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Plastic events in amorphous solids can be much more than just “shear transformation zones” when the positional
degrees of freedom are coupled nontrivially to other degrees of freedom. Here we consider magnetic amorphous
solids where mechanical and magnetic degrees of freedom interact, leading to rather complex plastic events whose
nature must be disentangled. In this paper we uncover the anatomy of the various contributions to some typical
plastic events. These plastic events are seen as Barkhausen noise or other “serrated noises.” Using theoretical con-
siderations we explain the observed statistics of the various contributions to the considered plastic events. The rich-
ness of contributions and their different characteristics imply that in general the statistics of these serrated noises
cannot be universal, but rather highly dependent on the state of the system and on its microscopic interactions.
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I. INTRODUCTION

Modeling the mechanical properties of amorphous solids
is an active subject of current research, requiring a detailed
understanding of the many-body processes that occur in such
system when subjected to external strains. External strains
can be mechanical, magnetic, or electric, depending on the
properties of the amorphous solid in question. The responses
of amorphous solids to such external strains is usually not
smooth, giving rise to “serrated” plots of stress vs strain, energy
vs strain, magnetization vs external magnetic field, etc. A lot of
effort was spent on characterizing the probability distribution
functions of such serrated responses. In the context of magnetic
jumps this is referred to as Barkhausen noise [1–6] but other
serrated noises were studied as well [7]. In a number of cases
strong claims of universality were made.

Recently we have analyzed in some detail model amorphous
solids in which there is a significant coupling between
mechanical and magnetic properties [8–11]. Doing so we
realized that the characterization of the physics of plastic
events can be quite demanding; there is more in these events
than what meets the eye at first impression. The aim of this
paper is to highlight the somewhat complex anatomy of plastic
events in such systems, with a word of caution to researchers in
the field that similar complexity may arise in other systems as
well, and reasonable modeling should take this into account. In
particular, we will conclude below that in general one should
not expect universal probability distribution functions since
the statistics of the serrated responses depend on many details
of the microscopic interactions and on the state of the system.

Deferring all details to the next section, we motivate the
present paper by showing in Fig. 1 a scatter plot of the values
of energy drops �U during plastic events when the system
is strained by an external magnetic field. The scatter plot is
shown as a function of the magnetization jump �m that occurs
simultaneously with the energy drop. First, one sees that for a
given �m one has a wide distribution of �U values. Second,
these values of the energy drops fall in different groups, with
a strange intense line and two triangular groups that are only
partly overlapping. Understanding such scatter plots and their
implications on the physics of the solid is what we mean by
“the anatomy of plastic events.” A theory of plasticity in such
system should include also the understanding of the statistical

distribution of such events. The density of points in every little
box of size d�Ud�m in Fig. 1 is proportional to the joint
probability P (�U,�m)d�Ud�m. Understanding how this
probability distribution function is determined by the different
physical process requires a theory of the anatomy of plastic
events. The aim of this paper is to provide such a theory for one
particular model of amorphous magnetic glass. Other models
will require a similar approach.

In Sec. II we present the model that was introduced recently
and analyzed for some of its aspects in Refs. [8–11]. Section III
deals with the notion of plastic events, both under external
mechanical strain and under external magnetic field. The
anatomy of the plastic events that occur under magnetic
straining is studied in Sec. IV, in which we provide the
numerical analysis, a theory, and a comparison between the
two. In Sec. V we discuss briefly the anatomy of plastic
events under mechanical straining, including the implications
to magnetostriction. The last section offers a summary and a
discussion.

II. A MODEL OF A MAGNETIC AMORPHOUS SOLID
WITH STRONG LOCAL ANISOTROPY

The model Hamiltonian was introduced in [8] and analyzed
further in [9–12]. The magnetic part of the model is in the spirit
of the Harris, Plischke and Zuckerman (HPZ) Hamiltonian [13]
but with a number of important modifications. These modifi-
cation were made to bring the model closer to the physics of
amorphous magnetic solids [8]. The first major difference is
that the particles in the present case are not pinned to a lattice.
We write the Hamiltonian as

