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Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability
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In this paper, the three-dimensional (3D) Rayleigh-Taylor instability (RTI) with low Atwood number (At =
0.15) in a long square duct (12W × W × W ) is studied by using a multiple-relaxation-time lattice Boltzmann
(LB) multiphase model. The effect of the Reynolds number on the interfacial dynamics and bubble and spike
amplitudes at late time is investigated in detail. The numerical results show that at sufficiently large Reynolds
numbers, a sequence of stages in the 3D immiscible RTI can be observed, which includes the linear growth,
terminal velocity growth, reacceleration, and chaotic development stages. At late stage, the RTI induces a very
complicated topology structure of the interface, and an abundance of dissociative drops are also observed in the
system. The bubble and spike velocities at late stage are unstable and their values have exceeded the predictions
of the potential flow theory [V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002)]. The acceleration of the
bubble front is also measured and it is found that the normalized acceleration at late time fluctuates around a
constant value of 0.16. When the Reynolds number is reduced to small values, some later stages cannot be reached
sequentially. The interface becomes relatively smoothed and the bubble velocity at late time is approximate to
a constant value, which coincides with the results of the extended Layzer model [S.-I. Sohn, Phys. Rev. E 80,
055302(R) (2009)] and the modified potential theory [R. Banerjee, L. Mandal, S. Roy, M. Khan, and M. R.
Guptae, Phys. Plasmas 18, 022109 (2011)]. In our simulations, the Graphics Processing Unit (GPU) parallel
computing is also used to relieve the massive computational cost.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) is a very classical and
fundamental interfacial instability, which will occur at the
perturbed interface between fluids of different densities in the
presence of gravity force. This instability plays a significant
role in diverse areas such as astrophysics [1], geophysics [2],
and confinement fusion [3]. Due to its wide and important
applications, the RTI has been extensively studied. The earliest
study of the RTI can be traced back to the theoretical analysis
by Rayleigh and Taylor [4]. Through their analysis, they
developed the linear stability theory and showed that the
disturbance is unstable when its initial amplitude is much
smaller than its wavelength. They further found that the
amplitude of the disturbance has an exponential growth with
time and the linear growth rate can be expressed as a function
of the density ratio. In their analysis, however, the fluids
are supposed to be inviscid and the surface tension force is
absent. The addition of the viscosity, surface tension force,
or compressibility in the linear theory was conducted in the
subsequent studies [5–9].

The first experimental study on the RTI was attributed
to Lewis [10], who validated the classical linear stability
theory [4] with experiment, and qualitatively described the
development stages of the RTI. Later, Sharp [11] further
investigated the RTI qualitatively and roughly divided the
growth of the instability into four stages. For the first stage, the
linear stability theory can be applied to describe the interface
movement until the amplitude of the initial perturbation grows
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to 0.1λ–0.4λ, where λ is the wavelength. Subsequently, the
perturbation develops nonlinearly, and the heavy fluid and the
light one penetrate into each other in the form of the spike and
bubble, which indicates that the RTI has entered into the
second stage. The third stage is characterized by the increasing
nonlinear effect. The heavy fluid rolls up along the flank of the
spike and forms into the mushroom-like structure, which is
caused by the Kelvin-Helmholtz (KH) instability providing
the rolling motion of the interface. The roll-up phenomenon
is more pronounced at low-density ratios. Finally, the spike
breaks up and the turbulent or chaotic mixing of the fluids
dominates the fourth stage of the RTI.

Following Lewis’ work [10], numerous researchers have
conducted experimental studies on the RTI with the single-
mode [12–16] or multimode [17–19] initial perturbations. The
study of the single-mode RTI is still important not only in its
own interests, but also in the fact that the turbulent growth
constant in the multimode instability depends critically on
the knowledge of single-mode terminal velocity [20]. Waddell
et al. [13] experimentally investigated the two-dimensional
(2D) single-mode RTI in the low Atwood number fluid
systems. The experimental results showed that the disturbance
on the interface grows with an exponential form at an early
stage and the measured growth rate was shown to agree well
with the linear stability theory. Additionally, they found that
the average of the bubble and spike velocities at a late time
closes to be constant. Wilkinson et al. [14] experimentally
studied the three-dimensional (3D) single-mode RTI with a
low Atwood number and observed that the instability at the
late time exhibits an acceleration. Both the bubble and spike
were accelerated to the corresponding velocities above the
classical model values [21,22]. This disagreement is ascribed
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to the formation of vortices on the bubble-spike interface [23].
It should be stressed that in the experimental studies on
the single-mode RTI [12–16], the duration of the instability
evolution is relatively short (Hb � 1.5λ, where Hb is the
amplitude of the bubble), although they claimed to investigate
the late-time RTI [24]. The long-time experiments are still
difficult due to the size limitations of the facilities. Besides, it
is also challenging to accurately measure the large interfacial
topology change and related physical quantities at late time.

