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Shock waves: The Maxwell-Cattaneo case
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Several continuum theories for shock waves give rise to a set of differential equations in which the analysis
of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the
importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo
and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo
equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions
(low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair
agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers
(1.27 ≈ M1 < M < M2 ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations
cannot be found, and (c) for greater Mach numbers (M > M2) shock wave solutions can be found though they
differ significantly from experiments.
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I. INTRODUCTION

The Navier-Stokes equations [1–3] give a sound hydrody-
namic description whose thermodynamical content is given
by linear irreversible thermodynamics (LIT) [4]. However, the
shock wave profiles given by the Navier-Stokes equations are
thinner than the experimental and simulated profiles especially
for strong shocks [5] (see also Fig. 6). While there is a vast
amount of information on shock waves [2,3,6], the search
for alternative hydrodynamic theories that can improve the
shock wave profiles predicted by the Navier-Stokes equations
has been active for several decades. Among the several
hydrodynamic alternatives to the Navier-Stokes equations,
the Maxwell-Cattaneo equations are at the core of extended
irreversible thermodynamics (EIT) [7] which extends LIT.
Therefore, it is natural to ask what are the predictions of the
Maxwell-Cattaneo equations for shock wave phenomena, and
this point is addressed here.

In a previous work [8] we considered the relaxation
ideas by Maxwell-Cattaneo with the addition of anisotropic
temperatures and heat conduction for dense fluids [9]. Here we
consider only one temperature and isotropic heat conduction
for dilute monoatomic gases. The case of dilute gases leaves
out important applications but provides explicit expressions for
the transport coefficients [10] and relaxation times [7,11], and
therefore one is not forced to make guesses on these quantities.
Besides, a sound theory should give, we think, the simpler
cases correctly (like the dilute gas). The partial number of
references dealing with shock waves in dilute gases that we
give here [5–7,11–49] reflects in part that we are far from
having a consensus on the phenomenon even in dilute gases. As
we will show, the results from the Maxwell-Cattaneo equations
for shock waves are in fair agreement with experiments for
Mach numbers near 1—the Mach number (M) is defined at
the cold (lower temperature) equilibrium part of the shock,
as the quotient of the (supersonic) shock wave to sound
velocities—but fail for Mach numbers of order 2 or above.
Even for Mach numbers as low as 1.35 we have been unable to
find shock wave solutions to the Maxwell-Cattaneo equations,
and a simple geometrical explanation for why this happens is
given.

In 1867 Maxwell [50] pointed out that for a solid the stress
tensor (denoted here by σ ) is proportional to the strain or defor-
mation tensor (denoted by ε), while for fluids the stress is pro-
portional to the strain rate σ ∼ η dε

dt
. Maxwell argued that when

both behaviors are present the following is to be expected,

σ + τσ σ̇ ∼ ηε̇. (1)

Here η is the viscosity, τσ a relaxation time [50] which for
air is typically hundreds of picoseconds, and the superior dots
represent the comoving (total, material) time derivative (a
point discussed further below).

For the Maxwell model with the comoving derivative we
have that

4

3
η

dv

dx
= σ + τσ

[
∂σ

∂t
+ v

∂σ

∂x

]
≈ σ (x + τσ v,t + τσ ), (2)

where we assumed that τσ v and τσ are small so that it is
not necessary to include more terms in the Taylor series for
σ (x + τσ v,t + τσ ). The factor 4/3 on the left-hand side of the
previous equation is needed to reproduce the Navier-Stokes ex-
pression for the pressure tensor corresponding to a plane wave
in three dimensions when τσ → 0. The interpretation of Eq. (2)
is as follows [3,9]: the inhomogeneity of the hydrodynamics
velocity (“cause”) has the “effect” of producing a stress; Eq. (2)
shows that there is a time delay and space shift between
the “cause” and the “effect.” This is in contrast with the
Navier-Stokes equations that assume that the “effect” happens
at the same position and time as the “cause.” The previous
argument supports the use of the comoving derivative; another
argument is that the expression for σ is Galilean invariant.

Later on, in 1958, Cattaneo [51] argued that the Fourier
law for heat conduction should be modified, in order to avoid
infinite velocity propagation of heat flow implied by the
diffusion equation. Cattaneo’s approach [51] can be written
in a form like Maxwell’s, but with a partial derivative with
respect to time (fixed in space) rather than a comoving time
derivative. The use of either a temporal partial derivative or a
comoving one is the subject of controversies [8,52] and there
is a work pointing out that the use of the partial time derivative
gives rise to a paradox [53] in heat conduction phenomena
which is solved when one uses the comoving derivative; this
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supports the use of it. However, the theory resulting from
using the comoving derivative apparently has not been tested
for the shock wave case, so that there is no guarantee that the
paradox-free alternative is physically sound in this case. In this
work we will use the comoving time derivative, that is,

Q + τ
Q

Q̇ = −κ∇T , (3)

where Q is the heat flow, τ
Q

a relaxation time, κ the thermal
conductivity, and T the temperature. The use of a partial
derivative with respect to time instead of the material derivative
in the term including the relaxation time, in both Maxwell
and Cattaneo relaxation equations, makes no contribution
(different from the Navier-Stokes equations) at all in stationary
steady-state problems such as the structure of a steady fluid
shock wave.

A similar analysis to the one done for the stress holds
for the heat flux; see Eq. (2). The time delay for the heat
flux gives rise to second sound [7,52] (heat waves) that has
been observed in experiments, and space shift is observed in
molecular dynamics simulations for dense gases [9]. If the
partial derivative of the stress or of the heat flux is used instead
of the comoving derivative, then there will be a time delay but
not a space shift.

Maxwell’s viscoelastic model and Cattaneo’s modification
of Fourier law have been driving forces for several theories;
some of them are grouped under the term extended irreversible
thermodynamics that actually encompasses several alterna-
tives [7,11,49,54]. Other approaches for extending irreversible
thermodynamics beyond the linear regime are available
[54–65], though the list is not complete. We will leave
out some thermodynamic considerations in the shock front
(the region between the two equilibrium states of the shock
wave [6]) such as entropy production; the reason is that our
results are independent of the explicit use of them and we
would like to keep the hypotheses to a minimum to get a
clearer picture. In the last section we will comment on such
concepts. For shock waves and other cases in dilute gases,
moment methods [12,15–22,66–69] for solving the Boltzmann
equation are akin to Maxwell’s and Cattaneo’s ideas; for a
partial list of works dealing with shock waves in dilute gases
see the references in [5,6,12,15–49]. Several of the theories
that use moment methods have an upper bound for the Mach
number above which solutions of the shock wave problem
do not exist [12,15–19] and as more moments are included
the analysis of the underlying dynamical system becomes
intricate [12]. As we will illustrate with the simple relaxation
model used here, nonexistence of solutions for some moment
methods may be understood in terms of the singularities of the
underlying dynamical system.

The main objective of this work is to elucidate the
limitations of relaxation equations à la Maxwell-Cattaneo
for shock waves by considering the profiles and the solution
curves of the model (orbits in the mathematical jargon);
this is mainly accomplished by comparing with experimental
information, but we consider also the direct simulation Monte
Carlo (DSMC) method. In addition, we use the corresponding
state principle (CSP) as a source for the transport coefficients
needed to solve the differential equations considered in this
work and we also use the “soft sphere” model that is used
in many studies on shock waves. Another objective is to

provide a geometrical argument that allows us to understand
in simple terms why the Maxwell-Cattaneo equations do not
have shock wave solutions in some cases, and to give some
physical arguments of why this happens. Other minor results
are mentioned, such as the fact that the solution curves of
the dynamical system that result from using the ideas by
Maxwell-Cattaneo are independent of the interaction potential,
as happens for the Navier-Stokes equations [6,12,13].