U ({r i},{Si}) = Umech({r i}) + Umag({r i},{Si}), (1)

where {r i}Ni=1 are the two-dimensional positions of N particles
in an area L2 and Si are spin variables. The mechanical
part Umech is chosen to represent a glassy material with a
binary mixture of 65% particles A and 35% particles B,
with Lennard-Jones potentials having a minimum at positions
σAA = 1.175 57, σAB = 1.0, and σBB = 0.618 034 for the
corresponding interacting particles [14]. These values are
chosen to guarantee good glass formation and avoidance
of crystallization. The energy parameters chosen are εAA =
εBB = 0.5, εAB = 1.0, in units for which the Boltzmann
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FIG. 1. Log-log scatter plot of the value of the energy drops �U

as a function of the simultaneous changes �m in the magnetization.
These occur when the magnetic field is ramped up and down to form
the hysteresis loop of the Barkhausen noise. Note that here and below
the scatter plots are in double logarithmic scale.

constant equals unity. All the potentials are truncated at
distance 2.5σ with two continuous derivatives. NA particles
A carry spins Si ; the NB B particles are not magnetic. Of
course NA + NB = N . We choose the spins Si to be classical
xy spins; the orientation of each spin is then given by an angle
φi with respect to the direction of the external magnetic field
which is along the x axis.

The magnetic part of the potential energy takes the form [8]

Umag({r i},{Si}) = −
∑
〈ij〉

J (rij ) cos (φi − φj )

−
∑

i

Ki cos2 [φi − θi({r i})]

−μAB
∑

i

cos (φi). (2)

Here rij ≡ |r i − rj | and the sums are only over the A particles
that carry spins. Notice that in the present model the exchange
parameter J (r ij ) is a function of a changing interparticle
position (either due to affine motions induced by an external
strain or an external magnetic field or due to nonaffine
particle displacements, and see below). Thus randomness in
the exchange interaction is coming from the random positions
{r i}, whereas the function J (r ij ) is not random. We choose the
monotonically decreasing form J (x) = J0f (x) where f (x) ≡
exp(−x2/0.28) + H0 + H2x

2 + H4x
4 with H0 = −5.51 ×

10−8 ,H2 = 1.68 × 10−8 ,H4 = −1.29 × 10−9. This choice
cuts off J (x) at x = 2.5 with two smooth derivatives. Note
that we need to have at least two smooth derivatives in order to
compute the Hessian matrix below. Finally, in our case J0 = 3.

Another major difference with the HPZ model is that in the
present case the local axis of anisotropy θi is not selected
randomly, but is determined by the local structure. Recall
that in a crystalline solid the easy axis is determined by
the symmetries of the lattice. In an amorphous solid the
arrangement of particles changes from one position to the
other, and we need to find the local easy axis by taking this

local structure into account. Define the matrix T i :

T
αβ

i ≡
∑

j

J (rij )rα
ij r

β

ij

/ ∑
j

J (rij ). (3)

Note that we sum over all the particles that are within the range
of J (rij ); this is sufficient to take into account the arrangement
of the local neighborhood of the ith particle. The matrix T i

has two eigenvalues in two dimensions that we denote as κi,1

and κi,2, κi,1 � κi,2. The eigenvector that belongs to the larger
eigenvalue κi,1 is denoted by n̂. The easy axis of anisotropy
is given by θi ≡ sin−1(|n̂y |). Finally the coefficient Ki which
now changes from particle to particle is defined as

Ki ≡ C̃

[ ∑
j

J (rij )

]2

(κi,1 − κi,2)2 , C̃ = K0/J0σ
4
AB. (4)

The parameter K0 determines the strength of this random local
anisotropy term compared to other terms in the Hamiltonian.
For most of the data shown below we chose K0 = 5.0. The
form given by Eq. (4) ensures that for an isotropic distribution
of particles Ki = 0. Due to the glassy random nature of our
material the direction θi is random. In fact we will assume
below (as can be easily tested in the numerical simulations) that
the angles θi are distributed randomly in the interval [−π,π ].
It is important to note that ramping the magnetic field does
not change this flat distribution and we will assert that the
probability distribution P (θi) can be simply taken as

P (θi)dθi = dθi

2π
. (5)

