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Large-deviation statistics of vorticity stretching in isotropic turbulence
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A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action
of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity
stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the
relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a
direct numerical simulation data set at a Taylor-scale Reynolds number of Reλ = 433 and compared to those of the
finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity
stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity’s
preferential alignment with the second-largest eigenvalue of strain rate and the material line’s preferential
alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the
second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are
more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity
magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is
constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail
for the vorticity magnitude probability density function, with good agreement for the exponent but significant
difference (35%) in the prefactor.
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I. INTRODUCTION

The production of enstrophy in three-dimensional isotropic
turbulence is accomplished by the vorticity stretching mech-
anism, which strongly resembles the mechanism for the
stretching of material lines in turbulence, though important
differences can be identified. A useful concept in the study of
material line stretching is the finite-time Lyapunov exponent
(FTLE) of Lagrangian trajectories, which can be interpreted as
the cumulative stretching of material lines along a Lagrangian
path. As the statistics of FTLEs follow a large-deviation
principle, it is of interest to investigate the application of large-
deviation statistics to the cumulative stretching of vorticity
along Lagrangian paths.

The universal or approximately universal structure of small-
scale turbulence emerged from Kolmogorov’s work [1] as an
important theme in turbulence research. While the magnitude
of velocity fluctuations is dominated by large-scale motions,
the smallest scales of motion are primarily responsible for
quantities representing magnitudes of velocity derivatives,
such as dissipation and enstrophy [2,3]. For this reason,
a common approach to studying turbulence structure and
statistics at the smallest scales is through the use of velocity
gradients [4–6].

A major focus of research since Kolmorogov’s 1941
hypotheses has been refinement to account for the influence
of internal intermittency. Often, this has been advanced
using velocity derivatives and their coarse-grained values.
In 1962, Kolmogorov and Oboukov [7,8] proposed a log-
normal model (based on the central-limit theorem) for the
spatial intermittency of coarse-grained dissipation. Parisi and
Frisch [9] introduced the idea of multifractality in small-scale
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turbulence, essentially based on the large-deviation theorem
rather than the central-limit theorem (see Frisch [10]), which
was confirmed by Meneveau and Sreenivasan [11] using a
measurement proxy for dissipation.

An intrinsic quality of turbulence is that it is rotational [2].
In fact, for isotropic turbulence, mean dissipation and enstro-
phy are directly related. Enstrophy production by the straining
of existing vorticity, ωiSijωj , where Sij is the strain-rate tensor
and ωi is the vorticity vector, is often discussed in tandem with
the idea of the cascade of energy to small scales [2] and can
be related to the negative velocity derivative skewness [3]
representing interscale transfer of energy. For this reason, the
structure and statistics of enstrophy and other vorticity-related
measures have also been studied extensively [12–22].

Visualization of vorticity magnitude isosurfaces in high-
resolution simulations has revealed the ubiquitous presence
of tube-shaped regions of concentrated high-vorticity re-
gions [12,21,23–26], confirming earlier experimental evi-
dence [27]. Coarse graining at various filter widths reveals
a hierarchy of vorticity tubes, smaller tubes spirally wrapped
within larger ones [28], once again suggesting the importance
of multiscale vorticity interactions in the turbulence energy
cascade. The vortex tube picture has formed the basis for
a number of simplified models of small-scale turbulence
[29–34].

Johnson and Meneveau [35] showed that the rotation of fluid
particles by vorticity strongly reduces cumulative material
deformation by weakening the ability of the Cauchy-Green
tensor to align with the strain rate. This is partly responsible
in reducing the deformation rate for small droplets [36] well
below what the strain-rate statistics would suggest.

A key universal observation in this context is that the
enstrophy production term, ωiSijωj , is positive on average,
meaning that enstrophy production by stretching is more
prevalent than enstrophy destruction by contraction. While
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Taylor [37] attributed this to the stretching of material lines
by invoking an equality between material deformation and
vorticity stretching in inviscid flow, important differences
between the two processes have been identified and inves-
tigated [19,20,22,38]. These differences are manifest in the
tendency of vorticity to align with the strain-rate eigenvector
associated with the second-largest eigenvalue [14], while
material lines tend to align slightly toward the eigenvector
associated with the largest eigenvalue [39]. As a result Ref. [19]
showed that vorticity stretching is on average smaller than
material line stretching.

In this paper, we seek to characterize the statistics of the
vorticity stretching term by looking at cumulative stretching
along a Lagrangian path using the large-deviation formalism.
This characterization allows direct comparison with previous
results for material deformation [35] in order to clarify similar-
ities and differences between the two processes. Specifically,
the Cramér function provides an efficient description of the
asymptotic evolution of the cumulative stretching probability
density function (PDF). This description enables a more
detailed statistical comparison between vorticity stretching
and material line stretching in turbulence. Additionally, the
details of this statistical characterization can be incorporated
into an approximate stochastic model for predicting features of
the equilibrium distribution function of enstrophy using some
existing approaches from polymer stretching studies [40,41].

Meneveau and Sreenivasan [11] and Bershadskii et al. [42]
proposed a stretched-exponential fit to the tails of the dissi-
pation and enstrophy PDF based on experimental data, with
exponent 0.5. With increasing computational resources in time,
numerical results later confirmed that a stretched-exponential
provides a good fit to the both dissipation and enstrophy PDFs
but with exponent closer to 0.25 [43]. We will attempt to
explain the stretched exponential behavior using statistical
properties of the vorticity stretching as described by the
large-deviation formalism.

Background on vorticity stretching and the large-deviation
formalism is given in Sec. II. The details for the direct
numerical simulation data set and evaluation of Lagrangian
statistics are given in Sec. III. In Sec. IV, the results of the
statistical analysis are shown and discussed in terms of the
Cramér function for vorticity stretching. Particular attention
is paid to the relationship to material line deformation and
strain-rate eigenvalue statistics. Using the Cramér function for
vorticity stretching and statistical observations of diffusion, a
stochastic model is constructed for the Lagrangian vorticity
evolution in Sec. V, allowing for the prediction of the vorticity
magnitude PDF in stationary isotropic turbulence. Following
that, Sec. VI delineates conclusions drawn from the results in
the previous sections.

II. BACKGROUND

In this section, the necessary background for this work
is presented. The equations for vorticity evolution along
Lagrangian paths are presented first. Following this, the large-
deviation formalism is reviewed, along with its application to
material deformation. Supporting arguments for the applica-
tion of the large-deviation formalism to vorticity stretching are
given, as well as criteria for verification.