In what follows we discuss the conservation equations and
define reduced variables to obtain the differential equations to
be solved in Sec. II. In Sec. III we compare the different
profiles obtained using theoretical equations, experiments
(when available), and simulations. In the last section we
provide some final remarks.

II. CONSERVATION EQUATIONS AND
THE DYNAMICAL SYSTEM

Conservation of mass, momentum, and energy imply that
for a steady plane shock wave propagating along the x direction
with velocity v(r,t) = v(x)i [8,10,32],

ρv = c1, (4a)

Pxx + ρv2 = 2

3
ρe − σ + ρv2 = c2, (4b)

ρv

[
e + Pxx

ρ
+ v2

2

]
+ Q = ρv

[
e +

2
3ρe − σ

ρ
+ v2

2

]
+ Q

= c3, (4c)

with ci,i = 1,2,3, constants that can be expressed in terms of
the values for the density ρ ≡ ρ(x), temperature T ≡ T (x),
and velocity v ≡ v(x) at either end of the shock. In addition,
the xx component of the pressure tensor [Pxx ≡ Pxx(x)], the
specific internal energy [e ≡ e(x)], and the heat flux Q(r,t)
are given by

Pxx = 2

3
ρe − σ, e = 3

2

k
B

m
T , Q(r,t) = Q(x)i ≡ Qi,

(5)
where k

B
is the Boltzmann constant and m the particle mass.

For dilute monoatomic gases the thermal conductivity can be
expressed in terms of the viscosity (first Sonine approxima-
tion [10]), and the two relaxation times are known [7,11],

κ = 15

4

k
B
η

m
, τσ = mη

k
B
ρT

, τ
Q

= 2

5

κm2

ρk2
B
T

= 3

2
τσ , (6)

where the temperature dependence of the viscosity (η) is not
specified for the moment. The first Sonine approximation
gives a Prandtl number of value Pr = 2/3. The conservation
equations, Eqs. (4), should be supplemented by the steady
Maxwell and Cattaneo relaxation equations, see Eqs. (2)
and (3),

σ + τσ v
dσ

dx
= 4

3
η

dv

dx
, (7a)

Q + τ
Q
v
dQ

dx
= −κ

dT

dx
. (7b)

It is convenient to consider dimensionless variables; they
are defined as follows: let v0 be the velocity at the cold
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part of the shock, and define a reduced velocity, a reduced
temperature, a reduced distance, a reduced viscosity, and a
reduced thermal conductivity by

v�(s) ≡ v(x)/v0, T �(s) ≡ k
B
T (x)/mv2

0, s ≡ x/λ,
(8)

λ ≡ 4

3

η0

ρ0v0
, η� ≡ η/η0, κ� ≡ κ/κ0,

where ρ0, η0, and κ0 are respectively, the mass density,
viscosity, and thermal conductivity evaluated at the cold part
of the shock. The choice of λ is for convenience in order to
have a simple form of the reduced Navier-Stokes equations [see
Eqs. (16)]: its relation to the mean-free path is given in Sec. III.

The conservation equations (4a)–(4c) depend on the
three conservation parameters ci whose values are the
following,

c1 = ρ0v0, c2 = ρ0v
2
0(1 + T �

0 ), c3 = ρ0v0
3
(

5
2T �

0 + 1
2

)
,

(9)

with T �
0 the reduced temperature at the cold part of the shock.

It can be related to the Mach number (M) at the cold part of
the shock,

M =
√

3

5 T �
0

, (10)

or to the compression factor through the use of the Rankine-
Hugoniot jump conditions given below.

We now explain how the differential equations for the
velocity and temperature are obtained. Conservation of mass
gives ρ(x) = c1/v(x) so that we can always replace ρ(x) in
terms of v(x). Conservation of momentum and energy then
give the following expressions for the viscous stress tensor
and the heat flux,

σ = T c1kB
+ c1v

2m − c2vm

vm
, (11a)

Q = c3 − 3

2

c1kB
T

m
+ 1

2
c1v

2 − c2v

= c3 − 3

2
vσ + 2c1v

2 − 5

2
c2v. (11b)

When Eq. (11a) is substituted into Maxwell’s relaxation
equation, and the first equality that appears in Eq. (11b) is
substituted into Cattaneo’s relaxation equation, we obtain

c1kB
T

vm
+ c1v − c2 − τσ c1kB

T dv
dx

vm
+ τσ c1kB

dT
dx

m
+ τσ vc1

dv

dx
= 4

3
η

dv

dx
, (12a)

c3 − 3

2

c1kB
T

m
+ 1

2
c1v

2 − c2v + τ
Q
v2c1

dv

dx
− τ

Q
vc2

dv

dx
− 3

2

τ
Q
vc1kB

dT
dx

m
= −κ

dT

dx
. (12b)

In terms of reduced variables and using τσ = ηv�

ρ0v
2
0T � , τQ = 3τσ /2, and ds

dx
= 1/λ = (3ρ0v0)/4η0, the reduced form of Eqs. (12a)

and (12b) is

ρ0v0kB

mv2
0T �

k
B

v0v�m
+ ρ0v

2
0v

� − ρ0v
2
0(1 + T �

0 ) −
(

ηv�

ρ0v
2
0T �

)
ρ0v0kB

mv2
0T �

k
B

v0
dv�

ds
ds
dx

v0v�m

+
(

ηv�

ρ0v
2
0T �

)
ρ0v0kB

mv2
0

k
B

dT �

ds
ds
dx

m
+

(
ηv�

ρ0v
2
0T

�

)
ρ0v

2
0v

�v0
dv�

ds

ds

dx
= 4

3
ηv0

dv�

ds

ds

dx

or [
3η�

4

(
v�2

T �
− 1

)
− η�

]
dv�

ds
+ 3η�

4

v�

T �

dT �

ds
+ T �

v�
+ v� − (1 + T �

0 ) = 0, (13a)

and

ρ0v
3
0

2
(5T �

0 + 1) − 3

2

ρ0v0kB

mv2
0T �

k
B

m
+ 1

2
ρ0v

3
0v

� − ρ0v
2
0(1 + T �

0 )v0v
� +

(
3ηv�

2ρ0v
2
0T

�

)
v2

0v
�2

ρ0v0v0
dv�

ds

ds

dx

−
(

3ηv�

2ρ0v
2
0T

�

)
v0v

�ρ0v
2
0(1 + T �

0 )v0
dv�

ds

ds

dx
− 3

2m

(
3ηv�

2ρ0v
2
0T

�

)
v0v

�ρ0v0kB

(
mv2

0

k
B

)
dT �

ds

ds

dx

= −15

4

k
B
η

m

(
mv2

0

k
B

)
dT �

ds

ds

dx

or

9η�

4

v�2

T �

(
v� − (1 + T �

0 )

)
dv�

ds
+ 9η�

8

(
5 − 3

v�2

T �

)
dT �

ds
+ v�2 − 2(1 + T �

0 )v� − 3T � + 5T �
0 + 1 = 0, (13b)

where we have used Eqs. (9).
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Equations (13a) and (13b) can be used to obtain the following explicit dynamical system,

dv�

ds
= 4T �p1(v�,T �,T �

0 )

3η�v�q(v�,T �,T �
0 )

, (14a)

dT �

ds
= 8T �p2(v�,T �,T �

0 )

9η�q(v�,T �,T �
0 )

, (14b)

with

p1(v�,T �,T �
0 ) = 11v�4 − 13(1 + T �

0 )v�3 + (2 − 12T � + 10T �
0 )v�2 + 15T �(1 + T �

0 )v� − 15T �2
, (15a)

p2(v�,T �,T �
0 ) = 6v�4 − 12(1 + T �

0 )v�3 + (
6 + 25T � + 9T �

0
2 + 3T �

0

)
v�2 − 23T �(1 + T �

0 )v� − [21T �2 − 7T �(1 + 5T �
0 )],

(15b)

and

q(v�,T �,T �
0 ) = −15v�4 + 6(1 + T �

0 )v�3 + 36T �v�2 − 35T �2
. (15c)

For the Navier-Stokes equations the constitutive equations
are obtained from Eqs. (7a) and (7b) by taking the relaxation
times equal to zero. Substitution of the resulting fluxes into
the equations of conservation of momentum and energy [see
Eqs. (4b) and (4c)] gives the following reduced form of
them,

dv�

ds
= v�2 − (T �

0 + 1)v� + T �

v�η�
, (16a)

dT �

ds
= 2k

B
η0

3mκ0

−v�2 + 2(1 + T �
0 )v� + 3T � − (5T �

0 + 1)

κ�
.