In order to prepare our system we start with the random
initial positions of 2000 particles in a square box of volume V

with periodic boundary condition and temperature T = 1.2
at density ρ = 0.976. We use Monte Carlo simulation to
equilibrate the system at this temperature. The system was then
cooled down to T = 0.6 and equilibrated. Next the temperature
was reduced down to T = 0.2 in steps of �T = 0.1 followed
by equilibration after each step. Finally the athermal limit
is reached by cooling it down to T = 0.001 with steps
of �T = 0.001 where thermal effects can be completely
neglected. At this point we begin to ramp the external magnetic
field in the x direction in small steps of �B = 10−4 followed
by energy minimization using conjugate gradient method.
This quasistatic increase in magnetic field eliminates any
effects of rate of ramping. It was checked that the jump
in magnetization �m and energy �U remains unchanged
when �B is reduced to 10−5 and 10−6. We have checked
in the numerical simulations that Eq. (5) is valid to a high
approximation at all values of B. The last term in Eq. (2) is
the interaction with the external field B. We have chosen μAB

in the range [−0.08,0.08]. At the two extreme values all the
spins are aligned along the direction of B.

In passing we should comment on the chosen parameters
in the model. Our guiding line was to choose parameters such
that the magnetostriction coefficient is of the order of what is
known in laboratory materials. Decreasing K0 results in much
smaller magnetostriction coefficients and vice versa. We did
not aim at modeling a particular material, and our interest here,
as before, is in the generic properties of amorphous solids with
strong local anisotropy.
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III. WHAT IS PLASTICITY?

It is well known that plasticity in crystalline solids is carried
by defects, such as dislocations, whose glide under external
strains is dissipative, leading to energy loss. What are the
mechanisms of energy loss in amorphous solids is less well
known, although research in the last two decades has shed
considerable light on the fundamental physics of plasticity
in amorphous solids [15–20]. In the present system we can
have two distinct external agents that can strain the system,
i.e., mechanical strain and magnetic field. Such external strain
can be studied in systems having finite or zero temperature.
Since we are interested in the anatomy of plastic events we
opt for the latter; temperature fluctuations tend to mask the
clear-cut plastic events that are recognized at T = 0. To keep
the system at T = 0 we must also ramp the external strain
or the magnetic field quasistatically to allow the system to
remain in mechanical equilibrium at all times, without heating
effects. In such conditions it is completely clear what are the
instabilities that are responsible to plastic events.

The response of our system to external strain, be it
mechanical or magnetic, is reversible and smooth as long as
the system is mechanically and magnetically stable. This is
the case as long as the Hessian matrix H has only positive
eigenvalues. In the present case H takes on the form [8]

H =
(

∂2U
∂ r i ∂ rj

∂2U
∂ r i ∂φj

∂2U
∂φi∂ r i

∂2U
∂φi∂φj

)
. (6)

The system loses stability when at least one of the eigenvalues
of H goes to zero. When this happens, there appears an
instability that results in a discontinuous change in stress, in
energy, and in magnetization. These discontinuities appear
simultaneously in all three quantities at the same values of B.
These are irreversible plastic events that take the system from
one minimum in the energy landscape through a saddle-node
bifurcation to another minimum in the energy landscape where
again all the eigenvalues of H are positive. In Ref. [8]

we derived an exact equation for the dependence of any
eigenvalue λk on B for a fixed external strain, which reads

∂λk

∂B

∣∣∣∣
γ

= c
(b)
kk −

∑
�

a
(b)
�

[
b

(r)
kk� + b

(φ)
kk�

]
λ�

. (7)

The precise definition of all the coefficients is given explicitly
in Ref. [8]. Generically, when one eigenvalue, say λP ,
approaches zero, all the other terms in Eq. (7) remain
bounded, leading to the approximate equation

∂λP

∂B

∣∣∣∣
γ

≈ const

λP

. (8)

In such generic situations the eigenvalue is expected to
vanish following a square-root singularity, λP ∼ (Bp − B)1/2

where Bp is the value of the external magnetic field where
the eigenvalue vanishes. The reader should be aware of the
fact that at some special values of B it may happen that the
coefficient const in Eq. (8) vanishes at the instability leading
to an exponent different from 1/2 [9]. This nongeneric feature
hardly changes the considerations of the present paper.

