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Echoes from anharmonic normal modes in model glasses
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Glasses display a wide array of nonlinear acoustic phenomena at temperatures T � 1 K. This behavior has
traditionally been explained by an ensemble of weakly coupled, two-level tunneling states, a theory that is also
used to describe the thermodynamic properties of glasses at low temperatures. One of the most striking acoustic
signatures in this regime is the existence of phonon echoes, a feature that has been associated with two-level
systems with the same formalism as spin echoes in NMR. Here we report the existence of a distinctly different
type of acoustic echo in classical models of glassy materials. Our simulations consist of finite-ranged, repulsive
spheres and also particles with attractive forces using Lennard-Jones interactions. We show that these echoes
are due to anharmonic, weakly coupled vibrational modes and perhaps provide an alternative explanation for the
phonon echoes observed in glasses at low temperatures.
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I. INTRODUCTION

Glassy materials behave in a fundamentally different
manner than their crystalline counterparts. Perhaps the most
striking example is the glass transition; a slow-down of
kinetic behavior that strongly depends on temperature [1,2].
In contrast to freezing in crystals, there is no sharp phase
transition to a solid phase. Rather, the time scale for motion of
the constituent particles increases smoothly as the temperature
is lowered. At low temperatures where glasses are rigid solids,
they still retain many properties that are distinct from crystals,
yet these properties are seemingly universal among disordered
solids.

It has been known since the early 1970s that the thermo-
dynamic properties of dielectric glasses are different from
crystals at temperatures T � 1 K. At these temperatures the
heat capacity scales approximately linearly in T and the
thermal conductivity scales as ∼T 2 [3]. For crystals, this
scaling is T 3 for both quantities. The origin of these differences
has traditionally been attributed to a dilute ensemble of
two-level tunneling states [4–7]. These states are quantum
mechanical in nature and spatially localized so that they
are weakly coupled to other plane-wave excitations in the
solid. Moreover, it has been presupposed that the distribution
of two-level energy spacings is very broad, leading to an
approximately constant density of levels at low temperatures.
Phenomenologically, this picture is consistent with most of
the experimental data, yet a fundamental understanding of the
origin of these localized modes is still lacking [8].

Convincing evidence for the existence of two-level tun-
neling states in glasses comes from acoustic experiments at
low temperatures with frequencies ∼109 Hz, so that �ω ≈
kBT . In the experiments an acoustic transducer attached to
the glass sample served to both excite the acoustic wave
and detect reflections. Localized modes, as postulated in
the quantum-mechanical two-level system model, naturally
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lead to a rich array of nonlinear acoustic behavior such
as a temperature-dependent sound velocity, saturation of
attenuation [9–15], spectral hole burning, and diffusion
[16–19]. However, perhaps the most dramatic effect observed
in these acoustic experiments was the observation of electric
and phonon echoes [17,19–23]. Since any two-level quantum
system has the same dynamics as an isolated spin, these
echoes were thought to be analogous to, and have the same
formalism as, spin echoes studied in magnetic resonance.
This observation was interpreted as evidence for the quantum
mechanical nature of the excitations. As we will show here,
the existence of phonon echoes does not necessitate such
an interpretation. Rather, the echoes can be generated by a
distinctly different mechanism that is completely classical
in origin and is based on the inherent anharmonicity of the
vibrational modes in disordered solids.

In the past decade, there has been a large body of work
concerning the vibrational modes in jammed, disordered solids
that have helped to shed light on the origins of the thermo-
dynamic properties of glasses [24,25]. An excess density of
states at low frequencies naturally arises in jammed systems
and relies only on the existence of disorder, not on the details
of the particle interaction [26]. In addition, the well-known
“Boson peak” has been linked to the onset of anomalous modes
in jammed systems and other model glasses [27]. The linear
temperature dependence of the thermal conductivity in glasses
at intermediate temperatures requires a constant diffusivity;
a property that exists in jammed systems above the Boson
peak [28,29]. Finally, at very low frequencies, jammed systems
contain quasi-localized, anharmonic vibrational modes which
lie at the heart of mechanical rigidity [30] and indicate the
presence of “soft spots” in amorphous solids [31,32].