(16b)

In this case we decided not to use only the first Sonine
approximation, in order to see what are the differences between
assuming and not assuming this approximation; they are
expected to be small according to the analysis on the deviations
of the experimental data for the transport coefficients given in
Sec. III. This is actually the case.

The reduced form of the fluxes can be obtained from
Eqs. (9), (11a), and (11b):

σ � ≡ σ

ρ0u
2
0

= T �

v�
+ v� − (1 + T �

0 ), (17a)

Q� ≡ Q

ρ0u
3
0

= v�2

2
− (1 + T �

0 )v� − 3

2
T � + 5T �

0 + 1

2

= 2v�2 − 3

2
σ �v� − 5

2
(1 + T �

0 )v� + 5

2
T �

0 + 1

2
. (17b)

These expressions do not depend on the constitutive equations
and are therefore of a general character.

Notice that if we express T � as a function of v� we would
have to solve

dT �

dv�
= 2

3

v�p2(v�,T �(v�),T �
0 )

p1(v�,T �(v�),T �
0 )

, (18)

which is independent of the viscosity, and conclude that locally
the solution curves of the dynamical system are independent
of the viscosity (independent of the interaction potential).

One can use constant transport coefficients, for example (but
related according to the first Sonine approximation), and the
solution curves should be the same as when the viscosity is
proportional to the temperature, as happens for the Maxwell
interaction model. Also, the result can be generalized when
the first Sonine approximation does not hold, provided that
the temperature dependence of the viscosity and thermal
conductivity be the same. The same result is known to hold
for the Navier-Stokes equations [6,12] and can be easily
verified.

The solution to the Maxwell-Cattaneo dynamical system
[Eqs. (14)] that we are seeking, corresponding to the shock
wave, must asymptotically tend to the Rankine-Hugoniot jump
conditions, that in reduced variables are given by

v�
0 = 1, T �

0 = T �
0 , v�

1 = 5
4T �

0 + 1
4 ,

T �
1 = 7

8T �
0 + 3

16 − 5
16T �

0
2
. (19)

Subscripts 0 and 1 refer to the cold part of the shock (also
called upflow or upstream) and hot part of the shock (also
called downflow or downstream), respectively. For T �

0 = 3/5
there is no compression; a twofold compression corresponds
to T �

0 = 1/5 (ρ1 = 2ρ0); the maximum compression attainable
for a dilute monoatomic gas is fourfold, corresponding to T �

0 =
0 (ρ1 = 4ρ0).

In general terms the problem that we are trying to solve
corresponds to finding a specific solution to the differential
equation y′(s) = F(y(s),ω), where F : A ⊂ Rn × Rk → Rn is
a vector field on Rn that depends on k parameters represented
by ω, and y : (a,b) → Rn is a differentiable function, where
y′(s) denotes the derivative of the function y at the point
s ∈ (a,b). In the literature one can find cases for which n = 2
and k = 1 [20], n = 3 and k = 1 (Brenner’s two-velocity
hydrodynamics [38,43,62], Bobylev’s generalized Burnett
equations [41]), n = 4 and k = 1 (13-moment equations [12],
regularized 13-moment equations [21], Burnett [31,32]). For
examples of higher dimension dynamical systems such as
the super-Burnett, the augmented Burnett equations, and
their variants, see [25,28,33]; for theories that include more
moments than Grad’s 13-moment approximation, see [18]; for
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regularizations of the Burnett equations, see [34]. The two
dynamical systems considered here, the Maxwell-Cattaneo
and Navier-Stokes dynamical systems, correspond to n = 2
and k = 1, and the specific solution sought should tend asymp-
totically to the critical points given by the Rankine-Hugoniot
conditions; see Eq. (19). In the mathematical literature a
critical point, y�, is defined by the condition F(y�,ω) = 0;
the Rankine-Hugoniot jump conditions provide two critical
points for the dynamical systems here considered; they are also
identified with two equilibrium points of thermodynamics. The
specific solution curve (orbit) that asymptotically tends to the
two equilibrium points given by the Rankine-Hugoniot jump
conditions is named a heteroclinic trajectory—or orbit in the
mathematical literature.

III. SHOCK WAVE STRUCTURE

In this section we consider a specific case that we can
compare with experimental information. We choose argon
at standard conditions according to the definition by the
National Institute of Standards and Technology: a temperature
of T0 = 293.15 K (20 ◦C) and a pressure of p = 101.325 kPa
(one atmosphere), to represent upstream. We need to know
also the viscosity and thermal conductivity at T0, and we
use the values provided by the corresponding state principle
(CSP) [70] that gives

η0 = 22.39 μPa s, κ0 = 17.49
mW

m K
. (20)

Using these values we obtain that k
B
η0/mκ0 ≈ 0.266491,

which differs from 4/15 by about 0.08%; see Eq. (6). For
the whole range of temperatures (50 to 3000 K) the tabulated
values of the CSP give that k

B
η/mκ deviates from 4/15 by less

than 0.4%, so that the first Sonine approximation is good. Also,
the reduced viscosity and thermal conductivity, η� = η/η0 and
κ� = κ/κ0, differ at most by about 0.3% so that the assumption
of the same temperature dependence of both transport coeffi-
cients is also good. The CSP is also used to provide the tem-
perature behavior of both transport coefficients; the estimated
accuracy of the correlation is 0.3% for the viscosity and 0.7%
for the thermal conductivity in the temperature range from 50
to 1000 K, a range that is enough for us since the Mach numbers
considered will be from 1 to 2 for reasons that will be clear
below. Actually, the highest temperature considered by the
correlation is 3000 K so that the largest Mach number is a little
less than 4.5. Higher Mach numbers can also be considered, as
is standardly done, by assuming a power law temperature de-
pendence of the viscosity of the form η ∼ T γ (which we refer
to as the soft sphere model since such temperature dependence
of the viscosity is obtained assuming an interaction potential
of the form ∼r−ν , with r the interatomic distance [10]), and
fitting the value of γ to the experimental data [38]. We can
calculate the values of the relaxation times given by Eq. (6)
using the values of the transport coefficients given by the CSP
[see Eq. (20)], and the ideal equation of state. The values at
upflow are

τσ ≈ 2.21 × 10−10 s, τQ ≈ 3.32 × 10−10 s. (21)

For a 2.3-fold compression shock wave (M = 2) the values
of the velocity, pressure, temperature, transport coefficients,

and relaxation times at downflow are

v1 = 279.0
m

s
, p1 = 481.3 kPa, T1 = 609.2 K,

η1 = 39.48 μPa s, κ1 = 30.89
mW

m K
,

τσ = 0.82 × 10−10 s, τQ = 1.23 × 10−10 s. (22)

Here we assume that upflow is at standard conditions
(v0 = 637.8 m/s) and use the Rankine-Hugoniot jump con-
ditions to evaluate the pressure, velocity, and temperature at
downflow.