With the rapid development of the computational technol-
ogy, numerical simulation becomes an important complement
to experimental studies and many researchers have made an
effort to simulate the single-mode RTI [23–37], while most of
these works are only to validate the developed CFD methods,
and the evolution time is very short (Hb � λ). Glimm et al. [33]
used the front tracking approach to perform longer simulations
(Hb ≈ 2λ) of 2D single-mode RTI with moderate Atwood
numbers. They reported a new phenomena of the RTI that the
instability undergoes a reacceleration stage after the plateau
time. The reacceleration stage was also observed in the later
3D simulations by Ramaprabhu et al. [23] and experiments by
Wilkinson et al. [14]. Recently, Ramaprabhu et al. [35] further
numerically investigated the late time behavior (Hb ≈ 3.5λ)
of 3D single-mode RTI with two miscible fluids. Their results
showed that the reacceleration cannot last continuously and
the instability at late time is translated into the chaotic mixing
stage. In this stage, the spike and bubble velocities seems
to show a decrease lower than the potential flow velocity at
high Reynolds numbers, which is in contradiction with the
result of a high-resolution direct numerical simulation of 2D
single-mode RTI that the bubble has a mean quadratic growth
at late time [24]. This late-time quadratic growth phenomenon
was also observed in our 2D simulations with an improved
lattice Boltzmann model [37].

As shown above, there have been some numerical works
to investigate the late-time single-mode RTI [24,35,37]. How-
ever, most of these [24,37] focus on only the 2D phenomenon
and 3D immiscible RTI at late time is still not well understood.
To fill this gap, in this paper a lattice Boltzmann (LB)
multiphase model based on the advanced multiple-relaxation-
time (MRT) collision operator is employed to study the
late-time dynamics of 3D RTI. The effect of the Reynolds
number on the interfacial behaviors and bubble and spike
velocities is fully investigated. To our knowledge, the durations
of the instability in our simulations (Hb ≈ 5.5λ) is longer than
those of the previous study [35] and a different picture of the
late-time RTI will be presented here. The rest of this paper is
organized as follows. In Sec. II, we gives a brief introduction of
the adopted LB multiphase model. The computational results
are presented in Sec. III, where the long-time evolution of 3D
instability at high Reynolds numbers is first examined. Finally,
we made a summary in Sec. IV.

II. NUMERICAL METHOD

The LB method, which is based on mesoscopic kinetic
equations, has received great success in modeling multiphase
flows [38]. Currently, from different physical pictures, several
types of LB multiphase models have been proposed, which
mainly include the color-gradient model [39], the pseudo-

potential model [40], the free-energy model [41], and the
phase-field based models [30,37,42–45]. The last class of LB
models is based on the phase-field theory [46], which has
become increasingly popular since the interface physics in
this theory can be well described. We recently developed a
new phase-field-based LB model for simulating 2D multiphase
flows [37], which is able to significantly improve the accuracy
and stability in the interface tracking. In addition, the MRT
collision model is used in Ref. [37] to improve the numerical
stability. The MRT model can degenerate to the single-
relaxation-time (SRT) or so-called Bhatnagar-Gross-Krook
model if the relaxation matrix is diagonal. Due to the more
free adjustable relaxation parameters, the MRT model has
its superiority over the SRT model in terms of numerical
stability and accuracy [47,48,55]. In particular, it has been
shown that the MRT model retains a better numerical stability
in studying the low-viscosity or high-Reynolds-number multi-
phase flows [37,49]. Later, this model is also extended to study
the 3D [50] and axisymmetric [51] multiphase flows. In this
work, the 3D LB model based on the MRT collision operator
will be invoked to investigate the late-time dynamics of the
instability.