Unfortunately, inherent difficulties in computing the vibra-
tional mode properties in very large systems have restricted
many studies to higher frequencies and temperatures. The
low-temperature regime where two-level tunneling states are
supposed to dominate the thermodynamic properties has
remained elusive. Our goal is not to simulate the largest
systems and lowest frequencies directly but rather to illustrate
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that the observation of phonon echoes does not require a
quantum mechanical interpretation at all.

The first description of echo phenomena was given by Hahn
in 1950 by considering the response of an ensemble of nuclear
spins to two excitation pulses separated by a time τ [33,34].
Initially, all spins are vertically aligned with an external
magnetic field pointing in the z direction. The first pulse acts
to rotate the spins toward the x-y plane. In between the pulses,
the spins precess harmonically at their Larmor frequency and
eventually decohere. The second pulse acts to “time-reverse”
the system, so that the system becomes coherent again at
t = 2τ [34]. If we consider an ensemble of spins with different
frequencies, the echo manifests as a macroscopic sum of the
spin vectors. The maximum echo occurs when the first pulse
rotates the spins by θ = π/2 and the second pulse rotates the
spins by θ = π . A similar mechanism explains photon echoes
observed at optical frequencies [35,36].

Although less well-known, echo phenomena can also
be produced by another mechanism [37–41]. One possible
mechanism relies on harmonic oscillators that interact in a
nonlinear way with the excitation pulses, as in temperature
quench echoes [42,43]. Another possible mechanism involves
anharmonic oscillators whose resonant frequency shifts with

FIG. 1. (a) Acoustic echo generated in jammed systems com-
posed of 1000 particles at φ = 0.70. The result is an average
over the response of 10000 independent systems. After a series of
excitation pulses separated by time τ , a spontaneous re-phasing of the
vibrational modes occurs at a time t = 2τ . (b) Visual representation
of one of the jammed systems used in generating the echo. The
red particles are 1.4 times larger than the blue particles. The acoustic
pulses are excited by a transverse standing wave along the x-direction.

increasing amplitude. This mechanism is the source of
observed echoes in many different systems ranging from
cyclotron modes in plasmas [37,38,44,45] to the vibrations
of individual particles in piezoelectric powders [46–48]. Al-
though there are many similarities between anharmonic echoes
and spin echoes, there are many characteristic differences such
as the relationship between the echo amplitude and pulse
spacing, τ , and the existence of multiple echoes after only
two pulses for anharmonic echoes. A comprehensive review
on both types of echoes can be found in Ref. [41].

In this paper we use simulations of model glasses to show
that classical vibrational modes in disordered solids can act
as weakly coupled anharmonic oscillators, and when excited
by a series of pulses, produce echoes similar to those seen
in experiments in glasses at low temperatures [Fig. 1(a)]. By
varying the pulse amplitude, spacing, and number of pulses,
we can compare our results directly to experimental data. Our
simulations are performed with both finite-ranged repulsive
spheres and particles with Lennard-Jones interactions.

II. NUMERICAL MODEL

The majority of our simulations consist of a three-
dimensional (3D) ensemble of frictionless, spherical particles
with finite-range, repulsive interactions [26]. We use a 50-50
binary mixture of particles with two radii, σ and 1.4σ . All
particles have a mass m. The pair-potential between any two
particles is given by the following:

V (rij ) =
{

2ε
5

(
1 − rij

σi+σj

)5/2
rij < σi + σj ,

0 rij � σi + σj ,
(1)

where rij is the distance between the centers of particles i and
j , and ε is the energy scale of the interaction. All quantities
reported here have lengths measured in units of σ , mass in units
of m, and frequency in units of

√
ε/mσ 2. The 5/2-exponent

in the potential is derived from linear, elastic, Hertzian contact
mechanics of spherical particles. An important feature of this
type of potential is the natural nonlinearity of interparticle
interaction. There will always be a nonlinear correction to
the harmonic approximation for the potential energy, so that
the frequency response of individual modes will vary with
vibrational amplitude. This feature will turn out to be essential
for the generation of anharmonic echoes and will be discussed
in Sec. III.

