisms. As a result of the considerable number of
parameters dictating the dynamics and evolution of solitary
waves, a consistent hydrodynamic characterization that is able
to quantify and predict the shape and phase velocity of solitary
waves and explain the driving mechanisms of solitary waves,
including the influence of flow rate and inclination angle, is
not available at present.

Here we present a detailed, systematic, and rational study
of the driving mechanisms and detailed characterization of
solitary waves on inertia-dominated liquid films on inclined
substrates, based on direct numerical simulations (DNSs) that
resolve all relevant length and time scales of the full two-
phase system using a state-of-the-art finite volume framework
for interfacial flows. In a previous study on the dynamics
of solitary waves on inertia-dominated falling liquid film
of Denner et al. [37], the results obtained with the DNS
framework [47–49] used in this study showed excellent
agreement with experimental measurements [6]. We propose
a scaling for solitary waves, which we derive from the
Nusselt flat film solution based on the physical mechanisms

that underpin the growth and dispersion of solitary waves.
Our results demonstrate that the proposed scaling leads to
a (surprising) self-similar characterization of solitary waves
on liquid films with respect to the proposed nondimensional
numbers and the inclination angle of the substrate, allowing
an a priori prediction of the shape and dispersion of solitary
waves for a given fluid. The presented results and observed
correlations provide a detailed account of the acting physical
mechanisms that drive and influence the dynamic behavior of
solitary waves.

In Sec. II the governing equations are discussed briefly and
in Sec. III a new scaling for solitary waves is proposed. The
applied numerical methodology is briefly outlined in Sec. IV,
and Sec. V describes the setup and parameter space of the
conducted numerical experiments. A detailed analysis of the
shape of solitary waves is presented in Sec. VI, followed by
an analysis of the nonlinear dispersion of solitary waves in
Sec. VII. We close with a summary of our findings in Sec. VIII.

II. GOVERNING EQUATIONS

The dynamic behavior of isothermal, Newtonian fluids in
the incompressible flow regime is governed by the momentum
equations

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]

+ ρ gi + fσ,i (1)

and the continuity equation

∂ui

∂xi

= 0, (2)

where x ≡ (x,y,z) denotes a Cartesian coordinate system with
x in the streamwise direction, y is cross-stream direction, and
z the transverse direction (we adopt the Einstein notation),
t represents time, u is the velocity, p is the pressure, ρ is
the density, μ is the dynamic viscosity, g is the gravitational
acceleration, and f σ is the volumetric force due to surface
tension acting at the gas-liquid interface. In falling liquid films
in particular, the hydrodynamic balance of forces acting at the
gas-liquid interface is given as [50]

(pg − pl + σ κ)m̂i =
[
μg
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l

+ ∂uj

∂xi

∣∣∣∣
l

)]
m̂j − ∂σ

∂xi

, (3)

where subscript g denotes the gas phase, subscript l denotes
the liquid phase, σ is the surface tension coefficient, κ is the
curvature of the gas-liquid interface, and m̂ is the outward
(pointing into the liquid phase) unit normal vector of the gas-
liquid interface.

III. PARAMETRIZATION AND SCALING
OF SOLITARY WAVES

Consider a laminar, falling liquid film flowing down a planar
inclined substrate with angle β to the horizontal, schematically
illustrated in Fig. 1. If this film is undisturbed, i.e., the
film is flat and no external perturbations act on the film, a
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FIG. 1. Sketch of a liquid film on a substrate with inclination
angle β to the horizontal. h(x,t) is the local film thickness with
respect to a Cartesian coordinate system (x,y) with x the streamwise
coordinate and y the outward-pointing coordinate normal to the
substrate. The origin of the coordinate system is on the substrate
at the domain inlet.

unique equilibrium solution exists, called the Nusselt flat film
solution [21,51]. The associated equilibrium flat film height
(Nusselt film height) is

hN = 3

√
3μlq

ρlg sin β
(4)

and the corresponding average film velocity (Nusselt
velocity) is

uN = g sin βρlh
2
N

3μl
, (5)

where q is the flow rate per unit span, g is the magnitude of the
gravitational acceleration, and subscript l denotes properties of
the liquid film. The Nusselt flat film solution typically serves
as the basis for the characterization of laminar, gravity-driven
film flows and the associated interfacial instabilities.