For completeness, we quickly recall the 3D LB model. This
model utilizes two LB equations, one of which is used to track
the interface and the other is adopted to derive the fluid velocity
and pressure. The LB equation with the MRT collision model
for the interface tracking can be written as

fi(x + eiδx,t + δt ) − fi(x,t)

= −(M−1SM)ij
[
fj (x,t) − f

eq
j (x,t)

] + δtFi(x,t), (1)

where fi(x,t) is the order distribution function and f
eq
i (x,t)

is the equilibrium distribution function, which takes the linear
form [37]

f
eq
i (x,t) =

{
φ + (ωi − 1)ημ, i = 0,

ωiημ + 4ωiφei · u, i �= 0,
(2)

where φ is the order parameter, μ is the chemical potential,
and is a function of φ [52]:

μ = 4βφ(φ − 1)(φ + 1) − k∇2φ, (3)

where the parameters β and k depend on the interface thickness
D and surface tension σ by the relationships k = 3Dσ/8
and β = 3σ/4D. ei and ωi in Eq. (2) represent the lattice
velocity and the weighting coefficient, which are determined
by the discrete-velocity model. Here the three-dimensional
seven-velocity (D3Q7) model is used for simplicity and high
computational efficiency. In this model, ei and ωi can be
given as

ei =

⎡
⎢⎣

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎤
⎥⎦, (4)

ω0 = 1
4 , ω1−6 = 1

8 . (5)

The corresponding collision matrix M for the D3Q7 model
can be found in Refs. [50,53]. To derive the Cahn-Hilliard
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equation correctly, the source term in Eq. (1) is defined by

Fi =
[

M−1

(
I − S

2

)
M

]
ij

4ωj ej · ∂tφu
c

, (6)

where I is the 7 × 7 unit matrix and S is the diagonal matrix
with S = diag (1,s1,s1,s1,s2,s3,s3). In our model, the order
parameter can be computed by

φ =
∑

i

fi, (7)

and the local density is obtained from

ρ = 1 + φ

2
ρl + 1 − φ

2
ρg, (8)

where ρl and ρg denote the densities of liquid and gas
phases. Using the Chapman-Enskog expansion for the D3Q7
model, Eq. (1) can result in the Cahn-Hilliard equation in the
incompressible limit,

∂φ

∂t
+ ∇ · (φu) = ∇ · (M∇μ), (9)

where M is the mobility given by M = η

4 ( 1
s1

− 0.5)δx.
The fluid velocity and pressure are derive from the density

distribution function gi . Following Refs. [37,54], the MRT LB

equation with the forcing term for gi is given by

gi(x + eiδx,t + δt ) − gi(x,t)

= −(�−1T�)ij
[
gj (x,t) − g

eq
j (x,t)

]
+ δt

[
�−1

(
I − T

2

)
�

]
ij

Gj , (10)

where g
eq
i is the equilibrium distribution function of gi ,

g
eq
i =

{ p

c2
s
(ωi − 1) + ρsi(u), i = 0,

p

c2
s
ωi + ρsi(u), i �= 0,

(11)

where si(u) is denoted as

si(u) = ωi

[
ei · u
c2
s

+ (ei · u)2

2c4
s

− u · u
2c2

s

]
, (12)

where cs = √
1/3. For the three-dimensional 15-velocity

(D3Q15) model adopted in this work, the weight coefficients
ωi and the discrete velocities ei in Eqs. (11) and (12) can be
presented as

ei =
⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

⎤
⎦, (13)

ω0 = 2
9 , ω1−6 = 1

9 , ω7−14 = 1
72 . (14)

The transformation matrix � of the D3Q15 model can be
referred to Ref. [55]. I in Eq. (10) is the 15 × 15 unit
matrix and T is the diagonal relaxation matrix denoted
by T = diag(1,λ1,λ2,1,λ3,1,λ3,1,λ3,λ4,λ4,λ4,λ4,λ4,λ5). The
total forces including the interfacial tension force and external
body force need to be implemented in the LB algorithm. To
recover the exact Navier-Stokes equations, the forcing term Gi

in Eq. (10) is given by

Gi = (ei − u)

c2
s

· [
si(u)∇(

ρc2
s

) + (Fs + Fa + G)(si(u) + ωi)
]
,

(15)

where Fs = μ∇φ is the surface tension force, Fa =
0.5(ρl − ρg)M∇2μu is an additional interfacial force [56],
G is the gravitational force. To incorporate these force effects,
the macroscopic pressure and velocity can be computed by

u =
∑

i eigi + 0.5δt (Fs + G)

