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Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence
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Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two
inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for
homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit)
with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written
only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It
provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study
shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic
helicity cascade is linked to the right polarized fluctuations.
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I. INTRODUCTION

Hall magnetohydrodynamics (MHD) is a monofluid plasma
model appropriate for probing some of the physical processes
(other than pure kinetic effects) at length scales smaller
than the scales of standard MHD. Unlike MHD, this model
introduces a decoupling between the electrons and the ions
via the so-called Hall term in the generalized Ohm’s law. The
Hall effect becomes relevant when the typical length scales
are smaller than the ion inertial length di (di ≡ c/ωpi , with
c being the speed of light and ωpi being the ion plasma
frequency). In a plasma for which the Alfvén mode controls
the dynamics (incompressible or a collisionless plasma [1]),
one can associate this length scale to the ion cyclotron angular
frequency ωci = VA/di (with VA being the Alfvén speed), and
therefore, the Hall MHD regime is valid for the time scales of
the order of or shorter than the ion cyclotron period 2π/ωci .

In space physics, the potential importance of Hall MHD
is recognized for a range of phenomena varying from col-
lisionless reconnection and disruption of Alfvénic filaments
to small-scale solar wind turbulence [2–10]. Despite this
fact, fewer analytical studies have been performed in Hall
MHD [11–14], while the standard MHD has remained the
subject of active theoretical and numerical research for more
than three decades, especially in the framework of turbulence
(see, e.g., Refs. [15–24]). A few direct numerical simulations,
however, have been performed in Hall MHD turbulence to
study either in a classical way the behavior of the velocity
and magnetic field fluctuations [2,7,25–27] or in a more
sophisticated way the separation of the fluctuations in terms
of polarities (left and right) [28]. Shell models have also been
used to investigate in particular the transition from standard to
Hall MHD [29–31].

The Hall MHD model gets much simplified in the limit of
small length scales (kdi � 1), where the ions are considered
a motionless neutralizing background and the electron flow
practically determines the electric current. This particular
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limit of Hall MHD, called (the inertialess) electron MHD,
is much easier to analyze, especially in the case of turbulence
[32–35]. However, despite being a simple mathematical limit
of Hall MHD, electron MHD is physically different from
the former because the corresponding plasma dynamics is
not governed by the force balance [36]. Besides having
important roles in laser plasmas [37] and in magnetic field
reconnection [38,39], electron MHD is also relevant for the
understanding of the magnetic fluctuations in the collisionless
solar wind at subion scales (see, e.g., Ref. [40]). Direct numer-
ical simulations of isotropic electron MHD turbulence show
that the magnetic energy spectrum scales like k−7/3 [41,42].
A plausible explanation for this spectrum has been provided
by a heuristic model à la Kolmogorov [41], which turns out
to be dimensionally compatible with an exact relation derived
for third-order correlation functions [43]. However, the final
form of this exact relation has not been reduced exclusively in
terms of two-point fluctuations, which weakens any spectral
prediction for electron MHD turbulence.

In addition to the total energy, Hall MHD permits two other
inviscid invariants: the magnetic helicity HM = a · b, where b
is the magnetic field (which will be normalized to a velocity
hereafter) and a is its (normalized) vector potential, and
the so-called generalized helicity HG = (a + div) · (b + diw),
where v is the velocity and w = ∇ × v is the vorticity
vector [11,44–47]. In the electron MHD limit, we have v = 0,
which denotes HM ≡ HG. Hence, electron MHD allows two
invariants: the magnetic energy (which is equivalent to its total
energy) and the magnetic helicity. The role of the magnetic
helicity in electron MHD turbulence was investigated recently
with three-dimensional direct numerical simulations (with a
mean magnetic field), which revealed that the propagation
of one wave packet moving in one direction leads to the
energy transfer towards larger scales [48,49]. This effect,
interpreted as an inverse cascade, shows that one dispersive
wave packet may produce another wave packet moving in
the opposite direction as a result of the magnetic helicity
conservation, which in turn leads to an inverse cascade. The
impact of the magnetic helicity was investigated analytically
in incompressible MHD [50]. An isotropic Kolmogorov-like
exact relation was derived, but the final exact relation cannot
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be expressed only in terms of two-point fluctuations, thereby
rendering the possibility of turbulent spectral prediction less
evident. The role of the magnetic and generalized helicities in
Hall MHD turbulence has never been studied analytically in
great detail, although it is believed to be important, e.g., for the
study of the plasma dynamo [5] for which a novel experiment
has been designed recently [51].