A. Physical mechanisms and pertinent dimensionless groups

Three physical mechanisms dominate the dynamic behavior
of free-surface flows: inertia, viscous stresses, and surface
tension. Each of these effects can be quantified by their
respective pressure scales, namely, the dynamic pressure

pdyn = ρlu
2
N

2
, (6)

the viscous pressure

pμ = μluN

hN
, (7)

and the pressure due to surface tension

pσ = σ

hN
. (8)

The relative importance of these three mechanisms can be
unraveled by making use of the Reynolds number

Re = 2pdyn

pμ

= ρluNhN

μl
= ρlq

μl
, (9)

which compares inertia and viscous effects, the Weber number

We = 2pdyn

pσ

= ρlhNu2
N

σ
, (10)

which compares the inertia of the film flow to the surface
tension of the interface, and the capillary number

Ca = pμ

pσ

= μluN

σ
= ρlg sin βhN

3σ
, (11)

which compares viscous effects and surface tension. All
three nondimensional numbers are related to each other as
We = Re Ca. In the context of falling liquid films the Reynolds
number Re can also be regarded as the nondimensional flow
rate. Using the scalings introduced by Shkadov [52] for falling
liquid films, the Weber number can be written as We = δη/9,
where δ = 3 Re (3 Ca)1/3 is the reduced Reynolds number and
η = (3 Ca)2/3 is the viscous dispersion number [21].

In the literature on falling liquid films, notably [21,53,54],
the inverse of the capillary number Ca is referred to at times as a
Weber number Weμ = 1/3 Ca, where the subscript μ indicates
its association with viscous stresses. This presumably stems
from the fact that most theoretical studies to date have focused
on film flows with low inertia in which the balance of viscous
stresses and surface tension plays a dominant role, a regime
which can be adequately described using models based on
the boundary-layer approximation (e.g., [19,21,36,52,55–57]).
The Weber number We given in Eq. (10), on the other hand,
is widely used in the context of inertia-dominated two-phase
flows, such as liquid jets, bubbles, and drops (e.g., [58–62]). It
is important to note that some studies on film flows use a Weber
number defined as the inverse of We as defined in Eq. (10), for
instance [3,19,63–65].

Apart from the properties of the liquid and the inclination
angle of the substrate, the Reynolds number, Weber number,
and capillary number depend on hN, which in experiments can
be modified by changing the flow rate q = hNuN. The Kapitza
number Ka, on the other hand, only depends on the selected
fluid and the inclination angle of the substrate,

Ka = σ

ρlν
4/3
l (g sin β)1/3

= Re2/3

31/3 Ca
, (12)

with νl = μl/ρl being the kinematic viscosity of the liquid
film, providing a universal measure of the relative importance
of surface tension and inertia in a falling liquid film. Hence,
for fixed liquid properties and a fixed inclination angle β, the
Kapitza number is constant and the only free parameter is the
Reynolds number (through the flow rate).

B. Inclination-corrected scaling

An interfacial wave evolving from a long-wave perturbation
is always unstable (for all Re) on a vertically falling liquid film
(β = 90◦) and stable on a horizontal liquid film (β = 0◦) [21].
Consequently, since the horizontal component of velocity does
not contribute to sustaining the solitary wave, a fully developed
solitary wave is only affected by the vertical component of the
velocity, leading to the reference velocity

u∗
N = uN sin β = g(sin β)2ρlh

2
N

3μl
, (13)

henceforth referred to as driving Nusselt velocity.
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Based on the driving Nusselt velocity u∗
N, the effective

dynamic pressure of the liquid film becomes

p∗
dyn = ρlu

∗ 2
N

2
= ρlu

2
N

2
(sin β)2, (14)

and, similarly, the effective viscous pressure follows as

p∗
μ = μlu

∗
N

hN
= μl uN

hN
sin β. (15)

The pressure due to surface tension pσ remains unchanged, as
defined in Eq. (8), since the influence of surface tension does
not depend on the velocity of the flow or the orientation of
the gas-liquid interface. Consequently, the driving Reynolds
number, the driving Weber number, and the driving capillary
number (i.e., the nondimensional numbers based on the driving
Nusselt velocity) follow as

Re∗ = 2p∗
dyn

p∗
μ

= ρlu
∗
NhN

μl
= Re sin β, (16)

We∗ = 2p∗
dyn

pσ

= ρlhNu∗2
N

σ
= We(sin β)2, (17)

Ca∗ = p∗
μ

pσ

= μlu
∗
N

σ
= Ca sin β. (18)

All three driving nondimensional numbers are related to each
other as We∗ = Re∗Ca∗.

IV. NUMERICAL METHODOLOGY

DNS of the full two-phase system, including the liquid film,
the gas phase, as well as the gas-liquid interface, are conducted
by resolving all relevant length and time scales. The governing
equations are solved numerically using a state-of-the-art finite-
volume framework for interfacial flows, described in detail
in Ref. [47]. The primitive variables are solved in a single
linear system of equations using a coupled, implicit finite-
volume framework with collocated variable arrangement. The
momentum equations, Eq. (1), are discretized using a second-
order backward Euler scheme for the transient term, while
the convection, diffusion, and pressure terms are discretized
using a central differencing scheme. The continuity equation,
Eq. (2), is discretized using a balanced-force implementation
of the momentum-weighted interpolation method, proposed
by Denner and van Wachem [47], which couples pressure
and velocity. Each time step consists of a finite number
of nonlinear iterations to account for the nonlinearity of
the governing equations, updating the deferred terms of the
equation system based on the result of the previous nonlinear
iteration [66]. This iterative procedure continues until the
nonlinear problem has converged to a sufficiently small
tolerance.