There are several implementations of the direct simulation
Monte Carlo method (DSMC), such as dsmcFoam [71], but
we will follow the one by Bird [29]. He considers two
interaction models—the variable hard sphere (VHS) model
and the variable soft sphere model (VSS)—to study shock
waves in argon. The VSS model is characterized by the
viscosity temperature index (γ ) and a parameter α (exponent in
the VSS molecular models); see [29] for the details. According
to Bird realistic values for them are γ = 3/4 and α = 1.5325.
Bird reduces the distance with his mean-free path (λB) given
by

λB = 4α(5 − 2γ )(7 − 2γ )

5
√

π (α + 1)(α + 2)

β0η0

ρ0
, where β0 =

√
m

2k
B
T0

.

(23)

Alsmeyer gives experimental information for shock waves in
argon [72]. He gives the normalized density profiles (ρn)

ρn ≡ ρ − ρ0

ρ1 − ρ0
(24)

as a function of the reduced distance s
A

≡ x/λA where λA is
his mean-free path,

λA = 16

5

(
5

3

1

2π

)1/2
η0

ρ0a0
, with a0 =

√
5

3

k
B
T0

m
, (25)

the sound velocity. The relation between the three different
lengths used to reduce the distance with an upflow temperature
T0 is the following,

λA = 4(α + 1)(α + 2)

α(5 − 2γ )(7 − 2γ )
λB, λ = 5

12

√
2πT �

0 λA. (26)

Alsmeyer evaluated his mean-free path at upstream, which
he calls the front of the shock wave. At T0 = 300 K and p0 =
50 mTorr (we have changed his notation to conform with ours)
he reports the value λA = 1.098 mm for argon. Using the CSP
to evaluate the viscosity we obtain λA = 1.093 mm for argon
at the same conditions.

There is a useful sensitive property, called the density
asymmetry quotient [38] or asymmetry of the density pro-
files [72,73] (Qρ); it can be calculated from measurements,
and is given by

Qρ =
∫ 0
−∞ ρn(s)ds∫ ∞

0 (1 − ρn(s))ds
, (27)

and will be considered in our comparisons with the experi-
mental information; s = 0 corresponds to the value at which

033110-5



F. J. URIBE PHYSICAL REVIEW E 93, 033110 (2016)

FIG. 1. (a) Normalized density vs reduced distance, ρn vs s
A

= x/λA, for argon at M = 1.2. (b) Normalized temperature vs reduced
distance, Tn vs s

A
= x/λA, for argon at M = 1.2. Solid line: Maxwell-Cattaneo with the CSP; dashed line: Navier-Stokes equations with the

CSP; solid circles: experimental values by Garen et al. [74]; circles: DSMC; solid diamonds: Maxwell-Cattaneo for γ = 2; open diamonds:
Navier-Stokes for γ = 2. The solid arrows for ρn > 0 indicate the sense in which the integration for the Maxwell-Cattaneo equations is
performed (+) while the dashed lines indicate the sense of integration for the Navier-Stokes equations (−).

ρn = 1/2. Other normalized profiles of interest are those
corresponding to velocity and temperature defined by

un ≡ u − u0

u1 − u0
, Tn ≡ T − T0

T1 − T0
. (28)

There is not experimental information for the normalized
temperature profile so that the comparisons are done with
DSMC.

In the following, we will use Adams’ method, as imple-
mented by the Numerical Algorithms Group (NAG), to solve
the dynamical systems given by Eqs. (14), (16), and (18). We
use a tolerance (accuracy goal) for Adams’ method of value
10−15, unless stated otherwise. A discussion of the method
when solving the Navier-Stokes equations for the shock wave
problem, and its comparisons with a couple of versions of
the Runge-Kutta method and the backward differentiation
formula, is available [75].

A. Mach numbers near 1

In Fig. 1 we provide the normalized density and temperature
profiles for M = 1.2; they are obtained by solving the two
sets of differential equations: the Maxwell-Cattaneo case,
Eqs. (14), and those corresponding to the Navier-Stokes
equations, Eqs. (16). Also included are the experimental values

by Garen et al. [74] for argon at M = 1.2. We found good
agreement with the results for the Navier-Stokes equations at
M = 1.2 reported by Garen et al. for the hard sphere model
(γ = 1/2).

The initial conditions used to obtain the profiles, as well as
the sense in which the integration is performed (see below),
are given in Table I. They are determined by requiring the
normalized density profile at s = 0 (or s

A
= 0) to have the

value 1/2; this definition makes sense if there are not two
values of s, say s1 �= s2, for which ρn(s1) = ρn(s2) = 1/2; in
particular for monotonic profiles the origin is well defined.
If the integration is performed by increasing the reduced
distance s, we say that the integration is carried out in the
positive sense (+), and similarly, if the integration is done
by decreasing s, we say that it is performed in the negative
sense (−). For the Navier-Stokes, upflow is an unstable node
(there is a neighborhood around it such that any solution curve
with an initial condition in the neighborhood goes away from
the critical point [76]), and downflow is a saddle (for initial
conditions near the critical point some solution curves tend to
downflow while others go away from the critical point), and
for the Maxwell-Cattaneo equations upflow is a saddle and
downflow is a stable node (there is a neighborhood around it
such that any solution curve with an initial condition in the
neighborhood tends to the critical point). The nature of the

TABLE I. Initial conditions for the Maxwell-Cattaneo (MC) and the Navier-Stokes (NS) dynamical systems using the corresponding states
principle (CSP) and the soft sphere model characterized by γ . Figures in the decimal representation of some numbers were rounded off.

M T �
0 v�

1 T �
1 System Model Sense s0 v�(s0) T �(s0)

1.2 5/12 37/48 1147/2304 MC CSP + −115.2664 1 − 10−14 T �
0

γ = 2 + −83.2585 1 − 10−10

NS CSP − 74.3799 v�
1 + 10−10

γ = 2 − 164.2455 v�
1 + 10−12

1.55 240/961 0.562175 0.386532 NS CSP − 43.0137 v�
1 + 10−14

γ = 1/2 − 28.7783 v�
1 + 10−14

2.0 3/20 7/16 399/1280 MC CSP + −26.1277 v�
1 + 10−14

NS CSP − 15.7572 v�
1 + 10−10
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TABLE II. Nature of the critical points and existence of a numerical shock wave solution for the Maxwell-Cattaneo dynamical system as
a function of the Mach number. The numerical shock wave solutions for M ∈ (1,M1), M1 ≈ 1.2716, are in good agreement with experiments
(when available) and simulations. For M ∈ (M1,M2), M2 ≈ 1.90, there are no numerical shock wave solutions. For M ∈ (M2,M3), M3 = 2.5,
there are numerical shock wave solutions that differ widely from experiments and simulations. We have not explored the case M > 2.5 since
for M ∈ [1.90,2.5] the numerical solutions are “unphysical.” The nature of the critical points is independent of the viscosity and the thermal
conductivity; see discussion after Eq. (18).

Standard numerical shock
Mach Number Nature of the critical points wave solution?

1 < M < M1 ≈ 1.2716 Upflow is a saddle Yes
Downflow is a stable node

M1 < M < Mc
2 ≈ 1.4657 Both critical points No

are saddles
Mc

2 < M < M2 ≈ 1.90 Upflow is a stable node No
Downflow is a saddle

M2 < M < M3 = 2.5 Yes

critical points determines the sense in which the integration
must be carried out, and it can be determined by analyzing
the eigenvalues of the Jacobian matrix of the vector field
defined by a given set of differential equations at each critical
point [76].