In this paper, we derive an atypical class of exact relations
corresponding to the magnetic helicity and generalized helicity
conservation in homogeneous Hall MHD turbulence (isotropy
is not assumed). In Sec. II we present the Hall MHD equations;
in Sec. III we derive the exact law for the magnetic helicity
cascade, while in Sec. IV the derivation is made for the
generalized helicity cascade. In Sec. V we discuss the chiral
nature of the helicity cascades, and we conclude the paper with
a discussion in the last section.

II. INCOMPRESSIBLE HALL MHD EQUATIONS

The magnetic helicity represents a quantitative measure of
the self-linkage of the magnetic field; likewise, the generalized
helicity represents a quantitative measure of the self-linkage
of the generalized vorticity � = b + diw. Below, we shall
derive exact relations for average two-point fluctuations (i.e.,
increments) corresponding to the conservation of the magnetic
helicity and generalized helicity in incompressible Hall MHD,
for which the basic ideal and inviscid equations are

∂tv = −v · ∇v − ∇P + j × b + fv, (1)

∂tb = ∇ × (v × b) − di∇ × (j × b) + fb, (2)

∇ · v = 0, (3)

∇ · b = 0, (4)

where P is the fluid pressure, j = (∇ × b) denotes the current
density, and fv and fb are stationary forcing terms (further
properties will be given below). Equations (1) and (2) can
easily be transformed into

∂tw = ∇ × [v × w + j × b] + fw, (5)

∂ta = (v − dij) × b + 2∇ψ + fa, (6)

where fw and fa are the forcing terms and 2∇ψ corresponds to
an arbitrary choice of gauge.

In the previous equations the dissipative terms are not
included. Generally, in MHD we introduce a Laplacian
operator for both the velocity and magnetic field equations in
order to mimic in a simple way the mechanism of dissipation
which involves kinetic effects [52]. In MHD turbulence
these terms are fundamental to ensure the existence of a
well-resolved inertial range in which the dissipation (and
forcing) is negligible. In Hall MHD turbulence this modeling
is less relevant, especially for the magnetic field, because the
nonlinear Hall term involves a derivative of order 2 and because
the magnetic spectrum is generally steeper than in MHD. Then,
with a classical Laplacian the dissipation is generally less
localized at small scales than in MHD, which may reduce
the size of the inertial range. This means that to get an inertial

range well separated from the small-scale dissipative range it
is better to have a dissipative term with an order of derivative
higher than 2 (e.g., a bi-Laplacian).

A detailed discussion of the dissipation mechanism is
beyond the scope of this paper because (i) it depends on
the application from which our derivation is independent and
(ii) there are a variety of possible sources. However, it is
relevant to make a comparison with the solar wind, on which
a lot of studies are currently focused. The weakly collisional
plasma conditions in the solar wind imply that the mechanism
responsible for the dissipation of turbulent fluctuations is
likely to be of a kinetic nature like the damping of linear
waves [53]. This damping corresponds certainly to a term
different from a Laplacian or double Laplacian. If the damping
is either localized at some scales or significantly smaller in
amplitude than the nonlinear fluctuations, then it will not affect
significantly the inertial range and therefore our conclusion.
Note, however, that the question of the relative importance of
the damping is currently being actively debated. For example,
in a more recent paper [54] it is claimed that the solar wind
data are compatible with the conclusion that the nonlinear
time scale is comparable to or shorter than the typical time
scale of wave damping, which renders the linear treatment
questionable.

The other important term for this type of analysis is the
external forcing. In our case, we are mainly interested in the
magnetic and generalized helicities. The injection of magnetic
helicity is evoked in different astrophysical contexts like the
sun, where the source can be the shearing motions [55]. It is
also discussed in the context of the dynamo problem, where
an inverse cascade of helicity can produce (or regenerate)
a large-scale magnetic field [15,56]. Magnetic turbulence
in astrophysical systems is often governed by two effects,
buoyancy and rotation, which naturally lead to helical flows
and twisted field lines. The result is the production of a net
magnetic helicity and also probably some generalized helicity
(since it contains the magnetic and kinetic helicities). This
forcing is often made in a limited range of scales. For example,
in the case of the geodynamo the typical scale (∼103 km)
corresponds roughly to the size (a fraction of the thickness) of
the convection layer.