Individual systems were created by randomly placing N

particles in a cubic box with periodic boundary conditions on
all sides, which represents a dense gas at T = ∞. Each system
is then quenched to T = 0 at the nearest local potential-energy
minimum using the fast inertial relaxation engine (FIRE)
algorithm [49]. The resulting state of the system (i.e., jammed
or unjammed) will depend on the volume fraction φ of
particles. For the size ratio and particle interactions studied
here, jamming occurs at φ = φc ≈ 0.64 [26]. All simulations
reported here are for a volume fraction φ = 0.70, so that
the systems are well into the jammed regime. In addition,
at this volume fraction, approximately 0.3% of the particles
have no overlaps after the initial quench. These particles
contribute trivial zero-frequency modes to the system, so they
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are removed prior to acoustic excitation. A 3D representation
of a quenched 1000-particle system is shown in Fig. 1(b).

In addition to finite-ranged, repulsive interactions, we also
simulated Kob-Andersen binary Lennard-Jones systems [50].
Each system consists of 800 A and 200 B particles with equal
mass m interacting in three dimensions. The pair-potential
between particles is given by

V (rij ) = εij

72

[(
σij

rij

)12

−
(

σij

rij

)6]
, (2)

where εAB = 1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, and
σBB = 0.88σAA [27]. The potential is cut off at rij = 2.5σij

and the potential is shifted so that V (2.5rij ) = 0. We also
add an additional linear correction so that V ′(2.5rij ) = 0. All
Lennard-Jones systems were created at a density ρ = 1.2, then
quenched using the FIRE algorithm.

Once a system is quenched, we excited the vibrational
modes using external pulses. Each pulse consisted of applying
a transverse, spatially varying sinusoidal force to the particles.
The force on the ith particle is given by

�Fi = F0 sin(kxxi − ω0t)ŷ, (3)

where kx = 2π/L is the wave vector and L is the box size. We
used the longest wavelength that could fit along one boundary
of the domain [as shown in Fig. 1(b)]. In order to maximize the
coupling of the pulse to a narrow band of vibrational modes,
the pulse frequency was restricted so that ω0/kx ≈ vs , where
vs is the speed of sound in the system. The pulse amplitude F0

and duration tp were adjustable parameters, although typical
ranges of tp were 10–45 cycles, where the period of 1 cycle =
2π/ω0. Longitudinal polarizations were also studied with
qualitatively similar results, yet the transverse excitations were
better coupled to the anharmonic, low-frequency modes in the
systems. Thus, the majority of simulations used external pulses
according to Eq. (3).

The response of the system can be measured in many
different ways. We chose perhaps the most natural way, and
measured the response along the same vector that defined the
excitation. That is, the forcing �F represents a vector with 3N

elements and can be expanded in eigenmodes of the system.
If the modes do not couple, then the total energy in each mode
remains constant in time. The most convenient way to access
the response of the excited modes was to measure the power
P = �v · �F, where �v is the velocity vector of the particles. The
resulting signal was then normalized by the maximum power
(Pmax) during the pulses, as shown in Fig. 1(a).

For systems quenched from initially random positions
(T = ∞), we found that some modes often went unstable
during excitation by an acoustic pulse. This is likely due to
the crossing of a significant energy barrier in the system, and
was followed by a ≈10–20% drop in the potential energy
of the system. Upon requenching the system following such
an instability, the minimum potential energy at T = 0 also
decreased by ≈10–20%. The excess potential energy is likely
due to the preparation of the system by quenching from
T = ∞, without any annealing steps. By repeatedly pulsing
each system with acoustic pulses of decreasing F0, with each
pulse followed by a quench, we found that the stability of
the system increased dramatically. Thus, all data reported

here comes from systems that have been prepared using this
annealing protocol.

III. CHARACTERIZATION OF MODES IN
JAMMED SYSTEMS

One of the defining characteristics of crystalline elastic
solids is that at sufficiently low frequencies, all vibrational
modes are plane-wave acoustic modes. In stark contrast,
glasses display an excess of anomalous modes at low frequen-
cies, some of which are spatially localized. Jammed systems
of soft, frictionless spheres contain a very large number of
low-frequency modes as well [25]. The amount of excess
modes will depend on the distance from the critical volume
fraction, 
φ = φ − φc, where φc is the volume fraction when
the system first begins to jam. The peak in the excess number
of modes (which is known as the Boson peak in the glass
literature) occurs at a characteristic frequency ω∗, which tends
toward zero as φc is approached: ω∗ ∝ 
φ3/4 for the potential
chosen in Eq. (2) [25].