It is interesting to examine what happens to the eigen-
functions �k which are associated with the eigenvalues λk

as the instability is approached. The answer is that all the
eigenfunctions of H are delocalized far from the instability,
but the one eigenfunction �P associated with λP → 0 gets
localized on n � N particles. A typical projection of �P

close to the instability on the particle positions and on the
spins is shown in the two panels of Fig. 2. We see that
the nonaffine movement of the particles is very similar to the
standard “Eshelby-like” quadrupolar event that is so typical
to amorphous solids. The projection on the spin degrees
of freedom shows that a patch of spins had changed its
orientation (magnetic flip of a domain). Note that in the
present model this patch is compact. This is the nature of
the event that is associated with the Barkhausen noise in our
case. The reader should be aware, however, of the fact that the

FIG. 2. The projection of the eigenfunction �P associated with the eigenvalue λP which vanishes at the instability, projected on the particle
positions and on the spins in the left and right panels, respectively. The left panel shows a typical nonaffine displacement field associated with
a plastic event, having the quadrupolar structure of an Eshelby solution. The right panel shows that the same event is associated with a colocal
flip of spins, leading to the change δM of the Barkhausen noise.
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FIG. 3. Scatter plot of the value of the stress drops �σ as a
function of the simultaneous changes �m in the magnetization. These
occur when the magnetic field is ramped up and down to form the
hysteresis loop of the Barkhausen noise.

addition of long range dipole-dipole interactions can change
this qualitatively [21], leading to elongated magnetic domains
and a different mechanism of Barkhausen noise due to the
movement of domain boundaries [6].

IV. THE ANATOMY OF PLASTICITY

The interesting physics of plasticity in this model stems
from the fact that the Hessian matrix (6) couples the positional
to the magnetic degrees of freedom. Thus a plastic drop in
stress and energy will be usually coupled also to a change
in the magnetization. Whether one strains the system with a
mechanical strain or a magnetic field, the plastic drops will
be composite processes in which all the degrees of freedom
contribute to the nonaffine response. In this section we focus
on those events that are triggered by the magnetic field as the
straining agent. To expose the anatomy of the plastic events
we present the data as a scatter plot of the drops in energy or in
stress as a function of the magnetization change �m. The first
was shown in Fig. 1 and the second is shown here as Fig. 3. As
before, we see that also the values of the stress drops organize
into two distinct groups that are, however, not nonoverlapping.

A. Detailed analysis of the energy drops

Our first task is to rationalize the distributions that appear
in figures such as Figs. 1 and 3. Focusing as an example on
the energy drops, we return to the Hamiltonian and find out
which of the terms is responsible to which group of energy
drop values in these figures. This separation is demonstrated
in Fig. 4, where the energy drop is assigned to four different
contributions to the Hamiltonian, i.e., the Lennard-Jones
positional degrees of freedom, the exchange interaction, the
anisotropy energy, and finally the interaction with the magnetic
field. Obviously the combination of the scatter plots in Fig. 4
will lead to what was shown as Fig. 1. The same decomposition
can be done for the stress drops but for the sake of brevity we
focus here on understanding the results shown in Fig. 4; a
similar analysis for the stress drops is implied.
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FIG. 4. The four distinct contributions namely the mechanical
(LJ), exchange (Ex), anisotropic (An) and magnetic field (B.S) to
energy drops in plastic events. The combination of all these scatter
plots should yield the data in Fig. 1.

To understand what we see we will invoke the result of
the previous work [11] in which the distribution P (�m)
was measured over three orders of magnitude 10−3.5 <

�m < 10−0.5. These magnetization changes involved flips of
magnetic domains of between 100 < �n < 103 particles. This
probability distribution function (PDF) was found to be well
fitted in this regime by a form

P (�m) = exp(−A�m)

�m
f (�m), (9)

where the exponential decay rate A is analytically computed
and the function f (�m) is evaluated explicitly:

f (�m) = 2

π

∫ √
2/�m−1

0
dz

exp[−(�m/2〈x〉)z2]

z2 + 1
. (10)

The reader is referred to Ref. [11] for the details of the
derivation of this form.