The volume-of-fluid (VOF) method [67] is adopted to
capture the interface between the immiscible gas and liquid
bulk phases. The local volume fraction of both phases in each
mesh cell is represented by the color function γ , defined as
γ = 0 in the gas phase and γ = 1 in liquid phase, with the
interface located in mesh cells with a color function value of

0 < γ < 1. The local density ρ and viscosity μ are defined
based on the color function γ as

ρ(x) = ρg[1 − γ (x)] + ρlγ (x), (19)

μ(x) = μg[1 − γ (x)] + μlγ (x), (20)

respectively. The color function γ is advected by the linear
hyperbolic equation

∂γ

∂t
+ ui

∂γ

∂xi

= 0 (21)

based on the underlying flow with velocity u. Equation (21) is
discretized using a compressive VOF methodology [48], based
on the compressive interface capturing scheme for arbitrary
meshes scheme [68].

Assuming a constant surface tension coefficient σ and
neglecting mass transfer between the bulk phases, the surface
force per unit volume is described by the continuum surface
force model [69] as

fσ,i = σκ
∂γ

∂xi

, (22)

which translates the surface force resulting from surface
tension into a volume force which can be discretized in a finite
volume framework. To ensure a balanced-force implementa-
tion of the surface force, Eq. (22) is discretized on the same
computational stencil as the pressure gradient [47]. In order
to diminish aliasing errors in the evaluation of the interface
normal vector m̂ = ∇γ /|∇γ | and the interface curvature
κ = −∇ · m̂, the volume fraction γ is convoluted by means of
a cosine convolution kernel with a support of ε = 3�x, where
�x is the mesh spacing [37,47,70]. Convolution to smooth
the surface force is not needed [71,72] and numerical artifacts
that manifest in parasitic or spurious flow features near or
at the interface are addressed by an interfacial shear stress
correction [37].

Simulation results obtained with this numerical framework
have been shown to be in excellent agreement with analytical
solutions and experimental data for single-phase flows [73,74],
interfacial flows in general [47,48,71–73], and solitary waves
on falling liquid films [37] in particular.

V. SETUP OF THE NUMERICAL EXPERIMENTS

The shape and dispersion of solitary waves with constant
frequency f = 20 s−1 on 34 different falling water films in
contact with air are simulated and analyzed for different
Reynolds numbers Re, on substrates with different inclination
angles β and for different surface tension coefficients σ .
The working fluid is taken to be water with a density of
ρl = 998 kg m−3 and a viscosity of μl = 8.967 × 10−4 Pa s,
air is taken to have a density of ρg = 1.17 kg m−3 and a
viscosity of μg = 1.836 × 10−5 Pa s. All relevant parameters
of the different cases analyzed are given in Table I.

These cases can be divided into three groups of results.
The first group consists of 23 cases with Re = 20–120
and a surface tension coefficient of σ = 0.072 N m−1, with
inclination angles β = 45◦, β = 60◦, β = 75◦, and β = 90◦.
The second group of results includes 15 cases with Re =
20–100 on a substrate with inclination angle β = 90◦ and
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TABLE I. Nondimensional numbers, inclination angle of the
substrate β, and surface tension coefficient σ of the analyzed falling
liquid films.

No. Re β σ (N m−1) We Ca Ka

1 20 60◦ 7.20 × 10−2 2.51 × 10−2 1.25 × 10−3 4078
2 20 75◦ 7.20 × 10−2 2.60 × 10−2 1.30 × 10−3 3932
3 20 90◦ 5.12 × 10−2 3.70 × 10−2 1.85 × 10−3 2765
4 20 90◦ 6.21 × 10−2 3.05 × 10−2 1.53 × 10−3 3349
5 20 90◦ 7.20 × 10−2 2.63 × 10−2 1.31 × 10−3 3887

6 40 45◦ 7.20 × 10−2 7.43 × 10−2 1.86 × 10−3 4363
7 40 60◦ 7.20 × 10−2 7.95 × 10−2 1.99 × 10−3 4078
8 40 75◦ 7.20 × 10−2 8.25 × 10−2 2.06 × 10−3 3932
9 40 90◦ 5.12 × 10−2 1.17 × 10−1 2.93 × 10−3 2765
10 40 90◦ 6.21 × 10−2 9.68 × 10−2 2.42 × 10−3 3349
11 40 90◦ 7.20 × 10−2 8.35 × 10−2 2.09 × 10−3 3887

12 60 45◦ 7.20 × 10−2 1.46 × 10−1 2.44 × 10−3 4363
13 60 60◦ 7.20 × 10−2 1.56 × 10−1 2.61 × 10−3 4078
14 60 75◦ 7.20 × 10−2 1.62 × 10−1 2.70 × 10−3 3932
15 60 90◦ 5.12 × 10−2 2.31 × 10−1 3.84 × 10−3 2765
16 60 90◦ 6.21 × 10−2 1.90 × 10−1 3.17 × 10−3 3349
17 60 90◦ 7.20 × 10−2 1.64 × 10−1 2.73 × 10−3 3887