III. EXACT RELATION FOR MAGNETIC HELICITY
CONSERVATION

When a flux of magnetic helicity is injected into a turbulent
plasma, at a typical wave number kf , an inverse cascade is
expected. This happens only at the MHD scale if kf di < 1 [15]
or at subionic Hall MHD scales if kf di > 1 [49,57], with
eventually the possibility to extend the inverse cascade to
MHD scales. In this section, we shall consider a forcing at
intermediate scale such that kf di > 1 and focus the analysis on
the inertial range at a scale k � kf (small-scale forcing). We
see immediately a potential problem to derive a (statistically)
stationary law in a finite size system: we need a dissipation
at large-scale to counterbalance the injection of magnetic
helicity and avoid the formation of a condensate. In two-
dimensional hydrodynamic turbulence a similar situation is
found but with an inverse cascade of kinetic energy [58].
Frictional dissipation, usually due to, e.g., friction between
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the fluid and substrate, is then introduced into the system
either numerically and/or analytically to avoid the formation
of a condensate [59]. We will follow this line and assume
the presence of some large-scale dissipation whose origin may
depend on the problem (e.g., the wall in a dynamo experiment).

Note that in the case of the solar wind, since Hall MHD
contains the MHD scales, an inverse cascade of magnetic
helicity can continue potentially up to the largest scales of
the system, i.e., to frequencies much lower than the cyclotron
frequency. However, another limitation exists: the magnetic
helicity is not conserved in MHD if a uniform magnetic field
is present (see, e.g., Ref. [60]), and the solar wind is composed
of a large-scale magnetic field plus fluctuations. In other words,
when the inverse cascade crosses the scale ∼di , the transfer
gets worse, and we have therefore a nonlinear (nondissipative)
limit in length scale to the inverse cascade.

Unlike [50], we define the symmetric two-point correlation
function associated with the magnetic helicity as

RH = R′
H =

〈
a · b′ + a′ · b

2

〉
, (7)

where the primed and unprimed quantities correspond to points
x′ and x, respectively, with x′ = x + r, and 〈·〉 means an
ensemble average (which is equivalent by ergodicity to a
spatial average in homogeneous turbulence). Using Eqs. (2)
and (6) and defining U = v − dij, we can write

∂t (RH + R′
H )

= 〈a′ · ∂tb + b · ∂ta′ + a · ∂tb′ + b′ · ∂ta〉
= 〈a′ · [∇ × (U × b)] + b · (U′ × b′) + 2b · ∇′ψ ′〉 + DH

+〈a · [∇′ × (U′ × b′)] + b′ · (U × b) + 2b′ · ∇ψ〉+FH

= 〈∇ · [(U × b) × a′] + b · [U′ × b′ + 2∇′ψ ′]〉 + DH

+〈∇′ · [(U′ × b′) × a] + b′ · [U × b + 2∇ψ]〉 + FH ,

(8)

with DH being large-scale dissipation and

FH = 〈a′ · fb + b · f′
a + a · f′

b + b′ · fa〉 (9)

being small-scale forcing. By using the relation b = ∇ × a
and the statistical homogeneity, we obtain

〈∇ · [(U × b) × a′] + ∇′ · [(U′ × b′) × a]〉
= −〈∇′ · [(U × b) × a′] + ∇ · [(U′ × b′) × a]〉
= 〈(U × b) · b′ + (U′ × b′) · b〉. (10)

Inserting this above simplification in Eq. (8), we find

∂t

(
RH + R′

H

2

)

= 〈[(U × b) + ∇ψ] · b′ + [(U′ × b′) + ∇′ψ ′] · b〉
+ DH

2
+ FH

2

= −〈δ(U × b) · δb〉 + DH

2
+ FH

2
, (11)

where we use

〈∇ψ · b′ + ∇′ψ ′ · b〉 = −〈ψ(∇′ · b′) + ψ ′(∇ · b)〉 = 0

due to statistical homogeneity. In the final step, we consider
a stationary state (in the limit of infinite kinetic and magnetic
Reynolds numbers) corresponding to the magnetic helicity
conservation for which the left-hand side of Eq. (11) vanishes.
Under this condition, we derive an expression for the inertial
range within which the small-scale forcing term becomes
negligible and the large-scale dissipative effect gives the mean
magnetic helicity flux dissipation rate ηM , which is also equal
to the mean magnetic helicity flux transfer rate. The final form
of the exact relation is then given by