To make the connection to our present data we need to
discuss the conditional distribution P (�U |�m) in terms of
which the joint distribution

P (�U,�m) = P (�U |�m)P (�m) (11)

can be written.
We shall start with the general form for the energy drop

�U =
n∑

i=1

ui, (12)

where ui is the energy change (both mechanical and magnetic)
associated with the slip of the ith spin in the flipping domain
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and n is the number of flipping spins. We assume that each
spin flip contributes to �m where

�m = μA

∑
i

� cos (φi), (13)

and thus

n ∼ C�m, (14)

with some unknown constant C. Thus �U is a sum of n random
variables, and using the central limit theorem we can assume
a Gaussian form for the conditional probability

P (�U |�m) = 1√
2πσ 2

exp −(�U − 〈�U 〉)2/(2σ 2), (15)

where both the average energy drop 〈�U 〉 = 〈�U 〉(�m) and
the variance of the energy drops σ 2 = σ (�m)2 are functions
of �m.

We can now introduce two exponents ζ1 and ζ2 by

〈�U 〉(�m) = K1�mζ1 ,

σ 2(�m) = K2�mζ2 . (16)

One of the purposes of these notes is to estimate these
exponents ζ1 and ζ2.

Now the total energy drop can be separated into its
individual mechanical and magnetic contributions

�U = �Umech + �Umag

= �Umech + �U ex + �U anis + �Ub, (17)

where �Umech is the mechanical contribution to the energy
drop, while the spin contribution can be separated into
exchange �U ex, anisotropic �U anis, and magnetic field �Ub

contributions, and depending on the spin Hamiltonian for the
metallic glass [which in our case is Eq. (2)] may lead to
different exponents.

Let us therefore analyze the consequences of Eq. (12)
carefully. First we note that

〈�U 〉(�m) =
n∑

i=1

〈ui〉, (18)

and thus if a nonzero 〈ui〉 = 〈u〉 exists we would find that
〈�U 〉(�m) ∼ �m or ζ1 = 1. On the other hand, if there
exists a contribution consisting of n random variables with
zero mean, then we might expect that contribution to scale
like ∼�m1/2 or ζ1 = 1/2. The important point to note is that
by measuring ζ1 the physics underlying the spin flips can be
found.

To estimate the variance of the fluctuations σ 2 = 〈�U 2〉 −
〈�U 〉2 we write, using Eq. (12),

σ (�m)2 =
n∑

i=1

n∑
j=1

[〈uiuj 〉 − 〈ui〉〈uj 〉]. (19)

Thus while 〈�U 〉 only depends on the additive contribution
of n random variables, the variance also depends on the
correlation of different spins within the flipped domain. To
see the consequence of these correlations, let us consider first
the case where the spins i and j are uncorrelated. In that
case σ (�m)2 = n[〈u2〉 − 〈u〉2] ∼ �m or ζ2 = 1. On the other
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FIG. 5. The mean of 〈�U〉 as a function of �m for the four
different contributions that play a role in our system.

hand, in the limit of strong correlations between spins in the
flipped domain [〈uiuj 〉 − 〈ui〉〈uj 〉] 
= 0 and as a consequence
σ (�m)2 ∼ �m2 or ζ2 = 2. It is also possible that the clean
scaling described above may not exist but rather several
mechanisms are mixed. Only simulations and data analysis
can answer these questions.

Analyzing the data shown in Fig. 4 we could approximate
each of the four conditional PDFs in the form

Pi(�U |�m) ≈ e−[�U−K1(�m)ζ1 ]2/K2(�m)ζ2
. (20)

The best fits for the exponents ζ1 and ζ2 and for the constant
σ are provided in Table I.

The quality of the fits is demonstrated in Figs. 5 and 6. The
exponents agree with our expectations of being 1/2 or 1, except
for the variance of the Lennard-Jones contribution in Fig. 6. We
note, however, that the amplitude of the Lennard-Jones �U

is two orders of magnitude less than the other contributions
and therefore we are close to the noise level and cannot trust
this particular measurement. The smallness of this contribution
arises from the fact that the straining here is done magnetically
and the positions of the particles do not change that much.