18 80 45◦ 7.20 × 10−2 2.36 × 10−1 2.95 × 10−3 4363
19 80 60◦ 7.20 × 10−2 2.53 × 10−1 3.16 × 10−3 4078
20 80 75◦ 7.20 × 10−2 2.62 × 10−1 3.27 × 10−3 3932
21 80 90◦ 5.12 × 10−2 3.72 × 10−1 4.66 × 10−3 2765
22 80 90◦ 6.21 × 10−2 3.07 × 10−1 3.84 × 10−3 3349
23 80 90◦ 7.20 × 10−2 2.65 × 10−1 3.31 × 10−3 3887

24 100 19◦ 7.20 × 10−2 2.65 × 10−1 2.65 × 10−3 5641
25 100 30◦ 7.20 × 10−2 3.05 × 10−1 3.05 × 10−3 4897
26 100 45◦ 7.20 × 10−2 3.42 × 10−1 3.42 × 10−3 4363
27 100 60◦ 7.20 × 10−2 3.66 × 10−1 3.66 × 10−3 4078
28 100 75◦ 7.20 × 10−2 3.80 × 10−1 3.80 × 10−3 3932
29 100 90◦ 6.21 × 10−2 4.46 × 10−1 4.46 × 10−3 3349
30 100 90◦ 7.20 × 10−2 3.84 × 10−1 3.84 × 10−3 3887

31 120 45◦ 7.20 × 10−2 4.64 × 10−1 3.87 × 10−3 4363
32 120 60◦ 7.20 × 10−2 4.96 × 10−1 4.14 × 10−3 4078
33 120 75◦ 7.20 × 10−2 5.15 × 10−1 4.29 × 10−3 3932
34 120 90◦ 7.20 × 10−2 5.21 × 10−1 4.34 × 10−3 3887

σ = 0.0512–0.0621 N m−1. The third group of results are
six cases with Re = 100 and a surface tension coefficient
σ = 0.072 N m−1, simulated on a substrate with inclination
angles of β = 19◦–90◦. The chosen cases allow a detailed
and comprehensive scrutiny of the influence of inertia, the
inclination angle of the substrate, as well as surface tension on
the equilibrium shape and dispersion of solitary waves.

The applied three-dimensional computational domain,
schematically illustrated in Fig. 2, has the dimensions 300hN ×
6hN × 0.1hN (with 0.1hN being the transverse dimension) and
is represented by a Cartesian mesh. We found that a domain
height of Ly = 6hN has a negligible effect on the dynamic
behavior of the solitary waves. This is further supported by the
study of Albert et al. [75] who concluded that a domain height
of Ly = 4hN is sufficient. The region of the computational
mesh in which the dynamically evolving gas-liquid interface
is located has an equidistant resolution of ten cells per hN,
following the work of Albert et al. [75]. The mesh resolution
gradually increases near the substrate, with the cell center of

FIG. 2. Sketch of the numerical domain with the liquid film of
height h(x,t) on a substrate with inclination angle β.

the mesh cells closest to the substrate located at a distance
of 0.0035hN from the substrate, assuring a detailed spatial
resolution of the flow separation and reversal [4,38,39] in
the wave troughs observed in some of the studied cases.
We note that the transverse dimension is resolved with only
one mesh cell, so that the simulation can be regarded as
being effectively two dimensional. The numerical time step
applied in the simulations satisfies a Courant number of
Co = �tu|u|/�x � 0.25, as well as the capillary time-step
constraint proposed by Denner and van Wachem [49].

At the substrate a no-slip condition is enforced and at the top
(gas-side) boundary a free-slip and no-penetration boundary
condition is applied. A monochromatic forcing is imposed at
the domain inlet by periodically changing the flow rate with
frequency f = 20 s−1 and amplitude A from the mean. The
amplitude is chosen in order to obtain fully developed waves
within the finite length of the computational domain. At the
domain inlet a semiparabolic velocity profile is prescribed for
the liquid phase,

u(x = 0,0 � y � hN) = 3

2
[1 + A sin(2πf t)]

×
(

2y

hN
− y2

h2
N

)
uN, (23)

and a spatially invariant velocity is prescribed for the gas phase,

u(x = 0,hN < y � 6hN) = 3
2 [1 + A sin (2πf t)]uN. (24)

The film height at the inlet is constant, h(x = 0) = hN. The
domain outlet is modeled as an open boundary, following
Nosoko and Miyara [46] and Denner et al. [37], with

∂ui

∂x

∣∣∣∣
out

= ∂p

∂x

∣∣∣∣
out

= 0, (25)

which assures that the flow can leave the domain with minimal
reflections. Initially, at time t = 0 s, the film is flat and the
velocity field is fully developed.