ηM = 〈δ(U × b) · δb〉, (12)

which can also be written as

ηM = 〈δ(v × b) · δb〉 − di〈δ(j × b) · δb〉. (13)

In the large-scale MHD limit (kdi � 1) we may recover the
result obtained by [50] when it is symmetrized. In the small-
scale electron MHD limit (kdi � 1, or, equivalently, v → 0)
the above relationship is further simplified to

ηM = di〈δ(b × j) · δb〉. (14)

Equation (13) is the first main result of this paper. It is
an exact relation valid for three-dimensional homogeneous
Hall MHD turbulence without the assumption of isotropy.
It is relevant to make a comparison with previous results
and in particular with the magnetic helicity law derived in
MHD [50], which is the large-scale limit of Hall MHD.
Unlike [50], the assumption of isotropy is not made in our
derivation, giving the law a broader application, such as
to space plasmas, for which turbulence is rarely isotropic
(see, e.g., Ref. [61]). Additionally, law (13) implies products
of two increments (i.e., only fluctuations), a situation well
adapted to turbulence, whereas the final law in [50] did
not consist of two-point increments. A comparison with the
classical derivation of the four-thirds laws for the energy
(see, e.g., Ref. [62]) reveals another difference: our derivation
does not lead to the appearance of a divergence operator,
which renders difficult the evaluation of the energy cascade
rate in general (i.e., when isotropy is not assumed). In our
case, we see that the evaluation of ηM requires only the
computation of a scalar product of two increments. This
property should be helpful for the study of the magnetic
helicity effects in space (anisotropic) plasmas, e.g., in the
solar wind [63]. Finally, from expressions (13) and (14), one
can easily infer that in both Hall MHD and electron MHD no
turbulent flux of magnetic helicity exists if the system satisfies
the corresponding Beltrami conditions, i.e., U ‖ b and j ‖ b,
respectively. Therefore, we recover well the theory of plasma
relaxation to Beltrami alignment [11].

A power law spectrum ∼k−2 is expected for the magnetic
helicity when an inverse cascade happens at MHD scales [15]
(for simplicity, isotropy is assumed for the discussion).
Dimensionally (assuming simply the maximal helicity state),
this scaling corresponds to a −1 power law for the energy and
thus to a constant δb. The exact relation (13) tells us at the
dimensional level (for simplicity we do not consider the effect
of the scalar product, which may give an additional scaling
dependence) that, necessarily, the other increment δ(v × b) has
no scale dependence to keep globally constant the right-hand
side term. The situation is different at subion electron MHD
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scales, where the inverse cascade of magnetic helicity may
lead to [by using as before a Kolmogorov phenomenology
with the assumption of a maximal helicity state but in which
the transfer time is now ∼r2/(dib)] a corresponding power
spectrum ∼k−8/3. Hence, a −5/3 magnetic energy spectrum is
found, and therefore, δb ∼ r1/3. The exact relation (14) tells us
that in this case, necessarily, we have dimensionally δ(b × j) ∼
r−1/3. A possible interpretation of this scaling law is that a
phenomenon of alignment between b and j appears when one
goes from small to large electron MHD scales. However, note
that in two dimensions this conclusion may change [64].

IV. EXACT RELATION FOR GENERALIZED HELICITY
CONSERVATION

In this section, we shall derive a universal law for the
generalized helicity HG. Hereinafter, we shall denote ϒ =
(a + div) as the generalized vector potential, whereas � is the
generalized vorticity. The generalized vorticity � is somewhat
analogous to the magnetic field in standard MHD [44]. Indeed,
both quantities obey the same Lagrangian equation, which is,
for �,

d�

dt
= � · ∇ v . (15)

By applying Helmholtz’s law to Hall MHD, we see that the
generalized vorticity lines are frozen into the plasma. However,
the fact that at small scales v × b − dij × b � ve × b leads to

db
dt

= b · ∇ ve , (16)

which shows that the magnetic field, which is no longer frozen
in the fluid due to the Hall term, is still frozen with respect to the
electronic fluid. Like the magnetic helicity in incompressible
MHD, it is possible to show that the generalized helicity
of a generalized vorticity tube is conserved over time [45].
Therefore, HG provides a measure of the degree of structural
complexity (the topology) of an incompressible Hall MHD
flow.