ρ − 0.25(ρl − ρg)M∇2μ
, (16)

p = c2
s

(1 − ω0)

⎡
⎣∑

i �=0

gi + δt

2
u · ∇ρ + ρs0(u)

⎤
⎦. (17)

Through the Chapman-Enskog multiscale analysis, Eq. (10)
can be reduced to the Navier-Stokes equations under the
incompressible condition, and the resulting equations are

∇ · u = 0, (18a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [νρ(∇u + ∇uT )] + Fs + G,

(18b)

where ν = c2
s ( 1

λ4
− 0.5)δt .

In the implementation of the model, the time and spatial
derivatives need to be evaluated numerically. To reduce
the discretization errors, the following difference schemes
are used [57,58]:

∂tχ (x,t) = χ (x,t) − χ (x,t − δt )

δt

(19)

and

∇χ (x,t) =
∑
i �=0

ωieiχ (x + eiδt ,t)

c2
s δt

, (20)

∇2χ (x,t) =
∑
i �=0

2ωi[χ (x + eiδt ,t) − χ (x,t)]

c2
s δ

2
t

, (21)

where χ is the arbitrary variable.
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At the end of this section, we would like to point out that all
simulations in this study are performed on the GPU machine,
which is composed of a NVIDIA’s K20 device. As we know,
the implementation of LB algorithm only involves the local
and neighbor nodes, so it is suitable for parallel computation.
When it is carried out on the GPU platform, the computational
efficiency can be greatly improved. The numerical experiments
show that there is a considerable time saving, compared with
a single CPU for simulating the same case.

III. RESULTS AND DISCUSSIONS

A. LB simulation results

The physical problem considered in this work is a rectan-
gular box with an aspect ratio of 12W × W × W , where W is
the box width. Initially, an imposed square-mode perturbation
with the wavelength W is imposed at the midplane (z = 6W ),

h(x,y) = 0.05W [cos(kx) + cos(ky)], (22)

where k = 2π/W is the wave number. To be smooth across
the interface, the initial order distribution φ(x,y,z) is given by

φ(x,y,z) = tanh 2

[
z − h(x,y) − 6W

D

]
. (23)

The dimensionless Reynolds number (Re) and the Atwood
number (At ) are used to describe the RTI, and are defined by

Re = W
√

gW

ν
, At = ρl − ρg

ρl + ρg

, (24)

where g is a gravitational acceleration. We also define the
dimensionless velocities of the bubble and spike fronts, which
are commonly referred to the bubble and spike Froude numbers
in the literature [23],

Frb = ub√
AtgW

1+At

, Frs = us√
AtgW

1+At

, (25)

where ub and us are the bubble and spike speeds. In our
simulations, the densities of the liquid (ρl) and gas (ρg) are
set to be 1.0 and 0.74, corresponding to a low At of 0.15 [14].
The physical parameters are fixed as W = 100,

√
gW = 0.04,

σ = 10−4, D = 4. The relaxation factors in the matrix S are
given as s1 = 1.25, s2 = 1.2, s3 = 1, and the parameters in the
T are set to 1 [59], except for the λ4 determined by the value
of Re. The periodic boundary conditions are used in the lateral
directions and the no-slip boundary conditions are applied
at the upper and lower walls. To incorporate the gravitational
effect, the following body force G in the z-direction is imposed
to the fluids:

G =
[

0,0,−
(

ρ − ρl + ρg

2

)
g

]
. (26)

Figure 1 depicts the time evolution of the density contour in
the immiscible RTI with four typical values of Re, where time
is normalized by the characteristic time 1/

√
Atgk. It can be

seen from Fig. 1 that under the influence of gravity, the heavy
fluid first falls down and the light fluid rises up for all the
cases. That is to say, the heavy and light fluids penetrate into
each other at early time and the penetration length increases
with time, which then leads to the formations of the spike and