VI. SHAPE OF SOLITARY WAVES

The instantaneous film height h/hN as a function of the
downstream distance x/hN for a representative selection of
the considered cases is shown in Figs. 3 and 4. The maximum
film height (i.e., height of the crest of the solitary wave)
exhibits a clear dependency on the inclination angle β and
the surface tension coefficient σ , whereas the minimum film
height (i.e., height of the trough preceding the solitary wave) is
independent of β and σ for high Reynolds numbers. Similarly,

033121-5



FABIAN DENNER et al. PHYSICAL REVIEW E 93, 033121 (2016)

 0

 0.5

 1

 1.5

 2

−30 −20 −10  0  10  20  30

h  
/ h

N

x / hN

β = 45°
β = 60°
β = 90°

(a) Re = 40

 0

 0.5

 1

 1.5

 2

−30 −20 −10  0  10  20  30

h  
/ h

N

x / hN

β = 45°
β = 60°
β = 90°

(b) Re = 60

 0

 0.5

 1

 1.5

 2

−30 −20 −10  0  10  20  30

h 
/ h

N

x / hN

β = 45°
β = 60°
β = 90°

(c) Re = 80

 0

 0.5

 1

 1.5

 2

−30 −20 −10  0  10  20  30

h 
/ h

N

x / hN

β = 45°
β = 60°
β = 90°

(d) Re = 100

FIG. 3. Interface height h of the falling water film as a function
of downstream distance x, both normalized by the Nusselt film height
hN, with x = 0 located at the center of the front of the solitary wave,
for selected cases of different Reynolds numbers Re and inclination
angles β.

the influence of the inclination angle and the surface tension
coefficient on the number and amplitude of capillary ripples
preceding the main solitary hump reduces for increasing
Reynolds number, which is particularly relevant for the onset
of flow separation [4,37–39] as well as the wave length and
binary interactions of solitary waves [12,13].

A. Maximum film height

Figure 5 shows the maximum and minimum film height,
normalized by the Nusselt film height hN, as a function of
the driving nondimensional numbers defined in Sec. III B.
As noted in the previous paragraph, the inclination angle
has a strong influence on the maximum film height hmax,
which is the result of gravity acting in the cross-stream
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FIG. 4. Interface height h of the falling water film as a function
of downstream distance x, both normalized by the Nusselt film height
hN, with x = 0 located at the center of the front of the solitary wave,
for selected cases of different Reynolds numbers Re and surface
tension coefficients σ .

direction, arresting the growth of the solitary wave at a smaller
maximum film height for smaller inclination angles. Similarly,
a higher surface tension coefficient means the growth of the
solitary wave is arrested at a lower equilibrium film height, as
surface tension acts to flatten the wave. The initial increase of
the maximum film height for Re∗ � 60 correlates very well
(i.e., the data collapse into a single curve) with the driving
Reynolds number Re∗ and the driving Weber number We∗.
The correlation with We∗ also holds if the surface tension
coefficient changes, as seen in Fig. 6. For changing inclination
angle β but constant Reynolds number Re, the maximum film
height is monotonically increasing, shown in Fig. 7. This
suggests that, apart from the influence of the cross-stream
component of gravity, the maximum film height is also affected
by the balance of surface tension and the driving component
of inertia.

B. Minimum film height

As observed in Fig. 3, the cases with Re∗ � 60 have a
common minimum film height which is independent of the
inclination angle. Plotting the minimum film height for all
cases as a function of the three proposed driving nondimen-
sional numbers in Figs. 5–7, reveals a global minimum of
the minimum film height of hmin = 0.37hN ± 1.1% for all
considered cases, as indicated by the dotted lines in the figures.
When the surface tension coefficient remains unaltered, the
minimum film height is correlated with all three driving
nondimensional numbers (see Fig. 5), whereas comparing the
cases with different surface tension coefficients the minimum
film height is predominantly a function of the driving Weber
number We∗ (see Fig. 6). For Re = 100 and inclination angle
β = 19◦–90◦, shown in Fig. 7, the minimum film height
remains approximately constant irrespective of the inclination
angle.

The deepening of the trough preceding the solitary wave
competes with the decelerating forces imposed by viscous
stresses near the substrate (the crest and trough of a fully
developed solitary wave travel with the same speed [12,76]),
surface tension which acts to flatten the film, as well as the
narrowing cross-section of the film as a result of the wave
trough approaching the substrate. The minimum film height,
hence, represents the balance of inertia with viscous stresses
and surface tension at the trough preceding the solitary wave, as
shown by the correlation of the minimum film height with the
driving Reynolds number Re∗ and the driving Weber number
We∗ for all considered inclination angles and surface tension
coefficients.