With our notation, the generalized helicity can be written
as HG = ϒ · �. Using Eqs. (1)–(6), we obtain

∂tϒ = v × � − ∇PG + fϒ, (17)

∂t� = ∇ × (v × �) + f�, (18)

where PG = div
2/2 + diP − 2ψ is a generalized pressure and

fϒ,� denote the corresponding forcing terms. (The dissipative
terms will be introduced later.) Now we construct the symmet-
ric two-point correlation function for the generalized helicity,
namely,

RG = R′
G =

〈
� · ϒ ′ + �′ · ϒ

2

〉
. (19)

Below, we shall derive the evolution equation of the corre-
lation function. For the same reasons as before we do not
introduce dissipative terms. Only external forcing terms FG

are introduced in the equations; then we get

∂t (RG + R′
G)

= 〈[−∇Pc + v × �] · �′ + ϒ · [∇′ × (v′ × �′)]〉

+ 〈[ − ∇′P ′
c + v′ ×�′] · � + ϒ ′ · [∇ × (v × �)]〉+FG

= 〈(v × �) · �′ + (v′ × �′) · �〉 + 〈∇′ · [(v′ × �′) × ϒ]

+∇ · [(v × �) × ϒ ′]〉 + FG, (20)

where FG = 〈� · f′
ϒ + ϒ ′ · f� + �′ · fϒ + ϒ · f′

�〉. The defi-
nition � = ∇ × ϒ and the assumption of statistical homo-
geneity lead to the relation

〈∇′ · [(v′ × �′) × ϒ] + ∇ · [(v × �) × ϒ ′]〉
= −〈∇ · [(v′ × �′) × ϒ] + ∇′ · [(v × �) × ϒ ′]〉
= 〈(v′ × �′) · � + (v × �) · �′〉. (21)

Substituting this expression into Eq. (20), we get

∂t

(
RG + R′

G

2

)
= 〈(v′ × �′) · � + (v × �) · �′〉 + FG

2

= −〈δ(v × �) · δ�〉 + FG

2
, (22)

as (v × �) · � = (v′ × �′) · �′ = 0.
For the final step of the development we shall introduce a

dissipative term which is necessary to make the assumption
of a stationary state corresponding to the conservation of the
generalized helicity. By construction, the generalized vorticity
and the vector potential are made of two types of terms:
a magnetic term and a kinetic term. That means we can
distinguish two situations: the case where the magnetic energy
Em is much greater than the kinetic energy Eu and the opposite
situation, i.e., Eu � Em. In the first case, the generalized
helicity reduces to the magnetic helicity, and as explained in
the previous section, we may expect an inverse cascade. This
situation corresponds actually (at subion scales) to electron
MHD. In the second case, the generalized helicity reduces to
the kinetic helicity. In this case the Hall MHD equations can
be simplified to the Navier-Stokes equations for which the
kinetic helicity is indeed an invariant that leads to a direct
cascade [65]. Therefore, we see that both a direct and an
inverse cascade may happen for the generalized helicity. Note
that this conclusion may also be reached when one uses a
Gibbs ensemble analysis [66]. To establish an exact relation
that is valid well inside the inertial zone we shall introduce
a large- or small-scale dissipation which allows us to assume
a stationary state. In practice, that corresponds to a small-
or large-scale forcing, respectively. We introduce the mean
generalized helicity flux dissipative rate ηG and obtain after
simplification

±ηG = 〈δ(v × �) · δ�〉, (23)

where the plus and minus signs correspond to direct and inverse
cascades, respectively (by definition ηG is positive).

Expression (23) is the second main result of this paper. It
is an exact relation for three-dimensional homogeneous Hall
MHD turbulence without the assumption of isotropy. When
the magnetic energy dominates, we recover expression (13)
both in the large-scale and small-scale limits (in the latter case
v − dij → ve).
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V. CHIRALITY OF THE HELICITY CASCADES

Interestingly, each helicity cascade (magnetic and general-
ized) can be associated with a specific polarization. A simple
way to recognize this fact is to write laws (13) and (23) for the
helicities in terms of the following generalized vortices and
velocities [11,28]:

�L = b + di∇ × v , (24)

�R = b , (25)

vL = v , (26)

vR = v − di∇ × b , (27)

where indices L and R refer to different polarities. To
understand why these variables correspond to the L and R

polarities, one possibility is to study the exclusive linear effect
of each variable in the absence of the other [28]. The Hall
MHD equations can be written as