A. Lagrangian vorticity evolution

In this paper, we consider forced isotropic turbulence
satisfying the incompressible Navier-Stokes equations,

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xj

+ ν
∂2ui

∂xj ∂xj

+ fi,
∂uj

∂xj

= 0,

(1)

where ui(x,t) and p(x,t) are the velocity and pressure fields,
respectively. The kinematic viscosity is ν and the forcing is fi .
The curl of Navier-Stokes gives an equation for the vorticity,
ωi = εijk

∂uk

∂xj
,

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj

∂ui

∂xj

+ ν
∂2ωi

∂xj ∂xj

+ εijk

∂fk
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, (2)

where εijk is the Levi-Cevita alternating tensor.
The velocity gradient tensor can be split into symmetric

and antisymmetric components, ∂ui

∂xj
= Aij = Sij + �ij , with

Sij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) and �ij = 1

2 ( ∂ui

∂xj
− ∂uj

∂xi
). The antisymmet-

ric part of the velocity gradient is directly related to the
vorticity by �ij = − 1

2εijkωk and ωi = −εijk�jk , so �ijωj =
0. Considering low-wave-number forcing and sufficiently high
Reynolds number, the curl of the forcing can be neglected.
Following Lagrangian trajectories, xi(t),

dxi

dt
= ui(x,t), xi(t0) = Xi, (3)

the vorticity evolution is

dωi

dt
= Sijωj + ν

∂2ωi

∂xj ∂xj

. (4)

Consider the decomposition of the vorticity vector, ωi =
ωω̂i , where ω = √

ωiωi is the vorticity magnitude and ω̂i = ωi

ω

is the unit vector associated with the vorticity orientation. With
this decomposition, the Lagrangian evolution for vorticity
magnitude can be written as

dω

dt
= ω̂iSij ω̂jω + νω̂i

∂2ωi

∂xj ∂xj

. (5)

It is interesting, then, to consider this in terms of the logarithm
of vorticity magnitude,

d ln ω

dt
= ω̂iSij ω̂j + ν

ω̂i

ω

∂2ωi

∂xj∂xj

. (6)

The first term on the right-hand side, ω̂iSij ω̂j , represents
vorticity stretching (enstrophy production) by the strain-rate
tensor. This paper will focus primarily on this term, using
the large-deviation formalism to represent its statistics. The
second term represents the effect of viscous forces, preventing
the unbounded growth in vorticity magnitude at finite ν.

Complementing Eq. (6) for the vorticity magnitude is the
equation for the evolution of the vorticity orientation,

dω̂i

dt
= (δik − ω̂i ω̂k)Skj ω̂j

+ ν

[
(δik − ω̂i ω̂k)

∂2ω̂k

∂xj ∂xj

+ 2
∂ω̂i

∂xj

∂ ln ω

∂xj

]
. (7)
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The first term on the right-hand side represents the rotation or
realignment of the vorticity due to the strain-rate tensor. This
term shows that the strain rate acts to rotate the vorticity toward
alignment with the strain-rate eigenvector associated with the
largest eigenvalue. Such an alignment is not observed in single-
time statistics due to the lack of persistent straining [44], i.e.,
the vorticity never “catches up” with the strain rate. However,
allowing for a time lag, it has been observed that the vorticity
shows statistical bias toward aligning with the eigenvector of
the largest eigenvalue of the strain-rate tensor at a previous
time along the Lagrangian path [45,46].

The second term on the right-hand side represents the
viscous-tilting effect [22]. In this form, we see that the viscous
tilting has contributions from the Laplacian of the vorticity
unit vector (projected normal to the unit vector) and from the
vorticity curvature tensor [47], ∂ω̂i

∂xj
, acting on the gradient of

ln ω. The viscous tilting effect is responsible for the difference
in Lagrangian evolution between vorticity and infinitesimal
material lines that are initialized in alignment with the local
vorticity [19].

The focus of this paper is on the statistics of the vorticity
stretching term, ω̂iSij ω̂j . The eigenframe of the strain-rate ten-
sor is useful to clarify the connection between the magnitude
of the vorticity stretching term and the vorticity orientation
dynamics. In this frame it is seen that [38]

ω̂iSij ω̂j =
3∑

i=1


i cos2(θi), (8)

where 
i is the i th eigenvalue of the strain-rate tensor and θi

is the angle between the vorticity vector and the eigenvector
associated with the i th eigenvalue of the strain-rate tensor.
Thus, the vorticity stretching can be viewed as a weighted
average of the three strain-rate eigenvalues, where the weight
of a given eigenvalue is determined by how closely its
eigenvector aligns with the vorticity vector being stretched. In
this paper, we consider the statistics of the cumulative vorticity
stretching along a Lagrangian path using the large-deviation
formalism.

B. Large-deviation formalism

According to the large-deviation formalism, which can be
traced back to Cramér [48], a sum of N independent and
identically distributed random variables, YN = ∑N

i=1 xi , in the
limit N → ∞, has the PDF that behaves as

pY (ξ,N ) ∼ exp

[
−NSy

(
ξ

N

)]
, (9)

where Sy is the so-called Cramér function (sometimes also
called the entropy or rate function). The Cramér function
quantifies the self-similar collapse of the PDF of yN = YN

N

to a Dirac δ function at 〈x〉. The justification of the large-
deviation formalism depends on the additivity of cumulants
(cumulant-generating functions) for independent variables, as
well as the fact that identically distributed variables share the
same cumulant-generating function. With these properties, the
cumulants of the sum, YN , are equal to N times the cumulants
of the independent variables, xi . The validity of Eq. (9) thus
hinges on the linear growth of the cumulants of YN with N .

The large-deviation formalism can be extended to applica-
tions with the integration over a continuous variable with finite
correlation time, Y (T ) = ∫ T

0 x(t)dt . Here the integral can be
thought of as a sum of many integrals over subintervals, [ti ,ti +
t), of the full integration interval [0,T ), each subintegral
being over a sufficiently large interval that it is independent
of the others [and identically distributed assuming stationarity
of x(t)]. In this case, the probability density function of the
integral becomes, in the limit T → ∞,

pY (ξ,T ) ∼ exp

[
−T Sy

(
ξ

T

)]
. (10)

The validity of Eq. (10) hinges on the linear growth of the
cumulants of Y (T ) with increasing integration time T .

The preceding discussion provides an informal expectation
for a large-deviation principle to hold. In fact, the application
of a large-deviation principle has been extended rigorously
well beyond the case of sums of independent and identically
distributed variables. The Gärtner-Ellis theorem [49,50] gives
the existence of a scaled cumulant-generating function as a
criterion for the applicability of a large-deviation principle.
Furthermore, Donsker and Varadhan have provided a rig-
orous basis large-deviation statistics of general Markovian
systems [51–54].

To date, the large-deviation formalism has found many
fruitful applications within the study of turbulent flows. It
forms the basis for the multifractal theory in three-dimensional
turbulence [9–11,55,56], where the singularity spectrum f (α)
is related to the Cramér function. Large-deviation statistics
have been used to digest the results of shell models [57,58].
It has also been used for passive scalar advection [59], the
stretching of polymers [40,41,60,61], the clustering of inertial
particles [62,63], droplet deformation [36], and other appli-
cations reviewed by Ref. [64]. Furthermore, it is important
for developments in the statistical mechanical description of
two-dimensional turbulence [65–68]. Meanwhile, the large-
deviation statistics of FTLEs in two-dimensional turbulence
and the impact on vorticity increments was explored [69].
Additionally, the bistability of two-dimensional flows has been
investigated using large-deviation statistics [70,71].

C. Material lines and finite-time Lyapunov exponents

An infinitesimal material line evolves as
dri

dt
= Aij rj , (11)

along a Lagrangian path. Performing the same decomposition
as with the vorticity above, ri = rr̂i , this can be decomposed
into an equation for the magnitude and an equation for the
orientation,

d ln r

dt
= r̂iSij r̂j ,

dr̂i

dt
= (δik − r̂i r̂k)Skj r̂j + �ij r̂i . (12)

For material lines, integrating the first part of Eq. (12)
results in

�(T ) = ln

(
r(T )

r(0)

)
=

∫ T

0
r̂iSij r̂j dt. (13)

Furthermore, given the finite correlation time of the strain
rate along Lagrangian paths [72,73], proportional to the
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Kolmogorov time scale τη, and given the passive nature of the
material line (i.e., Sij does not depend on r), the application of
the large-deviation formalism is quite straightforward. In this
case, the FTLE [74–76], is intimately related to this result,

γ (T ) ≡ 1

T
ln

[
r(T )

r(0)

]
= 1

T

∫ T

0
r̂iSij r̂j dt. (14)

Accordingly, the PDF of FTLEs evolves as

pγ (g,T ) ∼ exp[−T Sγ (g)], (15)

where g is the sample space variable for the FTLE. Cramér
functions, Sγ , of the largest FTLE have been computed by
Bec et al. [63] and for the entire FTLE spectrum (including
for joint statistics) by Johnson and Meneveau [35] for the case
of isotropic turbulence.