bubble. The spike and bubble continue to move in the opposite
directions, while the KH instability arising from the differential
velocity across the interface begins to develop, and its intensity
increases as time advances. With the action of the KH instabil-
ity, the spike rolls up and a mushroom-like structure appears
[see time 5.8 in Fig. 1(a)–1(c)]. It is found that a similar pattern
is also observed in some previous works [23,26,31], although
the Reynolds numbers they considered are smaller than those in
our studies. We also observe from Fig. 1 that the roll-up extent
is reduced and the time is postponed with the decrease of Re.
Particularly, the roll-up phenomenon dose not take place at low
Re and the heavy fluid falls down freely in the form of the spike
[see Fig. 1(d)], which can be attributed to the large viscosity
effect that the frictional force between the bubble and spike is
large and the KH instability providing the rolling motion of
the interface is suppressed. In the following evolution time, the
instability exhibits significantly distinct behaviors at various
Reynolds numbers. At high Re, the spike continues to fall
down, accompanied by the shrink of the roll-ups. The surface
on them also becomes rough and four long curls emerge at the
tails of the roll-ups [see time 9.7 in Fig. 1(a)], which is caused
by large shear interaction between fluids. At last, the system is
unstable. The interfaces undergo a dramatic deformation at the
multiple layers and some of them even have a chaotic breakup,
which induces the formation of numerous small dissociative
drops in the system. In contrast, at low Re the structure of the
interface becomes relatively smoothed and no breakup case
can be found in the whole evolution processes.

To observe the evolution of the interface more clearly, we
also plotted the interface patterns at the diagonal vertical
plane (x = y) with above Reynolds numbers in Fig. 2.
It is shown that for all the Reynolds numbers, the initial
development of the mode follows the pattern familiar from 2D
studies [13,24,30,37]. In the following, the distinct behaviors
of the interface can be observed at different values of Re.
For the high-Re case, the interface rolls up at the spike
tip and the saddle point. Then two pairs of counter-rotating
vortices are formed [see time 6.2 in Fig. 2(a)]. The two-layer
roll-up phenomenon is a unique feature of 3D RTI, which
is significantly different from that in the 2D situation. This
phenomenon is also observed in the simulations with moderate
Reynolds numbers, as shown in Figs. 2(b) and 2(c). However,
the roll-ups appear at later time and the vortex sizes are
substantially smaller as Re is decreased. For a typical case,
we cannot find any vortex pattern at a low Re of 10. After time
6.2, the vortices develop further and become much longer,
forming into two pairs of long curls. These curls squeeze
the light fluid radially inward and then are in touch with the
middle heavy fluid [see time 9.3 in Fig. 2(a)]. At this time, the
nonlinear effect is very strong. Under the action of strong
shear forces, the interface undergoes a large deformation
including the multiple-layer roll-ups, which results in the
formation of many small secondary vortices. These vortices
are unstable and some of them break up, which contributes
to the chaotic mixing of two fluids. Finally, a complex
topology structure of the interface is formed at time 15.1. It
is noted from Fig. 2(a) that the interface patterns preserve the
symmetry at all evolution time, which are consistent with the
results of high-resolution direct numerical simulations of 2D
single-mode RTI [24]. These results also indicate that the LB
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1.9 3.9 5.8 7.8 9.7 11.6 13.6 14.6 1.9 3.9 5.8 7.8 9.7 11.6 13.6 15.5

(a) (b)

1.9 3.9 5.8 7.8 9.7 11.6 13.6 15.5 11.6 19.4 38.8 58.2 77.7 108.7 143.7 182.5

(c) (d)

FIG. 1. Evolution of the density contours in immiscible RTI at various values of Re, (a) Re = 5000, (b) Re = 1000, (c) Re = 500, and (d)
Re = 10. The time is normalized by the characteristic time 1/

√
Atgk.

method has a good accuracy in capturing small-scale structures
of late-time RTI. Ramaprabhu et al. [35] also conducted
simulations of 3D single-mode RTI using other numerical
methods. They reported that the instability does not preserve
the flow symmetry at late time, which is in contradiction with
the present result. This inconsistency may be caused by the
limitation of small-scale resolution or the adopted numerical
methods [24]. For the low-Re case, the interface shows much
simpler and more smoothed structure. It does not break up any
more since the shear layer between the bubble and spike is
stabilized at a larger viscosity.