The observed initial decrease of the minimum film height
for increasing Reynolds number when Re∗ � 60, with a
minimum at Re∗ ≈ 60, followed by an increase of the
minimum film height when Re∗ � 60 corresponds well with
the findings of Chakraborty et al. [44] concerning the onset of
flow separation underneath the trough preceding the solitary
wave. Chakraborty et al. [44] reported that for sufficiently high
flow rates, inertia overcomes the adverse pressure gradient
imposed by the convex shape of the interface at the trough
preceding the solitary wave, since the low pressure region
underneath the wave trough cannot extend into the low velocity
region near the substrate, as shown by Denner et al. [37].
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FIG. 5. Maximum film height hmax and minimum film height hmin, normalized by the Nusselt height hN, as a function of driving Reynolds
number Re∗, driving Weber number We∗, and driving capillary number Ca∗ for different inclination angles β. The dotted line represents the
global minimum film height of 0.37hN.
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FIG. 6. Maximum film height hmax and minimum film height hmin, normalized by the Nusselt height hN, as a function of driving Reynolds
number Re∗, driving Weber number We∗, and driving capillary number Ca∗, at an inclination angle β = 90◦, for different surface tension
coefficients σ . The dotted line represents the global minimum film height of 0.37hN.
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FIG. 8. Sketch of an example of the symmetry and asymmetry of
a the main wave hump, with the length d of the wave front and the
wavelength λ.

C. Asymmetry of the solitary wave

We look now at the length d of the front of the solitary
wave, which is defined as the distance between the crest of the
solitary wave and the trough immediately downstream from
the main wave hump, normalized by the wavelength λ of the
solitary wave. With respect to solitary waves, the wavelength
λ defines the length of the entire pulse, including the main
wave hump and the preceding capillary ripples. The ratio d/λ

can be regarded as a measure of the asymmetry of the solitary
wave, with d/λ = 0.5 representing a fully “symmetric wave”
(as far as solitary waves on falling liquid films are concerned,
symmetric waves are only observed at low Reynolds numbers
and close to the domain inlet), as illustrated in Fig. 8.

An increasing inertia of the liquid film leads to a steepening
of the wave front (i.e., smaller d/λ) and, thus, increasing
asymmetry of the solitary wave. Figures 9–11 depict the length
d of the solitary wave, where we can see that this asymmetry
is correlated with the driving Weber number We∗ and is,
consequently, governed by the balance of inertia and surface

tension,

d

λ
∼ 1√

We∗ =
√

pσ

2p∗
dyn

. (26)

This correlation holds irrespective of the inclination angle
(see Figs. 9 and 11) or the surface tension coefficient (see
Fig. 10). The driving dynamic pressure p∗

dyn of the flow acts
to steepen the wave and, thus, reduces the length d of the
wave front, whereas surface tension acts to increase the length
of the wave front, leading to a shallower front of the solitary
wave. Furthermore, the asymmetry of the solitary wave is not
correlated with the driving capillary number Ca∗, suggesting
that the balance of surface tension and viscous stresses,
which is a main assumption for low-dimensional models valid
typically in the region of low Re (see, e.g., [19,21,36,55–57]) is
not really appropriate for inertia-dominated film flows. Hence,
surface tension balances the inertia of the liquid film at the
wave front, and it is this balance that governs the asymmetry
of the solitary wave. If the vertical component of inertia and
the inclination angle of the substrate are sufficiently high, the
surface tension of the gas-liquid interface is no longer able
to balance the inertia of the liquid film and the solitary wave
breaks as a result [19,77,78].

VII. DISPERSION OF SOLITARY WAVES

To gain a better understanding of the dispersion of solitary
waves, linear wave theory (describing the frequency dispersion
of capillary-gravity waves and capillary waves of small
amplitude) lends itself for a comparison with the dispersion of
solitary waves. A capillary-gravity wave with wave number k

propagates on a film of height hN with phase velocity [79,80]

cσ -g =
√(

σk

ρl
+ g cos β

k

)
tanh(khN), (27)

whereas a pure capillary wave propagates with phase velocity

cσ =
√

σk

ρl
tanh(khN), (28)

assuming ρl � ρg and the fluids being inviscid. Given the
relatively long wavelength of the considered cases, viscous
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FIG. 9. Length d of the front of the solitary wave normalized by the wavelength λ as a function of driving Reynolds number Re∗,
driving Weber number We∗, and driving capillary number Ca∗ for different inclination angles β. The dotted line represents the function
d/λ = A (We∗)−1/2 + B We∗, with coefficients A and B fitted to the data of the cases with β = 90◦ and σ = 0.072 N m−1.
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FIG. 10. Length d of the front of the solitary wave normalized by the wavelength λ as a function of driving Reynolds number Re∗, driving
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dotted line represents the function d/λ = A (We∗)−1/2 + B We∗, with coefficients A and B fitted to the data of the cases with β = 90◦ and
σ = 0.072 N m−1.

damping of the wave dispersion can be neglected [81,82] and
the fluids can be assumed inviscid for the application of linear
wave theory. However, linear wave theory and, thus, Eqs. (27)
and (28) are only valid in the limit of small amplitudes when
(hmax − hN)/hN 	 1 [83].