Figure 2(a) shows the average density of states for systems
of N = 1000 particles. The approximate location of ω∗ is
shown by the red point. The inset shows the same data on a

FIG. 2. (a) Density of states for systems of 1000 bidisperse
particles at φ = 0.70. The solid black lines are the average of 1000
independent systems. The inset shows the same data on a log scale.
The dashed line represents an ω2 behavior, consistent with Debye
theory. The red dot shows the approximate position of ω∗, and the
blue dot shows the frequency at which most of the simulations are
performed. (b) Participation ratio of all modes in 1000 independent
systems. The color scale represents the density of the points. Red is
the maximum density of states Dmax, and purple is near zero.
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log scale. The modes below ω∗ consist of a mix of extended
and quasilocalized vibrational modes [51]. Since each system
only contains 1000 particles, the lowest frequency plane-wave
mode would occur at ω ≈ 0.025.

The degree of localization of the modes is illustrated in
Fig. 2(b), which shows the participation ratio for each mode.
The participation ratio measures the fraction of particles
participating in a given vibrational mode,

p(ωm) =
( ∑

l |êm,l|2
)2

N
∑

l |êm,l|4 , (4)

where êm,l is the lth component of the unit eigenvector
corresponding to the mth eigenmode. At low frequencies, the
jammed systems contain a broad distribution of participation
ratios, as shown by the large spread in purple data points. Many
of these modes are quite localized (low participation ratio). It
has also been shown that these modes exist independent of 
φ

[30].
One natural consequence of spatial localization in a

vibrational mode is that for a given amount of energy, fewer
particles are undergoing a larger amplitude motion. This
larger amplitude induces nonlinear effects in the vibration at
smaller energies. Low-frequency plane waves in crystalline
solids are spatially extended and are the most harmonic
modes in the system due to the small relative displacements
between neighboring particles. However, in jammed solids,
the lowest-frequency modes are the most anharmonic [30].

A. Anharmonic frequency shifts

An important consequence of nonlinearity is that the
fundamental frequency of the mode will shift with amplitude.
Let us consider the simplest model of an anharmonic oscillator
with mass m and fundamental frequency ω with a cubic
perturbation to the potential V :

V = mω2

2
x2 + mω2

3x0
x3. (5)

The equation of motion of this oscillator is thus:

mẍ = −mω2x

(
1 − x

x0

)
. (6)

To second order, it can be shown that the frequency of the
oscillator depends on the square of the amplitude of vibration
[52,53],


ω

ω
= −ξA2, (7)

where ξ = 5/12x2
0 .

We can measure the anharmonicity of the modes in jammed
systems by applying an initial amplitude to the modes at t = 0
with all particles at rest, then letting the system evolve in time.
Specifically, this is accomplished by adding a vector Aêm to
the initial position vector of all of the particles, where A is the
amplitude and êm is the eigenvector associated with the mth
mode. After 200 cycles, the resulting motion of the particles
along êm is fit to a sinusoidal function to obtain the frequency
of the mode.

Figure 3(a) shows the normalized frequency shift as a func-
tion of amplitude for three modes at high, intermediate, and

FIG. 3. (a) Normalized frequency shift versus amplitude of three
modes in a single 1000-particle system. Over a broad range of
amplitudes, Eq. (7) is valid at high (red), intermediate (blue), and
low (black) frequencies. Deviations at higher amplitudes are due to
coupling between nearby modes. (b) Coefficient of frequency shift ξ

versus mode frequency for 500 modes in five different 1000-particle
systems. For a given amplitude A, modes at lower frequency will
experience a larger frequency shift.

low frequencies. The frequency shift is quadratic in amplitude
and is larger at low frequencies. At higher amplitudes, the
interaction among nearby modes becomes pronounced and
energy is transferred between modes, leading to a damping of
the vibrations and other forms of nonlinearities. Eventually, at
very large amplitudes, particle rearrangements occur and the
eigenmodes have changed, so our analysis is no longer valid.

Figure 3(b) shows how ξ depends on mode frequency.
Localized modes at high frequencies are anharmonic, but
the most anharmonic modes lie at low frequencies, where
the modes are quasilocalized. The broad distribution of ξ at
lower frequencies is related to the broad distribution in the
participation ratio.