As shown above, we have examined the effect of Re on
the interfacial dynamics in 3D immiscible RTI. To further
show its effect, we also conducted a quantitative measure
on the amplitudes and velocities of the bubble and spike at
various Reynolds numbers. The bubble and spike amplitudes
and their evolution velocities are important physical quan-
tities in 3D RTI, and have been extensively studied in the

literatures [14,26,31]. However, these previous studies only
focus on early stage of the evolution, and the Reynolds num-
bers considered are relatively small. Therefore it is desirable to
investigate the late-time evolution of these physical quantities,
especially at a large Re. If not specified, the amplitudes of the
bubble and spike are denoted by Hb and Hs , which are defined
as the vertical distances between the bubble and spike fronts
and their corresponding initial positions. Figures 3(a) and 3(b)
present the evolution of the normalized bubble amplitude and
velocity at four typical Reynolds numbers. From Fig. 3(a),
it is seen that the bubble amplitude increases with time for
all Reynolds numbers, while it has a greater value at a larger
Re. From Fig. 3(b), we identified the distinct growth stages as
describing the velocity of the bubble tip at different Reynolds
numbers. For high-Re case (Re = 5000), the RTI undergoes a
complex sequence of stages, including linear growth, terminal
velocity growth, reacceleration, and chaotic development. At
the linear stage (t � 2), the disturbance is found to grow with
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FIG. 2. Evolution of the density contour at the diagonal vertical plane (x = y): (a) Re = 5000, (b) Re = 1000, (c) Re = 500, and
(d) Re = 10. The time is normalized by the characteristic time 1/

√
Atgk.

an exponential form [13,14],

h = a1e
γ t + a2e

−γ t , (27)

where h = hb+hs

2 is the averaged amplitude of the bubble and
spike, hb and hs represent the vertical distances from the bubble
and spike tips to the midplane z = 6W , a1 and a2 are the fitting
coefficients, γ is the growth rate. According to the classical

linear theory [8,13], the growth rate γ is determined by

γ =
√

Atgk − σk3

ρl + ρg

. (28)

It should be pointed out that the above formula is the theoretical
result of inviscid fluids subjected to surface tension, and
it is substantially difficult to give an analytical growth rate

FIG. 3. Effect of Reynolds number on (a) normalized bubble amplitude and (b) normalized bubble velocity. Time is normalized by the
characteristic time 1/

√
Atgk. The dashed line represents the analytical solution of the classic potential flow model [22].
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t

h

Re

γ

(a) (b)

FIG. 4. (a) Time evolution of measured amplitude at linear stage for several typical Reynolds numbers. The solid lines are the fitted curves
using Eq. (26) to determine the linear growth rate. (b) Dependence of the linear growth rate on Reynolds numbers.

combining the viscosity effect. Nonetheless, the lower and
upper bounds to the growth rate can be presented, which
satisfy the quartic and quadric equations, respectively [9],

γ 4
ν +νk2γ 3

ν − 2γ 2γ 2
ν − 2νk2γ 2γν + γ 4 = 0, (29)

γ 2
ν +2νk2γν − γ 2 = 0, (30)

where γ is the growth rate for inviscid fluids given in Eq. (28).
From Eq. (30), one can easily obtain the upper bound γu,

γu = −νk2 +
√

ν2k4 + γ 2, (31)

and the lower bound is a real solution of Eq. (29), which
should be smaller than γu. Figure 4(a) shows the fitted curves
of the early-time amplitude at various Reynolds numbers,
which can be used to determine the growth rate. It is observed
from Fig. 4(a) that the numerical amplitudes fit well with
the theoretical results given by Eq. (27). From Fig. 4(a)
we can also measure the growth rates at different Reynolds
numbers and present the results in Fig. 4(b) together with the
classical growth rate and the theoretical bounds. It is seen from
Fig. 4(b) that the upper bound is close to the classical result
at sufficiently large Reynolds numbers, while it diverges from
the classical value when Re is decreased. This discrepancy is
attributed to the increasing viscosity effect that the classical
linear theory fails to predict the growth rate of the viscous
fluids. It is also seen from Fig. 4(b) that the present LB model
can accurately predict the growth rates at low Re, which are
located in the region between the lower and upper bounds.
While the deviation between the numerical predictions and
the theoretical bounds can be clearly observed for moderate or
high Re. The reason for this disagreement has not been well
understood and needs to be further studied in future work.
Following the linear growth stage, the bubble evolves with a
constant velocity, which suggests that the instability has en-
tered into the second stage of the terminal velocity (2 < t � 6).
Goncharov analytically predicted the constant bubble and

spike velocities using the classic potential flow model [22],

ub =
√

2Atg

k(1 + At )
, us =

√
2Atg

k(1 − At )
. (32)