Taking the ratio of the net phase velocity of the solitary
wave, c0 = c − uN (i.e., the phase velocity at which the
solitary wave propagates relative to the film flow), and the
phase velocity of a capillary-gravity wave cσ -g with the same
wave number k = 2π/λ (see Fig. 12), no direct correlation
with the driving nondimensional numbers can be identified,
as the dispersion of the solitary waves depends strongly on
the inclination angle β. However, the ratio of the net phase
velocity of the solitary wave c0 and of the phase velocity of a
capillary wave cσ with the same wave number k correlates well
with all three driving nondimensional numbers, in particular
the driving Weber number We∗, as demonstrated in Fig. 13.
By changing the surface tension coefficient, it becomes clear
that the net phase velocity ratio is correlated with the driving
Weber number We∗, as shown in Fig. 14, hence

c0 ∼ cσ

√
We∗. (29)

This correlation is also valid for a film with constant Reynolds
number (Re = 100) on substrates with different inclination

angles β, shown in Fig. 15. Inserting the equations for the
capillary phase velocity cσ , Eq. (28), and the driving Weber
number We∗, Eq. (17), the correlation given in Eq. (29)
becomes

c0 ∼
√

σk

ρl
tanh(khN)

ρlhNu∗2
N

σ
, (30)

c0 ∼
√

khN tanh(khN) u∗
N, (31)

c0 ∼ Du∗
N, (32)

with D = √
khN tanh(k hN). Hence, the dispersion of the

solitary waves represented by the net phase velocity c0 is
independent of the surface tension coefficient.

The phase velocity c of the solitary waves, shown in
Figs. 16–18, is monotonically increasing with increasing
inertia, with

c ∼
√

Re∗ (33)

for all considered cases. This confirms that the phase velocity
is in fact independent of surface tension, suggested in the
previous paragraph based on the correlation given in Eq. (32),
in particular since Eq. (33) also holds if the surface tension
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FIG. 11. Length d of the front of the solitary wave normalized by the wavelength λ as a function of driving Reynolds number Re∗, driving
Weber number We∗, and driving capillary number Ca∗ for Re = 100 and inclination angles β = 19◦–90◦. The dotted line represents the function
d/λ = A (We∗)−1/2 + B We∗, with coefficients A and B fitted to the data of the cases with β = 90◦ and σ = 0.072 N m−1.
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FIG. 12. Ratio of the net phase velocity of the solitary wave c0 = c − uN and the phase velocity of a capillary-gravity wave cσ -g with the
same wave number k as a function of driving Reynolds number Re∗, driving Weber number We∗, and driving capillary number Ca∗ for different
inclination angles β.

coefficient is changed (see Fig. 17). Since the train of
solitary waves adopts the frequency f of the periodically
changing mass flow at the inlet (f = 20 s−1 in this study),
the wavelength λ = c/f exhibits the same relationship with
respect to the driving Reynolds number, λ ∼ √

Re∗, as the
phase velocity c.

The presented results suggest that the dispersion of solitary
waves is governed by inertia, with an increasing inertia of
the film flow resulting in a higher phase velocity. Both
correlations proposed in Eqs. (29) and (33) further suggest
a strong influence of the substrate and the associated viscous
stresses on the dispersion of solitary waves, since all parts of a
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FIG. 13. Ratio of the net phase velocity of the solitary wave c0 = c − uN and the phase velocity of a capillary wave cσ with the same wave
number k as a function of driving Reynolds number Re∗, driving Weber number We∗, and driving capillary number Ca∗ for different inclination
angles β. The dotted lines represent the functions c0/cσ = ARe∗ and c0/cσ = B

√
We∗ + C We∗, respectively, with coefficients A, B, and C

fitted to the data of the cases with β = 90◦ and σ = 0.072 N m−1.
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saturated solitary wave, including the wave trough preceding
the main hump which is governed by viscous stresses near the
substrate (see Sec. VI B), are propagating at the same speed. In
particular, the absolute phase velocity of the analyzed solitary
waves is a function of the ratio of inertia and viscous effects
[see Eq. (33)]. Surface tension and gravity, on the other hand,
have no discernible influence on the dispersion of solitary
waves, contrary to the dispersion relation described by linear
wave theory. Moreover, neither the net phase velocity ratio
c0/cσ nor the phase velocity c are correlated with the driving
capillary number Ca∗ in a consistent manner, which further
supports the observation that surface tension has a negligible
influence on the dispersion of solitary waves. This behavior can
be attributed to the considerable amplitude of solitary waves
on inertia-dominated falling liquid films (see Sec. VI A) and
the ensuing nonlinearity of the hydrodynamic system. The
observed self-similarity of the dispersion of solitary waves,
however, is dependent on the inclination angle of the substrate,
resulting in the observed correlation with the driving Weber
number We∗, Eq. (29), and the driving Reynolds number Re∗,
Eq. (33). Since the phase velocity of a pure capillary wave,
given in Eq. (28), is based on linear wave theory, the ratio
c0/cσ can further be regarded as a measure of the nonlinearity
of the dispersion of solitary waves, which is proportional to

the proposed driving Nusselt velocity u∗
N of the falling liquid

film.