D. Vorticity

Seeing that a large-deviation principle has been shown for
cumulative material deformation along Lagrangian paths, it is
interesting to seek one also for cumulative Lagrangian vorticity
stretching. A large-deviation principle for vorticity stretching
would allow a more detailed comparison with material line
stretching in terms of the Cramér function, which describes the
self-similar behavior of the cumulative stretching PDF along
Lagrangian paths. The existence of a large-deviation principle
in the case of Lagrangian material deformation provides a
strong rationale for expecting one to hold in the case of
Lagrangian vorticity stretching, although a rigorous proof is
not available and so it must be shown empirically. The first
task in this paper is to verify that the cumulative vorticity
stretching term indeed behaves in such a way as to support the
application of the large-deviation formalism. Second, we seek
to determine the integration time T needed to allow for such
behavior to take hold.

As already stated, this paper seeks to study only the vorticity
stretching term in the vorticity evolution equation, without
considering any details of the viscous term. Thus neglecting
the viscous term, we define an increment of ln ω,

�ω(T ) ≡ T (ln ω) = ln

[
ω(T )

ω(0)

]
=

∫ T

0
ω̂iSij ω̂j dt, (16)

such that there is an analog to the FTLE for the vorticity
stretching,

γω(T ) ≡ �ω(T )

T
= 1

T
ln

[
ω(T )

ω(0)

]
= 1

T

∫ T

0
ω̂iSij ω̂j dt. (17)

Because the viscous term has been discarded, comparison
of statistical behavior between γω and that of the FTLEs,
especially the largest FTLE γ1, allows for an exploration of
the differences between the stretching of vorticity and material
lines by strain rates in turbulence.

A useful quantity is the scaled cumulant-generating func-
tion (which is analogous to the generalized Lyapunov expo-
nent [76]),

Lγω
(q) = lim

T →∞
1

T
ln〈exp(qγωT )〉, (18)

which exists only if the cumulant-generating function for
�ω(T ) grows linearly in time. If this cumulant-generating
function, ln 〈exp (qγωT )〉, can be shown to grow linearly
with time, the slope as a function of q gives the generalized
Lyapunov exponent, L(q). Furthermore, casting the PDF in the
form of Eq. (15) to compute the ensemble average in Eq. (18),
and using steepest-descent integration in the T → ∞ limit, it
results that L(q) is the Legendre transform of Sγω

,

Lγω
(q) = sup

g

[
qg − Sγω

(g)
]
. (19)

For the present purposes, the linear growth of the cumulant-
generating function [i.e., the existence of Lγω

(q)] is considered
sufficient evidence that the PDF of γω behaves according to
Eq. (15). Direct numerical simulations of forced isotropic
turbulence in a periodic domain can be used to test the
hypothesis that the vorticity stretching term should behave
in this way.

III. NUMERICAL METHODS

In this section, the numerical methods applied in this study
are briefly introduced. This study uses a direct numerical
simulation data set for gathering statistics for isotropic turbu-
lence and performs Lagrangian particle tracking with velocity
gradient extraction to evaluate important terms for the vorticity
evolution equation.

The Johns Hopkins Turbulence Databases (JHTDB)
isotropic data set [77,78] is used for the turbulence statistics
reported in this paper. This data set was constructed from a
pseudospectral simulation of Eq. (1) in a 2π periodic cube
with 10243 resolution. The simulation used the second-order
Adams-Bashforth scheme for time advancement and 2

√
2/3

truncation with random phase shift for dealiasing. Important
parameters for the simulation are given in Table I.

The simulation code wrote the full velocity and pressure
fields to disk every 10 time steps for storage on the public
database cluster. In total, 1024 consecutive snapshots of the
entire fields are stored, allowing for the tracking of Lagrangian
trajectories for up to 45τη with temporal resolution of t =
τη/22. The public database functionality provides built-in
Lagrangian particle tracking [79].

For this paper, ensembles of 64,000 particles were tracked
using the second-order predictor-corrector method with cu-
bic Hermite interpolation in time and sixth-order Lagrange
interpolation in space. For the initial distribution of particles,
the (2π )3 domain was divided into 1000 cubes of equal size
(π/5)3. Within each subcube, 64 particle trajectories were

TABLE I. Numerical details for JHTDB (Refs. [77,78]) simulation used in this paper.

N Reλ ε ν η τη t (simulation) t (saved) T

10243 433 0.928 1.85e-04 2.87e-03 0.045 2e-04 2e-03 2.048
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initialized at random positions, selected from a uniform spatial
distribution along each coordinate. In this way, a uniform
coverage of the domain was ensured within a randomized
initialization procedure. Predictor-corrector steps were taken
with a time step of 1

5
th

of the storage time step.
At each time step, velocity gradients were extracted from

the data set using fourth-order finite differencing with fourth-
order Lagrangian interpolation in space and cubic Hermite
interpolation in time. The cumulative vorticity stretching along
each trajectory, Eq. (16), was computed using the midpoint rule
for numerical integration.

IV. THE CRAMÉR FUNCTION FOR VORTICITY
STRETCHING

In this section, the method for constructing the Cramér
function from the Lagrangian vorticity stretching data is pre-
sented. The resulting Cramér function for vorticity stretching
in isotropic turbulence is shown.

A. Legendre transform method

In previous work, Johnson and Meneveau [35] compared
two methods for constructing the Cramér function for material
deformation: (i) histogram-based construction of the PDF
and finite-size compensation via vertical shift of the Cramér
function and (ii) moment-based construction of the general-
ized Lyapunov exponent with (inverse) Legendre transform
to construct the Cramér function. The Legendre transform
method proved superior in that case and is adopted here.
Another advantage of this method is the explicit evaluation
of the cumulant-generating function, which is useful for
verifying the applicability of the large-deviation formalism
to vorticity stretching. Below, the method is briefly outlined
before presenting results.

The first step in the moment-based method for constructing
the Cramér function is to compute the generalized Lyapunov
exponent, Lγω

(q), given by Eq. (18). To construct Lγω
(q), the

cumulant-generating function, ln 〈exp (qγωT )〉, is calculated
as a function of q and T . The applicability of the large-
deviation formalism requires the results to asymptotically
(T → ∞) grow linearly with integration time. The cumulant-
generating function is plotted for sample values of −1.6 <

q < 1.0 as a function of integration time in Fig. 1. In this
range, the linear growth in time is a striking feature of the
results.

On the basis of the evidence shown in Fig. 1, it is
concluded that the required behavior for the applicability of
the large-deviation formalism is seen for vorticity stretching,
even at relatively small integration times ∼30τη. The slopes of
the curve fits (shown as dotted lines in Fig. 1) then represent
the generalized Lyapunov exponent at a given q. Using a
linear regression procedure for −3 < q < 3 with uniform dis-
cretization of q = 0.02, the generalized Lyapunov exponent
is constructed and shown in Fig. 2 for five different ensembles
of 64k particles each. The linear regression was performed only
on the interval 30τη < T < 45τη. A specified threshold on the
95% confidence interval, computed from the standard error of
the regression analysis, was used to determine the range over
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ω
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)
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FIG. 1. The cumulant-generating function for the cumulative
vorticity stretching, �ω = γωT , for (a) q = −1.6, − 1.4, − 1.2,

− 1.0, − 0.8, − 0.6, − 0.4, − 0.2, and (b) q = 0,0.2,0.4,0.6,

0.8,1.0. Symbols represent numerical values from the data set and
dashed-lines represent linear curve fits for the 30τη < T < 45τη

range.

which the curve fits were reliable. Points with standard error
above this threshold were removed.