Then according to Eq. (25), they yield a Frb of 0.564 and a
Frs of 0.656. It should be noted that the above formulas are
derived by using a cylindrical mode with the Bessel function.
However, the 3D simulations of Hecht et al. [28] shows
that the similar amplitudes can be obtained for square and
cylindrical modes within machine accuracy. Therefore our
present results for a square mode are valid for a flow initialized
with a cylindrical mode. We compared the simulation results
Frb and Frs with the corresponding theoretical values of the
potential flow in Figs. 3(b) and 5(b). It can be found that
a good agreement between them can be achieved. Using a
similar analysis, Betti et al. [60] modified the classic potential
flow model and gave the analytical bubble velocity including
the effect of the vorticity (�0),

ub =
√

2Atg

k(1 + At )
+ 1 − At

1 + At

� 2
0

4k2
, (33)

which results in the following Frb:

Frb =
√

2Atg

k(1 + At )
+ 1 − At

1 + At

� 2
0

4k2

/√
AtgW

1 + At

. (34)

Note that the fluids are still assumed to be inviscid in
Refs. [22,60], where the viscosity effect cannot be considered.
Banerjee et al. [61] realized this problem and modified the
terminal Frb including the viscosity effect,

Frb =
[√

2Atg

k(1 + At )
+ 1 − At

1 + At

� 2
0

4k2
+ k2ν2 − kν

]/
√

AtgW

1 + At

. (35)
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Goncharov Ref.[22]

FIG. 5. Effect of Reynolds number on (a) normalized spike amplitude and (b) normalized spike velocity. Time is normalized by the
characteristic time 1/

√
Atgk. The dashed line represents the analytical solution of the classic potential flow model [22].

Sohn [62] recently analyzed the effects of both the fluid viscos-
ity and the surface tension on the terminal bubble velocity, and
found that they could decrease the asymptotic bubble velocity.
Combining these effects, the terminal Frb can be expressed as

Frb =
[√

2Atg

k(1 + At )
− 3kσ

16ρl

+ k2ν2 − kν

]/√
AtgW

1 + At

.

(36)

A comparison of the terminal Frb obtained by the present LB
simulations and the above theoretical models under different
Reynolds numbers is shown in Fig. 6, where the numerical
predictions take the average values of the bubble Froude
numbers at the second stage. Note that �0 in the formulas
(33) and (34) is determined by time average of �t at the

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re

F
r b

Goncharov [22]
Betti [60]
Banerjee [61]
Sohn [62]
LB simulation

FIG. 6. A comparison of the terminal Frb obtained by the present
LB simulations and existing theoretical models under different
Reynolds numbers.

second stage, and �t is the averaging vorticity in the diagonal
half-plane with vertical extent ∼W behind the bubble front at
time t . From Fig. 6, we can observe that for high-Re case, there
is no significant difference between these theoretical models,
and the computed Frb by the LB method matches well with
the corresponding analytical solutions. However, when Re is
decreased, the classical potential model [22] and modification
of Betti et al. [60] fail to predict the terminal Frb due to the
neglect of fluid viscosity effect, while it can be well described
by the analytical models including the viscosity effect [61,62],
and the present numerical results are also consistent with the
solutions of these models. At the third stage (6 < t � 10),
the vortical interactions gradually increase and begin to affect
the velocities at the bubble and spike tips. As shown in
Figs. 3(b) and 5(b), the bubble and spike are accelerated such
that the velocities at the tips diverge from the solutions of the
classical potential flow model. This stage is termed as reac-
celeration, which is first found in the 2D simulation of Glimm
et al. [33] and further verified in 3D simulation of Ramaprabhu
et al. [23]. Recently, the reacceleration stage of RTI was
also observed by Wei et al. [24] using 2D direct numerical
simulations and Liang et al. [37] using the improved 2D LB
method. The reacceleration stage cannot last indefinitely. After
t > 10, the bubble and spike Froude numbers become unstable
and begin to fluctuate with the time, which suggests that the
evolution of 3D RTI has transformed to the chaotic stage. Here
we only focus on the bubble late-time evolution similar to 2D
works [24,37]. To determine the nature of the bubble growth at
late time, we measure the bubble acceleration and present the
results in Fig. 7. From Fig. 7, we can observe that the normal-
ized acceleration at late time fluctuates around a constant value
of 0.16, which indicates that 3D RTI undergoes a mean quadric
growth. It is noted that the bubble acceleration is also unstable
during 6 < t � 10. However, this duration is still deemed as
the reacceleration stage since the bubble accelerations are
always positive when they are measured with the interval of
1250 time steps. As Re is reduced gradually, the later instability
stages, such as chaotic development and reacceleration, are
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FIG. 7. Normalized bubble acceleration at high Re. Time is
normalized by the characteristic time 1/