The nature of the critical points for the Maxwell-Cattaneo
dynamical system for M ∈ (1,∞) is given in Table II.
From Fig. 1 (M = 1.2) we notice that the profiles obtained
using the CSP are similar for the Navier-Stokes and the
Maxwell-Cattaneo equations; for s

A
> 0 the latter equations

give better agreement with the experimental data than the
former equations, but the opposite is observed for s

A
< 0. The

same happens for the unrealistic soft sphere model with γ = 2
shown in Fig. 1. To see why this model is unrealistic, notice that
if the viscosity at upflow is given by the CSP, then assuming
η ∼ T 2 we will have that the viscosity at T = 423.15 K
(the temperature at downflow is approximately 400 K for
M = 1.25) is 39.25 μPa s, that is higher than the CSP value,
η

CSP
= 30.11 μPa s, by about 17%. At T = 1273.15 K the

viscosity evaluated using γ = 2 is about five times the value
given by the CSP.

The reduced stress and heat flux are given in Fig. 2: the
qualitative features of the reduced fluxes corresponding to

the Navier-Stokes and the Maxwell-Cattaneo equations are
similar. The quantitative differences that can be observed in the
figure reflect the differences of the corresponding normalized
density profiles. Therefore, neither the normalized profiles nor
the reduced fluxes provide a clear-cut preference between
NS or MC for the particular Mach number considered so
far: M = 1.2. Another test is to consider the asymmetry
quotient given by Eq. (27). It is especially useful for weak
shocks (Mach numbers near one) since it is known [26,38,72]
that experiments give a value of Qρ less than 1 for Mach
numbers less than 2.5 while the Navier-Stokes equations give
a value greater than 1. At M = 2.5 the difference between
experiments and the Navier-Stokes equations can be 35% [72].
For M = 1.2 with γ = 0.72 the Navier-Stokes equations
give Qρ = 1.07, which is in good agreement with previous
works [38], while the Maxwell-Cattaneo equations with the
same γ give Qρ = 0.822; experiments give a value of about
0.93. The well known explicit solution to the Navier-Stokes
equations in terms of a hyperbolic tangent function given by
Landau [2] for constant transport coefficients and weak shocks
gives Qρ = 1.0.

As we will now show, the superiority of Navier-Stokes
equations as a physical theory with respect to the

FIG. 2. (a) Reduced stress tensor vs reduced distance, σ � vs s
A

= x/λA, for argon at M = 1.2. (b) Reduced heat flux vs reduced distance,
Q� vs s

A
= x/λA, for argon at M = 1.2. Solid line: Maxwell-Cattaneo with the CSP; dashed line: Navier-Stokes equations with the CSP; solid

diamonds: Maxwell-Cattaneo for γ = 2; open diamonds: Navier-Stokes for γ = 2.
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FIG. 3. (a) Normalized density vs reduced distance, ρn vs s
A

, for argon at M = 1.55. (b) Normalized temperature vs reduced distance, Tn vs
s

A
, for argon at M = 1.55. Dashed line: Navier-Stokes with the CSP; open circles: DSMC with γ = 0.72 and α = 1; solid circles: experimental

values by Alsmeyer [72]; open squares: Navier-Stokes for the hard sphere model (γ = 1/2).

Maxwell-Cattaneo equations becomes evident as we
increase the Mach number.

B. On the possible lack of “standard” shock wave solutions
to the Maxwell-Cattaneo equations

In Fig. 3 we give the normalized density and temperature
profiles for M = 1.55 but we do not provide the Maxwell-
Cattaneo profiles since we have been unable to find what
we consider to be standard numerical shock wave solutions.
The important point to be cleared up is whether shock
wave solutions exist or not in this case. The possibility of
lack of standard shock wave solutions for the Maxwell-
Cattaneo dynamical system is not surprising since, as we
mentioned above, there are several moment methods that do
not have shock wave solutions above a certain Mach number
[12,15–19].

In Fig. 4(a) we provide the shape of the normalized density
profiles obtained with the Maxwell-Cattaneo equations as the
Mach number is increased; in particular for M = 1.35, only
part of the profile can be obtained with a tolerance (accuracy
goal) of value 10−15; the numerical reason is a floating division

by zero detected by the NAG Fortran compiler, which we
attribute to q becoming very small in Eqs. (14). The shape of
such solution, in the v�-T � plane, is given in Fig. 5(a). For
greater values of the tolerance, such as 10−13, we can continue
the solution, as shown in Fig. 4(b), and again we reach the
conclusion that such a solution does not represent a shock
wave solution (similar results for Grad’s 13-moment equations
have been reported in the literature [21]). In the v�-T �

plane it crosses the loci of points given by q(v�,T �,T �
0 ) = 0

and continues to the origin, without reaching downflow, of
the v�-T � plane. In Fig. 4(b) we also show a solution to
the Maxwell-Cattaneo that starts near downflow; we have
separated the two numerical solutions on purpose so that they
can be discerned. If the two points at which the spikes appear
are brought together, these spikes merge and we are led with
two curves: one of them consists in the spikes merged, and the
other is near the DSMC data, specially at downflow; we do
not consider this as a “standard” shock wave solution because
the parts of the resulting curve run in different directions,
but perhaps there could be another theoretical context, such
as weak solutions, in which such behavior is allowed. For
us, the results give evidence that no “standard” shock wave

FIG. 4. (a) Normalized density profiles as a function of the reduced distance for different Mach numbers: ρn vs sA, and a tolerance of value
10−15. For convenience, we relax the condition that the normalized density profiles have the value 1/2 at s = 0. Solid lines: Maxwell-Cattaneo
equations: for each curve upflow is at the left, and downflow at the right; open circles: DSMC for M = 1.35. For M = 1.88,2, the solutions are
such that their corresponding orbits are outside of the loci of singularities; for the other Mach numbers their corresponding orbits are inside.
(b) Normalized density profiles as a function of the reduced distance for different Mach numbers, ρn vs sA for M = 1.35, and a tolerance of
value 10−13. Solid lines: Maxwell-Cattaneo equations; open circles: DSMC for M = 1.35.
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FIG. 5. (a) Orbits and loci of singularities [q = 0; see (15c)] in the T �-v� plane for different Mach numbers. Solid lines: solution curves
for the Maxwell-Cattaneo equations using the CSP; open circles: DSMC with γ = 0.81 and α−1 = 0.6525 for M = 2; crosses: equilibrium
points; dotted line: loci of singularities (q = 0) for the Maxwell-Cattaneo equations for M = 1.2; long-dash–dashed line: loci of singularities
for the Maxwell-Cattaneo equations for M ≈ 1.35; dot-dashed line: loci of singularities for the Maxwell-Cattaneo equations for M = 2.
(b) Orbits and loci of singularities [q = 0; see (15c)] in the T �-v� plane for M = 2. Solid lines: solution curves for the Maxwell-Cattaneo
equations using the CSP; open circles: DSMC with γ = 0.81 and α−1 = 0.6525 for M = 2; crosses: equilibrium points for M = 2; dot-dashed
line: loci of singularities (q = 0) for the Maxwell-Cattaneo equations for M = 2; dashed line: Navier-Stokes using the CSP. The nature of each
critical point for the Maxwell-Cattaneo equations shown in the graph is given by the following code: S ≡ saddle, SN ≡ stable node.

numerical solutions exist, though the nonstandard construction
described may be used to study a more general theoretical
framework, after all; there is agreement with the DSMC
simulations.