One should note that the different contributions to the
energy drops are not independent, and therefore the Gaussian

TABLE I. The best fit values of ζ1 and ζ2 for different energy
terms. Note that the exponent of 0.77 is not explained theoretically
but the data for this particular contribution is small, close to the noise
level. All the exponents are given with error bars ±0.004.

LJ Ex An B.S

ζ1 0.52 0.96 0.47 0.98
ζ2 0.77 1.09 0.97 1.12
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FIG. 6. The variance in the energy changes as a function of �m

for the four different contributions that play a role in our system.

approximation can be only approximate. In Fig. 7 we show
a typical fit of a Gaussian PDF to the exchange contribution,
demonstrating that the Gaussian approximation is acceptable.

At this point we want to use the results of Ref. [11] in
which an analytic form for the probability to see a magnetic
jump of �m was proposed. To this aim we will attempt to find
an analytic approximation to the PDF P (�U |�m). We start
by stating the obvious, i.e., that

〈�U |�m〉 =
4∑

i=1

〈�Ui(�m)〉, (21)

where the sum runs over the four contributions identified
above. Next, the variance �2 of the conditional probability

0 0.1 0.2 0.3 0.4 0.5
ΔU

0

1

2

3

P
(Δ

U
|Δ

m
)

Ex

FIG. 7. A typical example of the Gaussian fit to the data of
the exchange contribution to the energy drops. Similarly acceptable
Gaussian fits are available for all the other contributions.
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FIG. 8. Comparison of the direct calculation of P (�U ) in plastic
events due to straining with the magnetic field to the reconstruction
of the same quantity from the anatomical dissection of this quantity
and the independent knowledge of P (�m) [11].

can be obtained as

�2 ≡
〈( 4∑

i=1

�Ui(�m) − 〈�U |�m〉
)2〉

. (22)

Having the variance we can construct the Gaussian approxi-
mation

P (�U |�m) ≈ 1

�
√

2π
e−{[∑4

i=1 �Ui (�m)−〈�U |�m〉]2/2�2}. (23)

Finally we write P (�U ) in the form

P (�U ) =
∫

d�mP (�U |�m)P (�m). (24)

Now we use the analytic form of P (�m) from Ref. [11]
and compute the integral (24) numerically. The comparison
of this reconstruction of the PDF of �U to its direct numerical
calculation is shown in Fig. 8.

The conclusion of this exercise is that providing the anatom-
ical details of the plastic events can help in understanding the
statistics of energy or stress drops. We do not repeat in this
paper the exercise for the stress drops since it follows verbatim
the same steps.

V. STRAINING MECHANICALLY

A similar richness in the anatomy of plastic events is found
when the system is strained mechanically [10]. Even though
we strain mechanically the coupling between positional and
spin degrees of freedom results again in having a change in
magnetization together with drops in energy and in stress.
In Figs. 9 and 10 we show a typical plot of energy, stress,
and magnetization vs external strain, for zero magnetic field
and for a finite magnetic field. Note that in the first case the
total magnetization remains zero on the average, with the
flips in magnetization �m being negative or positive with
equal probability. For finite magnetic field magnetization is
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FIG. 9. Typical dependence of the energy, stress, and magne-
tization for zero external magnetic field. Note that all the plastic
events occur simultaneously for all quantities. In the present case the
magnetization is fluctuating up and down around a zero mean value.

accumulated in the direction of the magnetic field at each
plastic event. As before with ramping the magnetic field we
see that also with mechanical strain the plastic events couple
mechanical and magnetic degrees of freedom. The drops in
energy are occurring as a result of plastic instabilities at the
same values of γ as the drops in stress and magnetization. The
mechanism is the same, i.e., an eigenvalue of the Hessian
matrix hits zero punctuating the smooth curves of energy,
stress, or magnetization with sharp drops of irreversible events.

To understand the serrated response curve of the energy
or the stress one needs again to search for the anatomy of the
events, displaying carefully the contribution of each physical
mechanism for either energy or stress drop. Since we did not
compute independently the “Barkhausen noise” P (�m) in this
case we do not repeat the exercise for the case of mechanical
straining. We stress, however, that any interested researcher
must pay attention to the rich physics that is underlying the
serrated “noisy” character of the data shown in Figs. 9 and 10.