IV. ECHOES FROM ANHARMONICITY

In order to understand how an ensemble of anharmonic
oscillators can give rise to an echo, let us first consider the
response of a single oscillator to two excitation pulses. Our
derivation is similar to previous derivations [38,45,47], except
that here we explicitly deal with mechanical oscillators for
arbitrary amplitudes. We will then sum the contribution of
many single oscillators with different natural frequencies. For
simplicity, we will only consider δ-function pulses, which add
a finite amount of energy to the oscillator in a short period of
time.
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At time t = 0, the first pulse excites the oscillator so that it
begins with amplitude A1, then evolves in time:

x(0 < t < τ ) = A1e
iωt(1−ξA2

1). (8)

Here the frequency is slightly less than the fundamental
frequency due to the finite amplitude, so that ω1 = ω(1 −
ξA2

1). We have also ignored any other higher harmonics in the
solution stemming from the nonlinearity of the oscillator and
only consider the frequency shift to the fundamental mode.

At time t = τ , we apply a second pulse, which adds
amplitude A2 to the position of the oscillator:

x(τ ) = A2 + A1e
iωτ (1−ξA2

1). (9)

For simplicity, we will assume that A1 and A2 are real, although
the same analysis can be done in the case that they are complex.
The new amplitude of oscillation is

|x(τ )|2 = A2
1 + A2

2 + 2A1A2 cos
[
ωt

(
1 − ξA2

1

)]
. (10)

The evolution of the oscillator after the second pulse depends
on its amplitude, so that

x(t � τ ) = [A2 + A1e
iωτ (1−ξA2

1)]eiω(t−τ )[1−ξ |x(τ )|2]. (11)

Combining Eqs. (10) and (11), we obtain the full solution of
the oscillator when t � τ :

x(t � τ ) = {[
A2 + A1e

iωτ (1−ξA2
1)
]
eiω(t−τ )[1−ξ (A2

1+A2
2)]

}
× e−i2ξω(t−τ )A1A2 cos[ωτ (1−ξA2

1)]. (12)

The complexity here is due to the fact that there is a cosine
function in the argument of the exponential. We can simplify
this part by use of the Jacobi-Anger expansion [54],

eiz cos θ =
∞∑

n=−∞
inJn(z)einθ , (13)

where Jn is a Bessel function of the first kind. Then Eq. (12)
becomes

x(t � τ ) = {[
A2 + A1e

iωτ (1−ξA2
1)
]
eiω(t−τ )[1−ξ (A2

1+A2
2)]

}
×

∞∑
n=−∞

inJn[2ξω(τ − t)A1A2]e−inωτξA2
1einωτ .

(14)

At this point it is helpful to define a characteristic frequency
shift 
 = ωξA2

1 and pulse amplitude ratio α = A2/A1. With
these substitutions and some algebraic manipulations, Eq. (14)
becomes

x(t � τ ) =
∞∑

n=−∞
eiω(t−nτ )i3nA1e

i
(nτ−t)ei
α2(τ−t)

×{Jn[2α
(t − τ )] + iαJn−1[2α
(t − τ )]}.
(15)

We may now identify terms in the solution that vary on
different timescales. Oscillatory terms containing “ωt” in their
argument vary rapidly in time, whereas terms with “
t” will
vary much more slowly since the frequency shift is much

smaller than the fundamental frequency (
/ω 	 1). Thus, we
can write

x(t � τ ) =
∞∑

n=−∞
G(
t)eiω(t−nτ ), (16)

where

G(
t) = i3nA1e
i
(nτ−t)ei
α2(τ−t)

×{Jn[2α
(t − τ )] + iαJn−1[2α
(t − τ )]}. (17)

Equations (16) and (17) apply to only a single oscillator,
which is excited by two δ-function pulses. An echo involves
the coherent sum of many oscillators at a given point in time.
Each oscillator may have a different fundamental frequency,
ω. Thus, the echo amplitude, X, will be given by

X(t � τ ) =
∑
m

∞∑
n=−∞

G(
mt)eiωm(t−nτ ), (18)

where ωm is the fundamental frequency of the mth oscillator,
and 
m = ωmξA2

1. When performing the sum over m, the
exponential term eiωm(t−nτ ) will vary rapidly with time and sum
to zero since ω is different for every oscillator, i.e., the total
signal will be decoherent. However, if t = nτ , the exponential
term will be near unity and the oscillators will be coherent.
The echo amplitude, X, will then depend only on G(
mt),
which varies slowly with time since 
m 	 ωm. One important
consequence of Eq. (18) is that not only do we expect an echo
at t = 2τ , but also multiple echoes at t = 3τ, 4τ, etc. This
is a distinguishing feature of classical echoes in anharmonic
oscillators. The simplest description of a quantum mechanical
spin echo only contains features at t = 2τ . At later times the
precessing spins become incoherent.