The spread of the five curves in this figure, especially no-
ticeable in the tails, is indicative of the statistical convergence
error. The curves pass through the origin as expected and
near the origin can be approximated by a truncated Taylor
expansion [76],

Lγω
(q) ≈ λωq + 1

2ωq2. (20)

The slope at the origin, L′
γω

(0) = λω = 〈ω̂iSij ω̂j 〉 ≈ 0.100/τη,
represents the average vorticity stretching and is analogous
to the Lyapunov exponent of Lagrangian trajectories in the
context of material line stretching. The curvature at the origin,
L′′

γω
(0) = ω ≈ 0.122/τη, gives a measure of the strength of

fluctuations in cumulative stretching about the mean. This
parabolic approximation is shown in Fig. 2 as a dashed line.

As given by Eq. (19), the generalized Lyapunov exponent
is the Legendre transform of the Cramér function. For a
known generalized Lyapunov exponent, the inverse Legendre
transform can be used to recover the (convex hull of the)
Cramér function,

Sγω
(g) = sup

q

[gq − Lγω
(q)]. (21)

-0.1

-0.05
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 0.15

 0.2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

L γ
ω
(q

) τ
η

q

FIG. 2. The generalized Lyapunov exponents for the vorticity
stretching from five different 64k Lagrangian particle ensembles. The
dashed line represents a parabolic curve fit in the region of q = 0.
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FIG. 3. The Cramér function for the vorticity stretching from five
different 64k Lagrangian particle ensembles. The differences between
the five different ensembles illustrate the extent of uncertainty from
statistical convergence. The symbol g is used for the probability
space variable of γω and both axes are nondimensionalized by the
Kolmogorov time scale τη. The gray vertical line indicates γω = 0.
The dashed line represents a parabolic curve fit to the Cramér function
near the minimum.

The inverse Legendre transform is performed numerically, for
a given g-q pair,

g = L′
γω

(q), Sγω
(g) = qL′

γω
(q) − Lγω

(q), (22)

using second-order central differencing for the derivative of
the generalized Lyapunov exponent.

Figure 3 shows the resulting Cramér function for the
vorticity stretching term. The minimum of the Cramér function
is Sγω

(λω) = 0. A truncated Taylor expansion about the
minimum gives a parabola,

Sγω
(g) ≈ (g − λω)2

2ω

, (23)

which is the Legendre transform of the parabolic generalized
Lyapunov exponent given in Eq. (20). The dashed line in
Fig. 3 shows this approximation. Substitution of Eq. (23)
into Eq. (15) yields Gaussian statistics, that is, the Gaussian
toward which the central-limit theorem predicts that the PDF
is approaching for T → ∞.

B. Comparison with FTLE spectrum

In Sec. II, an analogy was drawn between the behavior
of vorticity along Lagrangian trajectory and the behavior of
material lines. Specifically in the context of large-deviation
statistics, the quantity γω was introduced to quantify the
cumulative stretching of vorticity by the strain-rate tensor
along Lagrangian paths. This quantity is directly analogous
to the FTLE of Lagrangian trajectories, γi with i = 1,2,3,
which characterize the cumulative deformation of a fluid
volume by the strain-rate tensor. Specifically, γ1 can be used
to investigate material line stretching and γ1 + γ2 for material
surface area stretching. It is of interest, therefore, to compare
the large-deviation statistics of cumulative vorticity stretching
with those of the FTLEs as a way of exploring similarities
and differences in vorticity and material line behavior in
turbulence.

It is known that vorticity tends to align most readily
with the strain-rate eigenvector corresponding to the in-
termediate eigenvalue [14], 
2, while material lines tend
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FIG. 4. Comparison of the Cramér function for vorticity stretch-
ing with the marginal Cramér functions for the finite-time Lyapunov
exponents [35]. Each Cramér function was measured from five
separate ensembles of 64k Lagrangian particles each in order to
demonstrate the level of statistical convergence uncertainty. The
symbol g is used for the probability space variable of γ and both
axes are nondimensionalized by the Kolmogorov time scale τη. The
gray vertical line indicates γ = 0.

to align more with the eigenvector corresponding to the
largest eigenvalue [19], 
1. As a result, the mean material
line stretching, 〈̂riSij r̂j 〉, is larger than the mean vorticity
stretching, 〈ω̂iSij ω̂j 〉.

For material lines, the first term in Eq. (12), (δik −
r̂i r̂k)Skj r̂j , shows that the strain-rate tends to tilt material
lines in the direction of the strongest strain. Perfect alignment
does not occur, in fact, because of the impact of vorticity
on the material line, �ij r̂j , and the fact that the strain-rate
eigenvectors are moving targets, being themselves rotated by
the vorticity and nonlocal pressure Hessian [80]. For vorticity,
Eq. (7), the �ij ω̂j term vanishes and is replaced by the viscous
tilting terms. The tendency of the strain rate to rotate vorticity
toward its largest eigenvalue remains. A vital difference is
the active feedback that the vorticity has on the strain-rate
evolution (as opposed to passive material lines). This appears
to be the key ingredient in the vorticity’s alignment bias toward
the second-largest eigenvalue [19].

The ratio of Lyapunov exponents (the average stretching
of mutually orthogonal material lines) in isotropic turbulence
is approximately λ1 : λ2 : λ3 ≈ 4 : 1 : −5 [35,63]. In Fig. 4,
the Cramér function for cumulative vorticity stretching is
compared with the Cramér functions for the Lyapunov spec-
trum (see Ref. [35] for details). Bec et al. [63] reported a
leading Lyapunov exponent of λ1τη ≈ 0.14 while Johnson
and Meneveau [35] found λ1τη ≈ 0.125 after correcting for
finite integration time effects (with Sγ1 evaluated up to 45τη it
is slightly lower, i.e., λ1τη ≈ 0.114, as shown in Fig. 4). For
vorticity, the present results show mean stretching, λωτη =
〈ω̂iSij ω̂j 〉 = 0.10, which is significantly lower than that of the
mean stretching for material lines. Guala et al. [19] measured
〈ω̂iSij ω̂j 〉 and 〈̂riSij r̂j 〉 for short evolution times up to 6τη,
concluding that the material lines had significantly stronger
stretching. Indeed, this is easy to understand, since the vorticity
tends to preferentially align with the second-largest strain-
rate eigenvalue, while material lines tend to tilt towards the
largest one. However, here it is shown that the mean vorticity
stretching rate greatly exceeds that of the second-largest FTLE
and is much closer to λ1 than λ2 ≈ 0.03/τη.
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TABLE II. Comparison of first four cumulants for the vorticity
stretching with those of the first two FTLEs. The asterisk denotes that
the value is corrected for finite integration time effects, see Ref. [35]
for more details.