VIII. CONCLUSIONS

We have scrutinized the solitary-wave characteristics,
namely, maximum-minimum amplitude, phase velocity, and
dispersion, as a function of the pertinent dimensionless
parameters in inertia-dominated falling liquid films. We
have proposed consistent scaling, derived from the Nusselt
flat film solution based on the appropriate driving physical
mechanisms, which leads to an unexpected self-similar char-
acterization of solitary waves and allows an a priori description
of the wave shape and dispersion.

Following a detailed analysis of the driving physical
mechanisms and correlations with the proposed scaling of
the main dimensionless numbers, our DNS results show a
previously unknown self-similarity of the shape and dispersion
of solitary waves. The correlations derived as part of the
presented self-similar characterization of solitary waves follow
directly from rational corrections to the relevant parameters
and do not depend on any tunable coefficients.

Our results reveal that solitary waves on inertia-dominated
falling liquid films are governed by a complex interplay of
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FIG. 16. Phase velocity c of the solitary wave as a function of driving Reynolds number Re∗, driving Weber number We∗, and driving
capillary number Ca∗ for different inclination angles β. The dotted line represents the function c = A
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FIG. 17. Phase velocity c of the solitary wave as a function of driving Reynolds number Re∗, driving Weber number We∗, and driving
capillary number Ca∗, for different surface tension coefficients σ . The dotted line represents the function c = A
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A and B fitted to the data of the cases with β = 90◦ and σ = 0.072 N m−1.

inertia, inclination angle of the substrate, viscous stresses
in the vicinity of the substrate, as well as surface tension.
Both the maximum and minimum film height exhibit strong
correlations with the driving Reynolds number and the driving
Weber number. The maximum film height (i.e., the height at
the crest of the solitary wave) has been shown to depend on
the inclination angle as well as surface tension, while viscosity
has no discernible influence on the maximum film height. The
minimum film height (i.e., the height of the trough preceding
the main wave hump) has been shown to be governed by a
balance of the inertia of the liquid film with viscous stresses
in the vicinity of the substrate and the surface tension acting
at the gas-liquid interface in the trough preceding the main
wave hump. A global minimum of the minimum film height
of hmin ≈ 0.37hN is observed. Furthermore, the asymmetry
of solitary waves has been shown to depend on the balance of
inertia and surface tension, with an increase in inertia resulting
in a steeper wave front and, therefore, more asymmetric
solitary wave.

The dispersion of solitary waves has been found to be
governed by a balance of inertia and viscous stresses. The
absolute phase velocity is correlated with the driving Reynolds
number, whereas the net phase velocity ratio (ratio between
net phase velocity of the solitary wave and a capillary wave

with the same wave number but infinitesimal amplitude) is
correlated with the driving Weber number. Further analysis
showed that the net phase velocity of the solitary waves is
proportional to the driving Nusselt velocity of the falling liquid
film. These correlations persist irrespective of the inclination
angle of the substrate or the surface tension coefficient of
the gas-liquid interface, suggesting that the dispersion of
the solitary waves in the inertia-dominated flow regime is
dominated by inertia and that dispersion according to linear
wave theory (i.e., frequency dispersion) has no significant
influence.

The proposed scaling of the main dimensionless numbers
allows one to predict the shape and phase velocity of a solitary
wave on a falling liquid film of a given fluid with any flow
rate (provided that the solitary wave does not break) and on
a substrate with an arbitrary inclination angle, 0 � β � 90◦,
based on results at only two different flow rates or two different
inclination angles.

Our computations also revealed that the (driving) capillary
number is not suitable to describe, categorize, and predict the
shape and dispersion of solitary waves on inertia-dominated
falling liquid films. In our view this is a significant finding
because many studies, including previously proposed low-
dimensional models for interfacial instabilities on falling liquid
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FIG. 18. Phase velocity c of the solitary wave as a function of driving Reynolds number Re∗, driving Weber number We∗, and driving
capillary number Ca∗ for Re = 100 and inclination angles β = 19◦–90◦. The dotted line represents the function c = A
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films, have used the capillary number or a similar formulation
(e.g., inverse of the capillary number, usually referred to as the
Weber number in these studies).

Even more important, our results indicate that despite their
apparent complexity, film flows seem to be inherently simple
nonlinear systems in that global quantities of interest can be
described and understood in terms of simple relations. And
self-similarity is at the heart of this “simplicity.” It is also
precisely the reason why in physics multiscale phenomena are
amenable to a theoretical description in the first place. To put
it simply, this means that phenomena can be appropriately
reduced so that there are only a few dominant scales, and the

“complexity” then is all in the transformation from one set of
original scales to another. And in that respect, the falling film
is rather similar to many other seemingly unrelated physical
problems where self-similarity is prevalent.
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