∂t�L/R = ∇ × (vL/R × �L/R) . (28)

When the equations are linearized, by imposing a uniform
magnetic field b0, we get

∂t�̃L/R = ∇ × (ṽL/R × b0), (29)

where ã denotes the linear (first-order) perturbation of variable
a. For the case where only the L variables survive, we have
�̃R = 0 = ṽR . Under this condition expression (29) reduces
to

di∂t (∇ × ṽ) = ∇ × (ṽ × b0) . (30)

For every perturbation, we assume a plane wave solution of the
form exp [i(k · x − ωt)] with angular frequency ω and wave
vector k. The above relation therefore transforms (with ∂t �→
−iω and ∇ �→ ik) into

ωdi(k × v̂) = ib0k‖v̂, (31)

where ξ̂ denotes the Fourier transform of variable ξ . This
equation represents a left-circularly polarized wave and also
necessarily gives ω = b0k‖/(kdi), which identifies the mode
as a known ion-cyclotronic mode. For the other case, we have
similarly �̃L = 0 = ṽL, and the linearization of Eq. (28) gives

∂t b̃ = −di∇ × [(∇ × b̃) × b0] . (32)

After Fourier transformation, this simply becomes

iωb̂ = −dib0k‖(k × b̂) , (33)

which is the equation of a right-circularly polarized wave
mode. In addition, we also get ω = b0k‖kdi , thereby recogniz-
ing the well-known right-circularly polarized whistler mode.

It is straightforward to see (by a simple substitution) that
the exact relations (13) and (23) can be written only in terms
of the generalized fields. We find

ηM = 〈δ(vR × �R) · δ�R〉, (34)

±ηG = 〈δ(vL × �L) · δ�L〉. (35)

The form of expressions (34) and (35) demonstrates that,
on one hand, the magnetic helicity cascade is by nature a
process implying only the right-handed fluctuations, whereas
the generalized helicity cascade implies only the left-handed
fluctuations. While the former property may be expected since
the magnetic helicity is an ideal invariant of electron MHD,
the latter is less trivial. Following a recent analysis [28], we
may call ion MHD the regime where only right fluctuations
persist.

VI. DISCUSSION

Equations (13), (23), (34), and (35) are the main results of
this paper. These exact relations are valid for homogeneous
Hall MHD turbulence without the assumption of isotropy. Un-
like the traditional Yaglom form, the nonisotropic expression
does not involve any global divergence term and provides
therefore a direct evaluation (using numerical simulations
or observational data) of the transfer rates for the helicities.
However, care should be taken because a stationary state
corresponding to the helicity conservation is essential in order
to verify these relations. In addition, we get helicity laws
for Hall MHD which are purely expressible in terms of
two-point increments. We have also shown that the laws for the
helicities can be written in terms of the generalized vortices and
velocities, which reveals the chiral properties of the helicity
cascades, with the magnetic and generalized helicity cascades
being associated with right- and left-handed fluctuations,
respectively. In addition, expressions (34) and (35) show
trivially that a Beltrami flow (�i = aivi), which is the state of
maximum helicity, cannot produce a nonlinear cascade for the
helicities. A summary of our results is proposed in Fig. 1: in this
fluid scenario, we do not introduce kinetic effects that should
appear especially around the scale kdi ∼ 1. Note, finally,
that expressions (13) and (23) or (34) and (35) can be used

FIG. 1. Schematic view of the turbulent helicity cascades in Hall
MHD. Top: inverse cascade of magnetic helicity with a small-scale
forcing (kf di � 1). Middle: inverse cascade of generalized helicity in
a magnetic regime (Em � Eu) and with a small-scale forcing (kf di �
1). Bottom: direct cascade of generalized helicity in a kinetic regime
(Eu � Em) and with a large-scale forcing (kf di < 1). The vertical
dashed line (kdi = 1) separates the MHD scales (on the left) from the
Hall MHD scales (on the right). k−1

D represents the dissipation length
scale.
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to evaluate experimentally the associated cascade rates. For
example, the recently launched Magnetospheric Multiscale
Mission (MMS) composed of four identically instrumented

spacecraft may provide this information during incursions into
the solar wind by measuring the different increments at subion
scales (for both magnetic and plasma data).
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