λτη τη S
(

T

τη

)1/2
(K − 3)

(
T

τη

)
γ1 0.125∗ 0.145 4.8 30
γω 0.100 0.122 3.6 18
γ2 0.029 0.098 0.93 2.7

The width of the Cramér function of cumulative vorticity
stretching is visually very similar to that of the largest FTLE.
To quantify the behavior of these Cramér functions, the
derivatives of the generalized Lyapunov exponent at the origin
are used. As apparent from the relation of Eq. (18) to the
cumulant-generating function of � = γ T , these derivatives
represent the growth rate of cumulants, e.g., of the integrated
vorticity stretching, �ω = ∫ T

0 ω̂iSij ω̂idt . In addition to mean,
λT = L′(0)T , and variance, T = L′′(0)T , the deviation
from Gaussian statistics can be quantified by the skewness,

S = L′′′(0)T

[L′′(0)T ]3/2
= L′′′(0)τη

[L′′(0)τη]3/2

(
T

τη

)−1/2

, (24)

and excess kurtosis,

K − 3 = L(4)(0)T

[L′′(0)T ]2
= L(4)(0)τη

[L′′(0)τη]2

(
T

τη

)−1

. (25)

Note that, in agreement with the central-limit theorem, the
skewness and excess kurtosis (and all higher-order cumulants)
are decaying to zero at T → ∞. The large-deviation formalism
gives a means for computing the rate at which they decay.
Table II shows these cumulant values for three of the curves
in Fig. 4. The derivatives were evaluated using fourth-order
polynomial curve fits to L(q) near q = 0 and averaged over
each of the five ensembles. It is apparent from this analysis
that the cumulative vorticity stretching statistics behave more
similarly to γ1 than γ2. The cumulative vorticity stretching
and largest FTLE have much larger deviations from Gaussian
statistics (skewness and excess kurtosis) than the second-
largest FTLE for a given integration time.

Physically speaking, the intermediate FTLE, γ2, can be
thought of as the cumulative stretching of material lines
constrained to be perpendicular to the most stretched material
line. Perhaps the most intuitive feel for the significance of γ2

is to think of cumulative material surface area stretching as
γ1 + γ2. The similarity between γω and γ1 is relative to the
comparison of γω with γ2 in a statistical sense and should
not be seen to overshadow the important differences between
vorticity stretching and material line stretching but only to put
them in perspective. For example, while vorticity stretching is
on average less than material line stretching, it is still much
greater than the average stretching in the plane perpendicular
to material lines.
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FIG. 5. Comparison of the Cramér function for vorticity stretch-
ing with the hypothetical Cramér functions if perfect alignment with
the largest or second-largest strain-rate eigenvalues was maintained
throughout the dynamics.

C. Comparison with strain-rate eigenvalue statistics

In order to emphasize the effect of preferential alignment
of vorticity with the second-largest strain-rate eigenvalue, a
Cramér function can be constructed for a vector always in
perfect alignment with a given strain-rate eigenvalue. This ar-
tificial Cramér function does not reflect any physical dynamics
but rather the hypothetical dynamics of vorticity magnitude if
perfect alignment with any of the eigenvectors was maintained.
Two such Cramér functions, one for the largest eigenvalue 
1

and one for the second-largest eigenvalue 
2, are plotted in
Fig. 5 alongside the Cramér function for cumulative vorticity
stretching. It is clear that the Cramér function for vorticity
stretching is much closer to that of perfect alignment with

2 rather than 
1, which is consistent with the observed
preferential alignment of the vorticity vector.

V. A MODEL KRAMERS-MOYAL EQUATION FOR THE
VORTICITY MAGNITUDE

In this section, an application of the above statistical char-
acterization of vorticity stretching to a model for the vorticity
magnitude PDF is described. Some of the assumptions of the
model are justified by appealing to results from DNS of forced
isotropic turbulence. The vorticity magnitude PDF is defined
for a statistical ensemble of Lagrangian trajectories, so the
Lagrangian evolution of the vorticity described in the previous
sections is the relevant dynamical input to the statistical
equations. In addition, the free parameters of the model
are prescribed using statistics from DNS. While progress in
solving the full model has so far proved difficult, the results of
the model for a parabolized Cramér function are presented.

A. PDF closure using conditional means

The goal of this section is to model the statistics of vorticity
magnitude using Eq. (6). To appreciate this goal, first consider
the direct approach to constructing the evolution equation
for the PDF. Following a similar procedure as Wilczek and
Friedrich [81] (i.e., following Lundgren [82], Monin [83],
and Novikov [84] with closure introduced through conditional
means), the PDF of ln ω can be written in terms of the
fine-grained PDF,

pln ω(χ,t) = 〈δ(ln ω(t) − χ )〉. (26)

033118-7



PERRY L. JOHNSON AND CHARLES MENEVEAU PHYSICAL REVIEW E 93, 033118 (2016)

Differentiating in time and using conditional mean closure,

∂pln ω

∂t
= − ∂

∂χ

〈
d ln ω

dt
δ(ln ω(t) − χ )

〉

= − ∂

∂χ

(〈
d ln ω

dt

∣∣∣∣ ln ω = χ

〉
pln ω

)
, (27)

and substituting Eq. (6) on the right-hand side yields

∂pln ω

∂t
= − ∂

∂χ

[(
〈ω̂iSij ω̂j | ln ω = χ〉

+ ν

〈
ω̂i

ω

∂2ωi

∂xj ∂xj

∣∣∣∣ ln ω = χ

〉)
pln ω

]
. (28)

Solving for the stationary PDF, ∂pln ω

∂t
= 0, the constant of

integration vanishes due to pln ω → 0 as ln ω → ∞, resulting
in the requirement

〈ω̂iSij ω̂j | ln ω = χ〉 = − ν

ω

〈
ω̂i

∂2ωi

∂xj ∂xj

∣∣∣∣ ln ω = χ

〉
. (29)

That is, the conditional mean stretching must equal the condi-
tional mean viscous relaxation at every point in probability
space for ln ω. While this is a helpful constraint on the
conditional means, it provides no prescription for finding the
stationary distribution pln ω.

A useful manipulation of the above equation for finding
the stationary PDF is found by invoking the fact that for
homogeneous turbulence, the vorticity PDF is independent
of spatial coordinates, so its Laplacian is zero [81],

0 = ∂2pln ω

∂xj∂xj

= − ∂

∂χ

(〈
∂2 ln ω

∂xj∂xj

∣∣∣∣ ln ω = χ

〉
pln ω

)

+ ∂2

∂χ2

(〈
∂ ln ω

∂xj

∂ ln ω

∂xj

∣∣∣∣ ln ω = χ

〉
pln ω

)
. (30)

With the help of Eqs. (6) and (30), the evolution equation for
pln ω, Eq. (28), can be rewritten as

∂pln ω

∂t
= − ∂

∂χ

[(
〈ω̂iSij ω̂j | ln ω = χ〉

+ ν

〈
∂ ln ω

∂xj

∂ ln ω

∂xj

− ∂ω̂i

∂xj

∂ω̂i

∂xj

∣∣∣∣ ln ω = χ

〉)
pln ω

]

− ν
∂2

∂χ2

(〈
∂ ln ω

∂xj

∂ ln ω

∂xj

∣∣∣∣ ln ω = χ

〉
pln ω

)
. (31)

Indeed, this expression is analogous to one obtained by
Wilczek and Friedrich [81] for a single component of the
vorticity. Wilczek and Friedrich [81] solved their equation and
numerically evaluated two conditional averages from DNS,
showing that such an approach can exactly reconstruct the
PDF for a single component of vorticity. The present goal
is to introduce a model which incorporates the statistical
information from the Cramér function of vorticity stretching
to reconstruct the vorticity magnitude PDF.