However, not all the partial solutions that can be calculated
have the form of a typical shock wave solution; in Fig. 4 the
piece of the profile calculated for M = 1.465 does not have
the form of a typical shock wave since now the derivative near
upflow of the normalized density profile is too steep. Also,
the piece of the profile for M = 1.88 shows a huge derivative;
this is a result of that it is near the loci of singularities, and in
this case its manifestation is a very narrow profile so that the
manifestations of singularities are narrow profiles. It should
be pointed out that the orbit for M = 1.465 is inside the
corresponding loci of singularities, while that for M = 1.88
is outside.

There is a simple geometrical argument that reveals what
are some of the problems that we face in order to obtain
a shock wave solution in some cases. In the following it
will be convenient to notice that even for v� �= 0 the loci of
singularities of the vector field [denoted by LF; see Eq. (14)]
may differ from the loci of points defined by the condition
q(v�,T �,T �

0 ) = 0 (denoted by Lq), since the loci of points
given by p1(v�,T �,T �

0 ) = 0 and p2(v�,T �,T �
0 ) = 0 (denoted

by Lp1 and Lp2 , respectively) can intersect Lq . In Fig. 5(a)
we provide the critical points for three Mach numbers, and
part of the loci of the singularities for the Maxwell-Cattaneo
differential equations. For the Mach numbers considered, Lq

has the shape shown by the dot-dashed line shown in Fig. 5(b);
it is a simple closed curve (a Jordan curve) that divides R2

in two regions: the exterior—an unbounded region—and the
interior—a bounded region [77]. When 1 � M < Mc

1—Mc
1

will be determined below—the two critical points are inside,
and a heteroclinic solution curve can exist. As the Mach
number is increased from 1, downflow eventually intersects
Lq , the Mach number (or the value of T �

0 ) at which the
intersection occurs can be obtained solving the equation; see

Eqs. (15c) and (19):

0 = q((1 + T �
0 )/4,

(−5 T �
0

2 + 14 T �
0 + 3

)
/16,T �

0 )

= − 1
128

(
235 T �

0
2 − 354 T �

0
2 + 99

)(
1 + 5 T �

0
2)2

. (29)

The two roots T �
0 = −1/5 are unphysical because T is

the absolute temperature, and from the other two roots
we keep T �

0 = (177 − 24
√

14)/235 ≈ 0.3711 (Mc
1 ≈ 1.2716)

since the other root gives a “Mach” number outside the range
of our interest: M ∈ [1,∞).

When M1 < M < Mc
2—where Mc

2 can be determined by
requiring that upflow intersect Lq leading to T �

0 = 3(1 −√
14/7)/5 ≈ 0.2793 or Mc

2 ≈ 1.4657—one critical point (up-
flow) is in the interior of Lq and the other one (downflow) is
in the exterior, so that any curve joining the two critical points
must necessarily intersect Lq . In particular, if there is a solution
to the Maxwell-Cattaneo equations that joins the critical
points, it must intersect Lq , meaning that the derivatives may
be infinite; this would contradict the existence of a heteroclinic
orbit that must have smooth derivatives, if we leave out weak
solutions. Our computations (see Fig. 5) for M = 1.35 with a
tolerance of value 10−15 show that the numerical solution curve
cannot cross Lq but that it crosses Lq for a tolerance of value
10−13; this just reflects that tight accuracy requirements lead to
a conservative integration scheme in which the next move is not
allowed; in other words, tight accuracy eliminates the spikes in
this case. If the one-dimensional system given by Eq. (18) is
solved with a tolerance of value 10−15 and with the same
initial condition as the two-dimensional Maxwell-Cattaneo
system (v� = 0.99999999999999, T � = 0.33), the resulting
orbit is practically the same as the one obtained using the
two-dimensional Maxwell-Cattaneo system with a tolerance
of value 10−13; this suggests favoring the lower accuracy
goal result. However, the argument is not conclusive because
the point at which the numerical solutions bend (the spikes
appear) corresponds to a singular point for the one-dimensional
system. We favor the tight accuracy result.
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FIG. 6. (a) Normalized density profile vs reduced distance, ρn vs s
A

= x/λA, for argon at M = 2. (b) Normalized temperature profile vs
reduced distance, Tn vs s

A
= x/λA, for argon at M = 2. Solid line: Maxwell-Cattaneo with the CSP; dashed line: Navier-Stokes equations with

the CSP; solid circles: experimental values by Alsmeyer [72] for M = 2.05; open circles: DSMC for γ = 0.81 and α−1 = 0.6525.

The argument just given makes plausible that a heteroclinic
connection may not be possible when the critical points are in
the different regions (the interior and exterior) of the loci of
singularities, and this happens for M ∈ (Mc

1 ,M
c
2 ) or 1.2716 �

M � 1.4657. However, in our case we did not find a numerical
shock wave solution for M = 1.55 that is outside the previous
range of Mach numbers and therefore the two critical points
are in the exterior to the loci of singularities. In this case we
think that no solution is possible due to the proximity of one
of the critical points to the singularity curve. We have been
unable to find standard numerical shock wave solutions to
the Maxwell-Cattaneo system for Mach numbers lower than
(approximately) M2 = 1.9.

C. “Unphysical” shock wave solutions to
the Maxwell-Cattaneo equations

Apart from the lack of numerical solutions discussed in
the previous section, it turns out that as the Mach number
is increased to the value M = 2, corresponding to a 2.3-fold
compression, we have been able to find a numerical shock
wave solution to the Maxwell-Cattaneo dynamical system;

see Fig. 5. There is however a subtle issue that needs to be
cleared up in our numerical solution for M = 2: since the
solution curve to the Maxwell-Cattaneo equations must go
from downflow to upflow, upflow cannot be at the left of
downflow when considering the profiles, as is the case for
the profiles in Figs. 1–3, because it is a stable node. For the
Navier-Stokes equations upflow is always an unstable node
while downflow is a saddle; in this case upflow must always
be at the left of downflow.

There are two ways of solving the subtle point mentioned
above to make a comparison. The first is to obtain the profile for
the Maxwell-Cattaneo equations for M > Mc

2 (we take M = 2
corresponding to a 2.3-fold compression) in which upflow is at
the right of downflow and make the transformation s

A
→ −s

A
.

The second is to compare the orbits as we have done; each
way has its own advantages and disadvantages; so, we have
provided both: in Fig. 5 we provide the orbits, and in Figs. 6
and 7 the profiles. Figure 6 shows that the Maxwell-Cattaneo
equations considered in this work fail at M = 2 when
compared with the experimental data; comparisons with
DSMC and the Navier-Equations are also shown. The last ones
give narrower profiles than the experiment, but are certainly

FIG. 7. (a) Reduced velocity profile vs reduced distance, v� vs sA, s
A

= x/λA, for argon at M = 2. (b) Reduced temperature profile vs
reduced distance, v� vs sA, s

A
= x/λA, for argon at M = 2. Solid line: Maxwell-Cattaneo with the CSP; dashed line: Navier-Stokes equations

with the CSP; open circles: DSMC for γ = 0.81 and α−1 = 0.6525. In order to compare with the Navier-Stokes equations and DSMC, the
transformation s

A
→ −s

A
was used for the solutions of the Maxwell-Cattaneo dynamical system.
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better than the Maxwell-Cattaneo equations for M = 2. From
Figs. 6 and 7 it is clear that the profiles are nonmonotonic.

An important requirement in physics is that the predictions
of a theory should correspond approximately to experiments;
any theory that does not satisfy this requirement can be re-
garded as providing unphysical results. The lack of numerical
structure for M ∈ (M1,M2) and the differences with respect to
the experiment shown in Fig. 6(a) by the Maxwell-Cattaneo
system are at odds with experiments, and therefore the use
of the adjective “unphysical” seems appropriate. The DSMC
simulations given in Figs. 5(b)–7 provide additional support
to the use of it. However, the term is also used when a theory
contradicts an established law of nature or, in the case of
hydrodynamics, when the solution turns out to be unstable in
the sense of hydrodynamics.