Let us assume that the excitation pulse excites a narrow
band of oscillators with similar anharmonicity, so that 
m is
approximately constant, and we may drop the subscript m. If
we only consider the first echo, i.e., t = 2τ and n = 2, then G

becomes

G2τ = −A1e
−i
τα2

[iαJ1(2
τα) + J2(2
τα)], (19)

so that the echo amplitude is approximately given by

X ∝ |G2τ | = A1

√
α2J1(2
τα)2 + J2(2
τα)2. (20)

In this form it is apparent that the echo amplitude depends on
the pulse spacing, in contrast to spin echoes. Specifically, the
echo amplitude tends to zero at small pulse spacings. This can
be seen by considering the frequency shift of the oscillators
as a slowly varying phase. If the phase does not have time
to evolve between the excitation pulses, then its effect on the
dynamics will be reduced. The appearance of multiple echoes
and the dependence on pulse spacing will be discussed in more
detail in Sec. V.

Figure 4 shows shows how Eq. (19) depends on the quantity

τα. Of particular importance is where the maximum echo
is located. When the second pulse amplitude is comparable to
the first pulse amplitude (i.e., α ≈ 1), then the maximum echo
is achieved when 
τ ≈ 1. This means that the characteristic
frequency shift of the oscillators should be the inverse of the
pulse spacing. The requirements to achieve the maximum echo
amplitude are technically different in spin echoes, where the
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FIG. 4. Proxy for echo amplitude |G2τ |, normalized by the first
pulse amplitude A1, as a function of 
τα [see Eq. (19)]. Over a broad
range of values for the ratio of pulse amplitudes α, the maximum echo
occurs for 1 < 
τα < 2.

second pulse (π pulse) should be twice as large as the first
(π/2 pulse), given they are the same duration.

V. ECHOES IN MODEL GLASSES

The discussion up to this point has only considered
isolated, independent, anharmonic oscillators. We now turn our
attention to echoes in model glasses. We emphasize here that
each “oscillator” is a normal vibrational mode of the disordered
solid. The echo signal is the sum of the vibrational motion of
all of the excited modes. For very small amplitudes, each
mode is linearly independent. However, for larger amplitudes
they will necessarily couple energy between different modes,
invalidating our analysis in the previous section. As illustrated
by Fig. 3, the normal modes are naturally anharmonic, so that
an echo should be observable so long as the amplitude of each
mode is not too large, and they remain linearly independent.

When excited by an acoustic pulse near T = 0, a single
vibrational mode will increase in amplitude, and the final
amplitude of vibration will depend on the difference between
the frequency of the oscillator and the frequency of the exciting
pulse, in addition to the spatial coupling to the polarization of
the excitation [Eq. (3)]. The number of modes excited by a
given pulse is inversely proportional to the duration of the
pulse. For long pulses, only modes with frequencies near
the excitation frequency will be driven to large amplitudes,
whereas for short pulses, many modes of different frequencies
will be excited (e.g., a δ-function pulse will excite modes of
all frequencies equally).

A second pulse at a later time can either increase or decrease
the amplitude of an individual mode, depending on the phase
difference between the mode and the excitation. An echo
will be formed by the average of an ensemble of vibrational
modes, which become coherent at a later point in time. For
systems composed of 1000 particles, we found that averaging
over 10 000 independent systems was necessary in order to
achieve a sufficient echo signal above the background noise.
Figure 5(a) shows the averaged amplitude at two different
values of pulse separation τ . Both pulses have identical
amplitudes (F0 ≈ 5 × 10−5), and identical pulse durations:

FIG. 5. (a) Echo amplitude, normalized by Pmax vs. time for
two different values of pulse spacing τ . A third example, with an
intermediate value of τ , is shown in Fig. 1(a). Each signal is the
average of 10 000 independent systems, each composed of 1000
particles. The pulse width is tp = 45 cycles, and the pulse frequency
is ω0 = 0.025. (b) Normalized echo amplitude vs. τ . The error bars
represent the size of the noise between the second pulse and the echo.
The red line is a fit to the data using Eq. (21).

tp = 45 cycles (this value for tp was chosen because it was
close to the value used in the original experiments which
observed phonon echoes at low temperatures in glasses [22]).
In both plots, the echo is apparent at t ≈ 2τ . Taking into
account the finite pulse width (tp), the exact position of the
echo is 2τ + 2tp, since τ is measured from the center of each
excitation pulse and the first pulse begins at t = 0.