B. Analogy with polymers

We first invoke an analogy between vorticity stretching and
polymer stretching in turbulence. Representing the polymer
with a bead-spring model, with vector ρi signifying the

displacement between the two ends of the polymer, the
polymer equation along a Lagrangian path is modelled with

dρi

dt
= Aijρj − f (|ρ|) ρi

|ρ| , (32)

where f (|ρ|) represents the elastic restoration force of the
polymer [41]. For the Oldroyd-B model, the restoration force
is that of a linear spring, f (|ρ|) = |ρ|

τp
, where τp is the

relaxation time of the polymer [40,41]. The Oldroyd-B model
allows infinite extension of the polymer, and therefore a
popular extension is the nonlinear FENE-P model [85]. On
the decomposition ρi = ρρ̂i , the equations become

d ln ρ

dt
= ρ̂iSij ρ̂j − f (ρ)

ρ
,

dρ̂i

dt
= (δik − ρ̂i ρ̂k)Skj ρ̂j + �ij ρ̂j . (33)

These equations resemble those of the material line, Eq. (12),
except that they now contain a relaxation term to prevent
unbounded growth of the polymer.

Comparison with Eqs. (6) and (7) reveals three differences
between the evolution equations for polymers and vorticity.
First, while both the vorticity and polymer stretching are
resisted by a second term that acts to prevent unbounded
growth, the relaxation term in the polymer length equation
is due to the properties of the polymer, whereas the viscous
term in the vorticity equation is a function of the flow in
the neighborhood of the point (and therefore, much more
challenging to model). Second, there is no viscous tilting in
the equation for the polymer orientation evolution, because
the polymer relaxation always acts along the polymer axis.
Third, the polymer can be rotated by the vorticity, whereas the
vorticity cannot rotate itself: �ij ω̂j = 0.

Perhaps the most important difference, however, is not
obvious in this comparison: how the vorticity and polymers
affect the strain rate that is stretching them. Both the vorticity
and polymers can have a back-reaction on the flow, though
the details of the two-way coupling vary. However, especially
below the coil-stretch transition, the polymer can be approxi-
mately modelled as a passive entity [40,41]. There is no similar
regime for the vorticity in which a passive treatment is a good
approximation.

For polymers, under the assumption that the polymer has
negligible influence on the flow (i.e., on Sij ), the integration
of the first part of Eq. (33) gives

ln

[
ρ(T )

ρ(0)

]
=

∫ T

0

[
ρ̂iSij ρ̂j − f (ρ)

ρ

]
dt. (34)

Because the orientation of the polymer, Eq. (33), follows the
same equation as the orientation of the material line, Eq. (12),
the statistics of ρ̂iSij ρ̂j are identical in these cases, and the
Cramér function for material lines can be directly used. For this
reason, the large-deviation formalism has been found useful
for studying polymer length distributions [40,41,60].

C. Modeling approximations

The qualitative resemblance of vorticity stretching statistics
to material line stretching in Fig. 4, despite the fact that the
vorticity plays an active role in turbulent dynamics, motivates
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the attempt to model and approximate the vorticity as a passive
vector with relaxation. This is the first and most drastic mod-
eling approximation, removing the effect of the vorticity on
the strain rate. Statistically, this effectively removes the depen-
dence of the conditional mean vorticity stretching on the vor-
ticity magnitude, i.e., 〈ω̂iSij ω̂j | ln ω = χ〉 = 〈ω̂iSij ω̂j 〉 = λ.
While this approach does neglect the effect of vorticity-strain
rate coupling which makes the vorticity stretching rate directly
dependent on the instantaneous value of vorticity magnitude,
the effects of vorticity-strain rate coupling on the statistics
of vorticity stretching fluctuations are preserved by using the
appropriate Cramér function.

With the mean of the vorticity stretching thus fixed as the
minimum of the Cramér function, the model is constructed to
incorporate the rest of the Cramér function into information
about fluctuations in vorticity stretching. To accomplish this,
the second modeling approximation proposes an intermediate
time scale, τS � T � τ�, at which the vorticity stretching
can be modeled as a stochastic noise with statistics prescribed
by the Cramér function shown previously in this paper.
This approximation can be thought of in the same vein
as the Kraichnan ensemble [86], in which rapid velocity
field fluctuations are modeled statistically as white-in-time
stochastic terms. Indeed, the autocorrelation for vorticity has
been found to be significantly longer than that of the strain rate
along Lagrangian trajectories in isotropic turbulence [72,73],
though perhaps not enough to justify this model.

Finally, the model treats the viscous relaxation as de-
terministic. In other words, the viscous relaxation term in
Eq. (5) is modeled as νω̂i

∂2ωi

∂xj ∂xj
|
ω=w

≈ −f (w), where f (w)
is a deterministic function. In particular, the deterministic
relaxation is set to be equal to the conditional mean given
a particular value of the vorticity magnitude,

f (w) = −ν

〈
ω̂i

∂2ωi

∂xj ∂xj

∣∣∣∣ω = w

〉
. (35)

With this model for the relaxation, the vorticity evolution
along a Lagrangian path in dimensionless form, from Eq. (6),
becomes

d ln(ωτη)

d(t/τη)
= ω̂iSij τηω̂j − f (ω)τ 2

η

ωτη

, (36)

which is identical to Eq. (33) for the polymer length. The
difference between vorticity and polymer length, however, is
the difference in the relaxation functions.

Such a function can be measured from DNS results of
forced isotropic turbulence. We note that it is possible to
measure the right-hand side of Eq. (35) directly or indirectly
using Eq. (29). Because evaluation of these statistics from the
JHTDB isotropic data set utilizes finite differences in physical
space (as opposed to spectral differentiation), it is preferable
to measure the conditional mean of the viscous term indirectly
using Eq. (29). The indirect calculation requires only first
derivatives of the velocity field (i.e., the strain rate) while
the direct calculation requires third derivatives of the velocity
field (i.e., Laplacian of vorticity).

Figure 6 shows the results as computed from the JHTDB
isotropic data set, using ω̂iSij ω̂j computed at 100 million
points using an eighth-order finite difference. The scatter in
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FIG. 6. (a) The conditional mean, Eq. (35), as computed indi-
rectly from the strain rate using Eq. (29). Also shown is a power-law
curve fit of the form, Eq. (37), for the interval 2 < |ω|τη < 6, with
A = 0.129, n = 1.462. (b) The conditional coefficient of variation
(standard deviation/mean) of the relaxation term.

the conditional mean at large ωτη is due to lack of statistical
convergence. It is found that a power-law functional form for
the deterministic relaxation function,

f (ω)τ 2
η = A(ωτη)n, (37)

provides an excellent fit to the numerical results. The best fit of
this form is shown in Fig. 6(a), with A = 0.129, n = 1.462 (we
remark that this fitted value is very close to 3/2). Figure 6(b)
shows the conditional coefficient of variance (conditional
standard deviation divided by conditional mean) for the
viscous relaxation term. For increasing vorticity magnitude,
the conditional coefficient of variance decreases toward zero,
meaning that the viscous relaxation behaves increasingly like
a deterministic variable for large vorticity magnitudes (the
tail of the PDF). This helps to justify one of the modeling
approximations.

With these modeling assumptions, we have a stochastic
model for the Lagrangian vorticity magnitude, here given in
dimensionless form,

d ln(ωτη) = {λτη − A exp[(n − 1) ln(ωτη)]}dt

τη

+ dW, (38)

where dW represents a stochastic forcing term with zero mean
and increment statistics in agreement with the large-deviation
statistics of the vorticity stretching fluctuations. Approximat-
ing the vorticity stretching Cramér function as a parabola, the
statistics become Gaussian and dW = √

τηdW , where  is
the width of the Cramér function and dW represents a Wiener
process.