√
Atgk. The solid line

represents a constant value of 0.16.

subsequently no longer attained. For instance, at Re = 10 the
bubble and spike Froude numbers at late time approach the
corresponding constant values, as shown in Figs. 3(b) and 5(b).
So the late-time flow at the bubble tip is approximately
described by a potential flow approach, and both the chaotic
development and reacceleration stage do not appear.

B. A comparison between present results and
experimental work

In this part, a comparison between our present results and
the experiments of Wilkinson and Jacobs [14] is conducted. In
their experiments, the Atwood number is fixed to be 0.15,
which is the same as that in our numerical simulation. It
is found that in our numerical results, the heavy fluid and

the light one penetrate into each other, and two pairs of
counter-rotating vortices are formed at the early stage. The
above behaviors of the interface are qualitatively consistent
with the experimental results presented in Fig. 6 of Ref. [14],
where the two-layer roll-up phenomenon is also observed.
We further present the bubble and spike Froude numbers as
functions of the dimensionless bubble and spike amplitudes in
Figs. 8(a) and 8(b), respectively, where the marked symbols
were taken from experimental measurements. As can be seen
from these figures, the experimental study is limited to the
former three development stages of RTI, and the late stage
of the chaotic development is not reached. In addition, a good
agreement between our numerical results and the experimental
data is also observed.

IV. SUMMARY

In this paper, we have adopted the improved lattice
Boltzmann method to study the late-time 3D single-mode RTI
of immiscible two-phase fluids, in which the effect of Re is
examined systematically. It can be found that the instability
shows distinct interfacial dynamics at different values of
Re. For high Re, the instability undergoes the full range of
development stages, including linear growth, terminal velocity
growth, reacceleration, and chaotic development. At the linear
stage, the linear growth rate was found to be lower than the
theoretical bounds. In the following stage, we can observe the
two-layer roll-up phenomenon, which is different from that of
2D simulation. It is also observed that the computed Frb and
Frs match the analytical predictions of the classical potential
flow model closely. And at the third stage, the bubble and spike
tips are accelerated due to the increasing vortical interactions
such that their velocities exceed the classical values. Finally, at
late time, the interface undergoes the multiple-layer roll-ups,
large deformation, or even chaotic breakup, which results in
the formation of a very complex topology structure, and some
tiny dissociative drops are also observed in the system. We
further measured the bubble acceleration to show the nature

Hb/W

F
r b

Goncharov Ref.[22]

Hs/W

F
r s

Goncharov Ref.[22]

FIG. 8. Bubble (a) and spike (b) Froude numbers against dimensionless bubble and spike amplitudes, respectively. Symbols are measured
from the drop tank experiments of Wilkinson and Jacobs [14], while the dashed line represents the analytical solution of the classic potential
flow model [22].
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of the late-time growth, and it is found that the average
dimensionless acceleration is about 0.16, which indicates a
mean quadratic growth. For low Re, some later development
stages cannot be reached in succession. The interface becomes
relatively smoothed and no breakup phenomena can be
observed.

We now give a discussion on the differences between 2D
and 3D results of single-mode RTI, which can be summarized
as follows. First, two-layer roll-up phenomena can be observed
at the early stage of 3D RTI, which is different from the 2D
result that only one pair of counter-rotating vortices is found.
Second, the bubble and spike fronts of 3D instability move
faster than those of a 2D situation, for example, the bubble
Froude number of 3D instability at the second stage closes to
a constant value of 0.564, which is larger than 0.365 of the 2D

case. The similar result was also reported in some previous
studies [22,26]. Third, it is observed that both 2D and 3D
RTI undergo mean quadratic growth at the late time, but with
different paces. The growth coefficient of 3D RTI is about
0.16, while it is 0.07 in our previous 2D simulations [37]. At
last, we believe that our present results would provide a more
comprehensive understanding on the phenomena of bubble
and spike dynamics and the behavior of the RTI.
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