IV. FINAL REMARKS

The shock wave profiles given by the Maxwell-Cattaneo
relaxation equations are in good agreement with experiments
when the Mach number is lower than about M1 ≈ 1.2716; this
is one instance where we have found numerical shock wave
solutions. The comparisons with the DSMC simulations are
also good in this region. As the Mach number is increased from
1, the Maxwell-Cattaneo profiles become narrower, as shown
in Fig. 4(a); it may be expected that the lack of solutions found
for M ∈ (M1,M2) could be somehow related to this behavior.
However, the results shown in Fig. 4 for M = 1.35 indicate
that, although a numerical shock wave solution does not
exist, the piece of the Maxwell-Cattaneo normalized density
profile that can be calculated is in relatively good agreement
with the DSMC simulations. This suggests that the apparent
lack of a standard numerical solutions for Mach numbers
slightly greater than M = 1.2716 is not a problem about
the profiles becoming narrower. Indeed, the problem is near
downflow where the derivatives may become infinite or
discontinuous at some point so that there is a sort of “res-
onance” (for the derivatives of the velocity and temperature)
phenomena near downflow whose physical meaning is difficult
to elucidate because the term responsible for the “resonance”
has a complicated structure (see below). We think that the
main issue is the “resonant” behavior near downflow where
the derivatives become big and even infinite; of course, the
Maxwell-Cattaneo ideas are not expected to deal with high
gradients, but they generate singularities. On the other hand,
the Navier-Stokes equations are also not expected to deal with
big gradients but do not have singularities.

For Mach numbers larger than M = 1.465 we eventually
get a standard numerical shock wave solution for M = 2 whose
form is rather unusual; see Figs. 4–5. The comparisons with
experiments and simulations show that indeed such solution
may be considered as “unphysical.”

In the Appendix we have obtained the derivatives for
the Maxwell-Cattaneo equations without making specific
assumptions on the transport coefficients and the relaxation
times; the results are

dv�

ds
= p3(v�,T �,T �

0 ,τ �
σ ,τ �

Q)

q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q)

,
dT �

ds
= p4(v�,T �,T �

0 ,τ �
σ ,τ �

Q)

q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q)

,

(30)

where the form of the functions p3 and p4 are given in the
Appendix, and q1 (responsible for the “resonance”) is given by

q1 ≡ q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q)

= −5τ �
σ τ �

Qv�3 + [2(1 + T �
0 )τ �

σ τ �
Q + 2Eκ�τ �

σ + 3η�τ �
Q]v�2

+ (3T �τ �
σ τ �

Q − 2Eη�κ�)v� − 2Eτ�
σ κ�T �. (31)

Here τ �
A = 3ρ0v

2
0τA/(4η0), A = σ,Q, and E = 3mκ0/(4k

B
η0).

We have been unable to extract from the previous equation
a simpler condition for the appearance of the “resonance,”
in part for the several quantities present in the equation; in
principle, Eq. (31) can be used to model the relaxation times
if one is interested in avoiding the “unphysical” solutions.
For low Mach numbers our calculations show that sensible
profiles can be obtained; such cases correspond to q1 > 0,
and this suggests that a good criterion when modeling the
relaxation times is to guarantee that q1 > 0 always since this
will eliminate the problems found here.

On the other hand, the thermodynamic assumptions used
in this work are the following: Concepts such as temperature,
internal energy, and pressure can be used in the region between
the thermodynamics equilibrium parts of the shock wave that is
outside thermodynamic equilibrium. The equation of state for
the pressure p and the caloric equation of state for the specific
internal energy e [see Eq. (5)] have the same form in the front
shock as in thermodynamic equilibrium. We did not use the
concept of entropy because the question, what is entropy in
nonequilibrium? has several possible answers; see for example
the discussion in Ref. [16] regarding two different entropies.
Further discussions on entropy and the entropy condition are
available [78–80]. The results obtained here are independent
of any specific definition of the entropy because no use of the
concept was made.

The assumptions just mentioned seem to be sound, at least
for Mach numbers near 1, so that the failure of the Maxwell-
Cattaneo dynamical system is most likely due to the modeling
of the relaxation times and not to the assumptions mentioned
above; this is further assured when considering the hyperbolic
branch discussed below.

An important requirement in hydrodynamics is that the
solution should be stable [2,81] since otherwise it cannot be
observed. Actually, it has been pointed out as an objection to
the Burnett equations (a representative of the normal solutions
branch) since they predict that a fluid at rest is temporarily
unstable [82]; for another interpretation see Ref. [83]. Landau
and Lifshitz [2] analyzed the case of separation of the stream
lines of an ideal fluid at the boundaries of a solid object
and argued that the problem of uniqueness for the solution
of an ideal fluid (one without dissipation) that arises when
separation is present is actually solved by the boundary layer
formed when there is viscosity (dissipation), however small.
They mentioned that the solutions with separation must be
rejected since separation leads to turbulence [2,84]; in other
words, the flow will be unstable. For a discussion of the several
mechanisms of hydrodynamic instability see Ref. [81]. There
are experimental studies of unsteadiness (instability of a steady
state) by shock-induced separation in a M = 2 compression
ramp with air, where coherent structures and turbulence
are observed [85], pointing out the importance of shock
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interaction with the boundaries. However, the experiments
by Alsmeyer, Garen et al., and others [72–74,86] have not
reported evidence of these phenomena or other causes of
instability in noble gases even for Mach numbers up to 9.
The experiments that we have considered here provide stable
shock waves so that the Maxwell-Cattaneo should be stable to
be physically acceptable. A study of this requires a temporal
analysis of Maxwell-Cattaneo equations; if it turned out that
they were unstable, this would only deepen the fact that
they produce “unphysical” solutions in some cases. Nonlinear
stability studies for plane shock waves described by viscous
conservations laws are available [78–80].

Finally, we would like to mention briefly other approaches
to the shock wave problem in dilute gases. There are two main
lines of attempts to study the problem that for convenience we
classify as follows:

(1) The normal solutions branch. Here we consider the
normal solutions to the Boltzmann equation exemplified by
the Chapman-Enskog method [10]. Along this line we can
mention the following:

(a) The Navier-Stokes equations [10].
(b) The Burnett, super-Burnett equations, and their

variants [10,21,25,28,31–33,37,40].
(c) Generalized Burnett equations [41].
(d) Regularizations of the Burnett equations [34,35].

(2) The moment method, or hyperbolic, branch. We con-
sider here the moment solutions to the Boltzmann equation
exemplified by Grad’s 13-moment method. In this line we can
mention the following:

(a) Grad’s 13-moment equations [12].
(b) Extended thermodynamics solutions [7,15–19,49].
(c) Regularized moment equations [21,22,67].
(d) Eu’s moment method [20,46,61].

Apart from the attempts mentioned above we have the
Mott-Smith method and its variants [23,40], the two-velocity
hydrodynamics by Brenner [38,43,62], the finite volume
scaling by Margolin [63,64], and the two-fluid hydrodynam-
ics [2,14], among others [5,24,30,36,40,42,43]. A discussion
about the attempts mentioned will require a review so that
we focus our attention on the hyperbolic branch that is closely
related with the Maxwell-Cattaneo system studied here though
the Burnett-Cattaneo equations [42] are a hybrid method
belonging to both branches.