D. Kramers-Moyal coefficients

The above model is a Markovian stochastic model, for
which we seek a PDF evolution equation in the form of
the Kramers-Moyal equation for pln ω(χ,T ) (see Pope [3],
Appendix J),

∂pln ω

∂T
=

∞∑
m=1

(−1)m

m!

∂m

∂χm
(Bmpln ω), (39)

where the Kramers-Moyal coefficients are given by

Bm(χ ) = lim
T →0

1

T
〈T (ln ω)m| ln ω = χ〉 (40)
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and where the increment of ln ω is

T (ln ω) = ln ω(t + T ) − ln ω(t). (41)

Applying this approach to Lagrangian vorticity evolution,
it is clear from Eq. (36) that the vorticity increments are given
by

T (ln ω) =
∫ t+T

t

[ω̂iSij ω̂j − f̃ (ln ω)]dt ′, (42)

where f̃ (ln ω) = f (ω)
ω

. Due to the modeling assumption on the
relaxation term, it gives a nonzero contribution only to the first
coefficient,

B1(χ ) = λ − f̃ (χ ). (43)

For m � 2, only the vorticity stretching fluctuations from
our model contribute to the Kramers-Moyal coefficients. Due
to the model assumptions, we consider the T → 0 limit in
Eq. (40) to be effectively T

τS
→ 0,

Bm(χ ) = lim
T/τS→0

1

T
〈�ω(T )m| ln ω = χ〉, (44)

where �ω is given by Eq. (16). The application of large-
deviation statistics requires the T → ∞ limit, which can be
interpreted in this framework as T

τ�
→ ∞. In this limit of

large integration time, where the large-deviation formalism
is applicable, it is clear from Eq. (18) that the cumulant-
generating function of � is given by

Lγω
(q)T = ln〈exp(q�ω)〉, (45)

so the moment-generating function is

exp[Lγω
(q)T ] = 〈exp(q�ω)〉. (46)

The moments, 〈�ω(T )m〉, necessary to find the Kramers-
Moyal coefficients can be computed via differentiation of
the moment-generating function at the origin. For m � 2,
by construction, the model gives constant coefficients. From
Eq. (44), using the moment-generating function one obtains

Bm(χ ) = lim
T/τS→0

1

T

dm

dqm
exp(Lγω

(q)T )

∣∣∣∣
q=0

= L(m)
γω

(0). (47)

Thus, the Kramers-Moyal coefficients are given by the deriva-
tives of the generalized Lyapunov exponent at the origin. Note
that λω = L′

γω
(0) is the contribution to the m = 1 coefficient

as shown above. The Kramers-Moyal equation for pln ω(χ,T )
based on the model is given by

∂pln ω

∂T
= − ∂

∂χ
{[λω − f̃ (χ )]pln ω}

+
∞∑

m=2

(−1)m

m!
L(m)

γω
(0)

∂mpln ω

∂χm
. (48)

The stationary distribution can be found by setting the time
derivative to zero,

0 = − d

dχ
[(λω − f̃ (χ ))pln ω] +

∞∑
m=2

(−1)m

m!
L(m)

γω
(0)

dmpln ω

dχm
.

(49)

In general, this is an infinite-order ODE with variable
coefficients, making analytical progress difficult. For the
case of linear relaxation, the coefficients become constant,
i.e., f (χ ) = 1

τ
, making some analytical progress possible.

Appendix shows that the solution to the Kramers-Moyal
equation gives a power law for the tail of the stationary PDF
of vorticity magnitude when linear relaxation is considered, in
agreement with the stationary distribution derived by Ref. [40]
for polymer lengths with linear relaxation. Nonetheless, seeing
from Fig. 6 that this is not the case, another means of
simplification to enable analytical progress is sought.

E. Results using a parabolic Cramér function

Following Ref. [41], an approximation can be obtained
by representing the Cramér function as a parabola, i.e.,
Gaussian statistics, Eq. (23). This amounts to truncating the
Kramers-Moyal expansion at second order, since all higher
cumulants are zero for Gaussian statistics. In this case, the first
two cumulants, λω and ω, fully characterize the statistics and
the stationary PDF must satisfy

0 = − d

dχ

[
(λτη − f̃ (χ ))pln ωτη

] + ωτη

2

d2pln ωτη

dχ2
. (50)

This truncation of the Kramser-Moyal equation at second order
reduces to a Fokker-Planck equation.

The solution has the form

pln ωτη
(χ ) = C exp

(
2λω

ω

χ − 2

ωτη

∫ χ

f̃ (x)dx

)
, (51)

with f̃ (χ ) = A exp[(n − 1)χ ],

pln ωτη
(χ ) = C exp

{
2λω

ω

χ − 2A

(n − 1)ωτη

exp[(n − 1)χ ]

}
,

(52)

and after change of variables to vorticity magnitude,

pωτη
(w) = Cw−1+ 2λ

 exp

[
− 2A

(n − 1)ωτη

wn−1

]
, (53)

and enstrophy,

pω2τ 2
η
(ξ ) = C ′ξ−1+ λ

 exp

[
− 2A

(n − 1)ωτη

ξ (n−1)/2

]
. (54)

Therefore, the parabolic Cramér function approximation to
the Kramers-Moyal model gives a stretched exponential for
the stationary PDF of enstrophy in isotropic turbulence. As
discussed in the development of the model, it is only designed
for applicability in the tails of the PDF, and therefore the
interpretation of this result is that the model gives stretched-
exponential tails with a power-law correction. In fact, the
power-law correction with exponent −1 + λ


≈ −0.18 is quite

small and has very little effect on the following plots.
A first test of the model PDF is to test the proposed

relationship, derived from Eq. (54),

− ln
[
ξ 1− λ

 pω2τ 2
η
(ξ )

] = 2A

(n − 1)ωτη

ξ (n−1)/2 − ln C ′, (55)

by observation of a linear relationship on a plot of
− ln [ξ 1− λ

 pω2τ 2
η
(ξ )] against ξ (n−1)/2. The result, shown in
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FIG. 7. Plot of − ln [ξ 1− λ
 pω2τ2

η
(ξ )] against ξ (n−1)/2, for which

the model successfully predicts a linear relationship. In this plot,
n = 1.462, λ = 0.100/τη,  = 0.122/τη.

Fig. 7, indicates the success of the model, particularly in
predicting the exponent (n − 1)/2 = 0.231 (again, suggestive
of 1/4).

The slope in Fig. 7 is the prefactor 2A
(n−1)ωτη

, for which there
was found to be a 35% difference between the DNS PDF and
the model PDF, as illustrated in Fig. 8. Figure 8(a) compares
Eq. (54) with the observed enstrophy PDF from the isotropic
DNS. The model is fully specified up to a (normalization)
coefficient by the values previously determined: A = 0.129,
n = 1.462, λωτη = 0.100, and ωτη = 0.122. The exponent
(n − 1)/2 = 0.231 is in agreement with the values found by
Ref. [43]. However, from inspecting the figure, the tail of
the PDF is evidently too heavy, suggesting that the coefficient

2A
(n−1)ωτη

is too small. Indeed, increasing the viscous relaxation
coefficient A by 35% leads to very good agreement with the
DNS statistics, as shown in Fig. 8.