VI. SUMMARY AND CONCLUSIONS

The main conclusion of this paper is that characterizing and
understanding the statistics of serrated noise is not necessarily
the same. Even if we can plot the PDFs of energy drops or of
magnetic jumps and measure the exponent that is associated
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FIG. 10. Typical dependence of the energy, stress, and magneti-
zation for external magnetic field B = 0.01. In the present case the
plastic events cause the magnetization to increase; we called this
phenomenon “plasticity induced magnetization” [10].

with their log-log plot, it does not mean that we uncovered
the intricate physics that underlies the phenomenon. We have
seen here that even the simplest coupling between mechanical
and magnetic degrees of freedom results in a multitude of
contributions to the energy changes upon plastic events. Each
contribution comes with its own statistics, its own exponent,
and its own amplitude. Of course, once we have the full
information of all the contributions we can reconstruct the
PDF of any wanted quantity (cf. Fig. 8). The full information is,
however, not always available in experimental systems. Thus
great care is called for interpreting the observed statistics of
serrated noises. In particular, we should stress that changing
conditions (such as zero or nonzero magnetic field in Figs. 9
and 10) may change the statistics of the serrated noise. The
amplitude of the various contributions to the observed serrated
response can depend on the state of the system, etc. Thus
universal statistics is expected to be the exception rather than
the rule. Rather, a careful analysis of the physics underlying
the observed response is called for.
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[4] O. Perković, K. Dahmen, and J. P. Sethna, Phys. Rev. Lett. 75,

4528 (1995).

[5] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature (London)
410, 242 (2001).

[6] G. Durin and S. Zapperi, in The Science of Hysteresis, edited
by G. Bertotti and I. Mayergoyz (Elsevier, Amsterdam, 2006),
Vol. II, pp. 181–267.

[7] E. K. H. Salje, X. Wang, X. Ding, and J. Sun, Phys. Rev. B 90,
064103 (2014).

033004-7

http://dx.doi.org/10.1103/PhysRevE.54.2531
http://dx.doi.org/10.1103/PhysRevE.54.2531
http://dx.doi.org/10.1103/PhysRevE.54.2531
http://dx.doi.org/10.1103/PhysRevE.54.2531
http://dx.doi.org/10.1103/PhysRevE.79.050101
http://dx.doi.org/10.1103/PhysRevE.79.050101
http://dx.doi.org/10.1103/PhysRevE.79.050101
http://dx.doi.org/10.1103/PhysRevE.79.050101
http://dx.doi.org/10.1103/PhysRevLett.75.4528
http://dx.doi.org/10.1103/PhysRevLett.75.4528
http://dx.doi.org/10.1103/PhysRevLett.75.4528
http://dx.doi.org/10.1103/PhysRevLett.75.4528
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1038/35065675
http://dx.doi.org/10.1103/PhysRevB.90.064103
http://dx.doi.org/10.1103/PhysRevB.90.064103
http://dx.doi.org/10.1103/PhysRevB.90.064103
http://dx.doi.org/10.1103/PhysRevB.90.064103


HENTSCHEL, PROCACCIA, AND GUPTA PHYSICAL REVIEW E 93, 033004 (2016)

[8] H. G. E. Hentschel, V. Ilyin, and I. Procaccia, Europhys. Lett.
99, 26003 (2012).

[9] R. Dasgupta, H. G. E. Hentschel, I. Procaccia, and B. S. Gupta,
Europhys. Lett. 104, 47003 (2013).

[10] H. G. E. Hentschel, I. Procaccia, and B. Sen Gupta, Europhys.
Lett. 105, 37006 (2014).

[11] H. G. E. Hentschel, V. Iliyn, I. Procaccia, and B. Sen Gupta,
J. Stat. Mech. (2014) P08020.

[12] R. Gutierrez, B. S. Gupta, and I. Procaccia, Phys. Rev. B. 90,
094112 (2014).

[13] R. Harris, M. Plischke, and M. J. Zuckerman, Phys. Rev. Lett.
31, 160 (1973).
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