In 1952 Grad [12] showed that his 13-moment method,
when applied to the shock wave problem, failed to provide
structure for Mach numbers greater or equal than M =
1.65. Holway [15] claimed that for the moment method for
solving the Boltzmann equation there exists a critical Mach
number beyond which no shock wave solution is possible;
Holway’s statement has been challenged by Weiss [19]. Jou
and Pavón [16] included nonlinear and nonlocal effects into
extended thermodynamics, and mentioned that the maximum
Mach number above which no shock wave solutions exist can
be extended to M = 4.67. Ruggeri [17] challenged the result
by Jou and Pavón and mentioned that for a generic dissipative
hyperbolic system of balance laws there is an upper bound such
that for a shock velocity greater than this limit no continuous
shock wave structure solutions are possible. Weiss studied the
shock wave problem using moment equations with 13, 14,
20, and 21 moments; he concluded that shock wave solutions

exist up to certain Mach number that depends on the number
of moments used, and quoted the value M = 1.887 when
using 21 moments. Al-Ghoul and Eu [20] used Eu’s moment
method [61] and concluded that they could obtain shock wave
profiles for all Mach numbers and that their results were
in good agreement with the experiments; furthermore, they
also claimed that their thermodynamic theory was consistent.
For a recent analysis of the shock wave problem using Eu’s
ideas see Ref. [46]. Torrilhon and Struchtrup [21,22] used a
method developed by them called the regularized 13-moment
(R13) equations to study the shock wave problem. They
provided several comparisons with experiments and DSMC
simulations as well as various methods of the normal solution
branch; for example, they considered the asymmetry factor
obtaining relatively good agreement DSMC and experiments.
Among their conclusions is that the quantitative features of
the shock are captured by their method for Mach numbers up
to M ≈ 3, and qualitative for higher Mach numbers. Recently
Timokhin et al. [48] extended the study of the regularized
13-moment equations for the shock wave problem up to Mach
numbers M = 8, and discussed in particular the overshoot (no
monotonicity) in the temperature finding that the two forms
of R13 moment equations considered by them (linear and
nonlinear) overestimate the overshoot.

There are two main points that we would like to bring to
the fore. The first one is that the lack of shock wave solutions
is common when considering theories that have a maximum
speed of transmission above which no shock wave solutions
exist; the case considered in this work fits into this category.
The second is that among the theories in the hyperbolic branch
Eu’s moment method and the R13 moment equations provide
shock wave structure for a wide range of Mach numbers. Un-
fortunately, Eu’s theory has not been studied with great detail
and in particular studies about the asymmetry factor or the tem-
perature overshoot that is observed in DSMC simulations [29]
are missing. On the other hand, the hybrid method (Burnett-
Cattaneo) proposed by Holian, Mareschal, and Ravelo [42]
that has been claimed to be in quantitative agreement with
nonequilibrium molecular-dynamics simulations for strong
shocks is another interesting option. However, for the case of
strong shocks, with Mach numbers exceeding 100 or so, one
must include high-temperature processes [6] such as ionization
and electronic excitation among other phenomena; in this
case the comparisons with theories that do not include the
phenomena mentioned above are of academic interest.

While the numerical computations done are unable to
find a standard numerical solution to the Maxwell-Cattaneo
equations in some cases, this does not imply that there is not a
strong solution or a weak one (solution in the sense of distribu-
tions [87,88]). Similarly, while we have been able to find a nu-
merical solution for Mach numbers near 1, this does not mean
that there is indeed a solution, either strong or weak, since no
use of the Conley index [89] or other mathematical approaches
has been considered [78–80]. The relevance of weak solutions
nowadays can be exemplified by Fefferman’s description [90]
of the $1 000 000 (US) prize voiced by the Clay Mathematics
Institute for the existence problem of the Navier-Stokes
equations. The prize is for smooth solutions, but as Fefferman
pointed out: Leray’s existence theorem of weak solutions to
the Navier-Stokes equations is a good starting point [91].
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It is disappointing that, for Mach numbers around M = 2,
the sound ideas by Maxwell and Cattaneo regarding the lags
between “cause” and “effect” (causality) turn out to be bad
when compared with experiments and the comoving derivative
for the stress and heat flux is used. On the other hand, the
use of the partial derivative with respect to time, instead of
the comoving derivative, for the fluxes gives the same results
as the Navier-Stokes equations for the steady situation here
considered. A study of weak solutions or other alternatives to
strong solutions may provide an alternative view of what the
present work reveals.

Our conclusions with respect to the Maxwell-Cattaneo
ideas are for dilute gases, but a similar result (existence of
singularities that imply no shock wave solution) holds also for
dense gases with constant transport coefficients and relaxation
times [8], where the Grüneisen’s ideas [6,9] for the equation
of state are used. It seems that one must proceed with caution
when using the Maxwell-Cattaneo model in other situations,
at least for shock waves.

ACKNOWLEDGMENTS

I am grateful for comments from Wm. G. Hoover, E. Pérez-
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APPENDIX

In this appendix we obtain the differential equations for
the Maxwell-Cattaneo system in a form that does not depend

on the explicit form of the relaxation times used in the main
text. This is done because the equations are simple to analyze
in order to get an idea of what is the main reason why the
problems discussed in the paper arise; besides, it is convenient
to obtain, by considering particular cases, the equations used
by other means.

In terms of reduced variables given by Eq. (8), Eqs. (7) can
be expressed as

σ � + τ �
σ v� dσ �

ds
= η� dv�

ds
, with τ �

σ ≡ 3

4

ρ0v
2
0τσ

η0
, (A1a)

and

Q� + τ �
Qv� dQ�

ds
= −Eκ� dT �

ds
, with τ �

Q ≡ 3

4

ρ0v
2
0τQ

η0
and

E ≡ 3

4

κ0m

k
B
η0

. (A1b)

Substitution of Eq. (17a) in Eq. (A1a) and using the second
equality that appears in Eq. (17b) into Eq. (A1b) leads to

dv�

ds
= p3(v�,T �,T �

0 ,τ �
σ ,τ �

Q)

q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q)

,
dT �

ds
= p4(v�,T �,T �

0 ,τ �
σ ,τ �

Q)

q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q)

,

(A2)

where

p3(v�,T �,T �
0 ,τ �

σ ,τ �
Q) = (τ �

σ + 3τ �
Q)v�3 − [2Eκ� + 2(1 + T �

0 )τ �
σ + 3(1 + T �

0 )τ �
Q]v�2

+ [2E(1 + T �
0 )κ� + (−3T � + 5T �

0 + 1)τ �
σ + 3T �τ �

Q]v� − 2ET �κ�, (A3a)

p4(v�,T �,T �
0 ,τ �

σ ,τ �
Q) = (2τ �

Q − τ �
σ )v�4 + [η� + 2(1 + T �

0 )τ �
σ − 4(1 + T �

0 )]v�3

+{−2(1 + T �
0 )η� + (4T � − 5T �

0 − 1)τ �
σ + 2[T � + (1 + T �

0 )2]τ �
Q}v�2

− [(3T � − 5T �
0 − 1)ηr + 2T �(1 + T �

0 )(τ �
σ + τ �

Q)]v� + (−3T �2 + T � + 5T �T �
0 )τ �

σ , (A3b)

q1(v�,T �,T �
0 ,τ �

σ ,τ �
Q) = −5τ �

σ τ �
Qv�3 + [2(1 + T �

0 )τ �
σ τ �

Q + 2Eκ�τ �
σ + 3η�τ �

Q]v�2 + (3T �τ �
σ τ �

Q − 2Eη�κ�)v� − 2Eτ�
σ κ�T �.

(A3c)

Taking τ �
σ and τ �

Q equal to zero in Eqs. (A2) and (A3) reproduces the reduced Navier-Stokes equations, see Eq. (16), and using

E = 45

16
, κ� = η�, τ �

σ = 3

4

η�v�

T �
, τ �

Q = 9

8

η�v�

T �
, (A4)

we obtain Eqs. (14) and (15).
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