The success outlined in Fig. 7 emphasizes the utility of
the modeling approach. Before any DNS data are used, the
stochastic model predicts a stretched exponential form (with
small power-law correction) that has become common in fitting
enstrophy PDFs. Then, once the DNS data in introduced in
terms of λ and  from the Cramér function of cumulative
vorticity stretching and n from power-law fit to the conditional

0 20 40 60 80 100
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10−4

10−2

JHTDB
Model

0 20 40 60 80 100
10−8

10−6

10−4

10−2

JHTDB
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(a) (b)

FIG. 8. Comparison of enstrophy PDF, normalized by the Kol-
mogorov time scale τη, from a truncated Kramers-Moyal model
with JHTDB DNS-generated statistics using (a) predetermined model
parameters, A = 0.129, n = 1.462, λ = 0.100/τη,  = 0.122/τη and
(b) adjusting only A = 0.174 to give excellent agreement with DNS
enstrophy PDF.

mean of the viscous Laplacian, Fig. 7 shows that the model
also predicts an accurate exponent, (n − 1)/2. On the other
hand, Fig. 8 provides a caveat: The parameter A determined
from the DNS needs extra adjustment for full agreement with
the PDF from DNS.

Pawula’s theorem [87] warns against truncation of the
Kramers-Moyal equation at higher than second order, this
being similar in nature to cumulant-discard approximations.
Indeed, numerical calculations (not shown) of the Kramers-
Moyal model truncated after the fourth-order term resulted in
negative probabilities. Therefore, while the truncation of the
Kramers-Moyal expansion at second order is less than ideal,
better options are not apparent.

VI. CONCLUSIONS

The growth of infinitesimal material lines in isotropic
turbulence is commonly described by the cumulative stretching
by the strain rate along Lagrangian trajectories, i.e., finite-time
Lyapunov exponents, whose statistical behavior is governed by
a large-deviation principle. The evolution of vorticity along
Lagrangian paths is similar to that of material lines, with
important caveats, such as the two-way coupling between
strain rate and vorticity. In this paper, it is hypothesized that the
cumulative vorticity stretching

∫ ωiSij ωj

ω2 dt along Lagrangian
paths also has a large-deviation principle governing the
asymptotic evolution of its PDF. This is confirmed by noting
the linear growth of the cumulant-generating function for
large-enough integration times. As a result, the large-deviation
formalism is available to describe the statistical behavior of
cumulative vorticity stretching and provides a more in-depth
way to compare the statistics of vorticity stretching with
material line stretching.

The Cramér function of vorticity stretching was computed
from isotropic DNS at Reλ = 433 from the JHTDB. The
Cramér function for vorticity stretching confirmed that the
mean vorticity stretching is less than the mean material line
stretching, as was previously known. In addition to this, other
characteristics of the Cramér functions were compared, giving
a comparison between cumulative vorticity stretching and
FTLE statistics. The mean, variance, skewness, and excess
kurtosis of the cumulative vorticity stretching, γω, was shown
to fall in between the maximal and intermediate FTLEs,
γ1 and γ2 respectively. Overall, the statistics of γω were
shown to be more similar to γ1 than γ2, which helps put
the differences between vorticity stretching and material line
stretching in perspective. In particular, the Cramér function for
γω showed that cumulative vorticity stretching PDFs display
the same non-Gaussian tendencies as for γ1; both of these
distributions indicate more probable large positive fluctuations
than negative. In the case of γ1, this is caused at least in
part by the incompressibility constraint that prevents γ1 < 1
occurrences by definition. It is interesting to note that no such
constraint exists for the vorticity stretching.

In the final section, a stochastic model using information
from the vorticity stretching Cramér function was proposed for
the logarithm of vorticity magnitude in high vorticity regions
(i.e., in the tail of the enstrophy PDF). The model gives a
stretched-exponential with small power-law correction for the
tail of the enstrophy PDF. When parameters from the Cramér
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function and conditional statistics measured from DNS are
used, the stretched exponential matches well with exponent
n ≈ 3/2, but the prefactor A is seen to be too low by about 35%.
This is most likely indicative of the modeling error involved
in assuming a separation of time scales between strain-rate
stretching and viscous relaxation effects.
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APPENDIX: KRAMERS-MOYAL SOLUTION
FOR LINEAR RELAXATION

We briefly demonstrate a solution to the Kramers-Moyal
model for the stationary PDF by considering linear relaxation,
i.e., when the viscous term in Eq. (5) is linear (n = 1) in
vorticity magnitude with a relaxation time τ = 1

A
,

f (ω) = −νω̂i

∂2ωi

∂xj ∂xj

= ω

τ
. (A1)

As a result, the evolution of ln ω becomes

d ln ω

dt
= ω̂iSij ω̂j − 1

τ
, (A2)

that is, the relaxation function is a constant, f̃ (ln ω) = 1
τ

. This
scenario was considered by Ref. [40] in the context of polymer
stretching.

Under this assumption, the Kramers-Moyal model for the
stationary PDF, Eq. (49), yields a constant-coefficient ordinary
differential equation in χ of infinite order. The relaxation
can be absorbed into the generalized Lyapunov exponents by
defining

L̃(q) = L(q) − q

τ
, (A3)

which is the Legendre transform of a shifted Cramér function,

S̃(g) = sup
q

[gq − L̃(q)]

= sup
q

[(
g + 1

τ

)
q − L(q)

]
= S

(
g + 1

τ

)
. (A4)

With this modified generalized Lyapunov exponent, the equa-
tion for the stationary distribution becomes

0 =
∞∑

m=1

(−1)m

m!
L̃(m)(0)

dmpln ω

dχm
. (A5)

We can solve this differential equation on a semi-infinite
domain (i.e., for the right-hand side “tail” region of the
PDF) using a Laplace transform. Utilizing the properties of
derivatives under Laplace transformation, the equation for the
stationary distribution in Laplace space becomes

C(s) = p̂ln ω(s)
∞∑

m=1

(−s)m

m!
L̃(m)(0), (A6)

where C(s) is an analytic function arising from the necessity
to specify boundary conditions in probability space. In this
form, the summation is seen to be a Taylor expansion of the
generalized Lyapunov exponent about zero, so

C(s) = p̂ln ω(s)L̃(−s). (A7)

The stationary distribution can be constructed by solving for
p̂ln ω(s) and performing the inverse Laplace transform via
contour integration in the complex plane. Because C(s) is
an analytic function, the only poles contributing to this inverse
transform come from the zeros of L̃(−s).

Constraints on the generalized Lyapunov exponent, namely
that L̃(0) = 0 and L′′(q) � 0, require that there be at most two
first-order zeros with one being at q = 0 and the other being at
q = q∗ (or one second-order zero at q = 0). The form of the
stationary distribution is thus

pln ω(χ ) = A1 + A2 exp(−q∗χ ). (A8)

The decay of the PDF to zero at infinity requires A1 = 0. By
changing variables from ln ω to ω, the PDF for the vorticity
magnitude becomes a power law,

pω(w) = A2w
−1−q∗

, (A9)

in agreement with the results of Ref. [40].
As a caveat, the conditional statistics in Fig. 6 clearly show

that the viscous destruction of vorticity increases superlinearly
(n > 1) with increasing vorticity magnitude, and therefore a
linear model is ill equipped to describe the vorticity statistics.
Nonetheless, this Appendix shows that the Kramers-Moyal
model constructed here produces a known result for the case
of linear relaxation.
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[22] M. Holzner, M. Guala, B. Luüthi, A. Liberzon, N. Nikitin, W.
Kinzelbach, and A. Tsinober, Viscous tilting and production of
vorticity in homogeneous turbulence, Phys. Fluids 22, 061701
(2010).

[23] A. Vincent and M. Meneguzzi, The spatial structure and
statistical properties of homogeneous turbulence, J. Fluid Mech.
225, 1 (1991).

[24] Z.-S. She, E. Jackson, and S. A. Orszag, Sturcture and dynamics
of homogeneous turbulence: models and simulations, Proc. R.
Soc. London A 434, 101 (1991).
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