Figure 5(b) shows the echo amplitude (normalized by Pmax)
as τ is varied. This dependence can be understood using
Eq. (20). We fit the data to the form

|A2τ | = K1

√
J1(K2τ )2 + J2(K2τ )2, (21)

where K1 and K2 are fitting parameters. The best fit is shown
by the red line in Fig. 5. This is essentially the same curve as
the red line in Fig. 4. The error bars represent the average noise
in the amplitude in the region between the second pulse and
the echo. Although Eq. (21) is derived from the dynamics of
a single oscillator, both K1 and K2 represent an average over
the different modes excited by the pulses. Since K1 ∝ A1,
and A1 represents the initial amplitude, its value will vary
considerably from mode to mode. However, K2 will be more
uniform since it represents the frequency shift, 
, and only
modes that satisfy 
τ ≈ 1 will contribute to the echo.

032905-6



ECHOES FROM ANHARMONIC NORMAL MODES IN MODEL . . . PHYSICAL REVIEW E 93, 032905 (2016)

FIG. 6. Echo amplitude versus pulse amplitude F0. Each data
point is the average of 10 000 independent systems, each composed
of 1000 particles. The pulse width is tp = 45 cycles, and the pulse
frequency is ω0 = 0.025, which is below ω∗ as shown in Fig. 2(a).
The decay at long times is due to nonlinear coupling between the
modes, which causes energy to spread to other modes in the system.

The reasonable agreement in Fig. 4 is due to the fact that the
condition 
τ ≈ 1 can be achieved by increasing τ rather than
the amplitude, so that the nonlinearity remains a perturbation
to the system and there is little cross-talk between adjacent
modes. However, if we vary the pulse amplitude instead of
τ , then we inject more energy into each mode at higher
amplitudes and the echo amplitude is reduced due to nonlinear
couplings between modes, which is not accounted for in the
model. Figure 6 shows a peak in the echo amplitude as the
pulse amplitude is varied. This is expected from Eq. (20) and
illustrated in Fig. 4. However, the data in Fig. 6 decays much
more rapidly, which is likely due to the coupling between
modes for larger pulse amplitudes, where energy is being
redistributed to other modes in the system.

When compared to spin echoes, a defining characteristic of
anharmonic echoes is the occurrence of multiple echoes after
just two pulses [Eq. (16)]. Figure 7 shows the average response
of 10 000 systems of 1000 particles each, identical to Figs. 1(a)
and 5(a), except extended to longer times. Multiple echoes are
clearly not visible. This is likely due to the signal noise in this
region. One possible remedy is to average over many more
systems, since the noise decreases as

√
N , although this was

FIG. 7. Multiple echoes are not observable in the average re-
sponse of 10 000 systems due to noise limitations. Each system has
1000 particles. The pulse amplitude and frequency are the same as in
Figs. 1(a) and 5(a). The red arrow indicates the predicted position of
the echo at t = 3τ .

FIG. 8. Echo signal from 10 000 averaged systems, as in Fig. 7,
with the addition of a third pulse after the first echo. The three-pulse
echo sequence produces four total echoes, with the positions indicated
by the red arrows. This is a characteristic of both parametric (spin)
echoes and anharmonic echoes.

computationally prohibitive. One may reasonably expect the
3τ echo to be reduced in amplitude by the same factor as the
2τ echo is with respect to the pulse amplitude. If this is true,
then it is not surprising that the 3τ echo is not visible since it
would clearly lie below the noise.

If one applies a third pulse to the system, then there will
be a total of four echoes that can be observed. The positions
of these echoes are τ1, τ2, τ1 + τ2, and τ1 − τ2, where the
times are referenced with respect to the position of the third
pulse. The pulse spacing τ1 refers to the first and second pulse,
and τ2 refers to the second and third pulse. This is true for
both two-level system echoes (i.e., spin echoes), as well as the
classical anharmonic echoes that we are treating here. Figure 8
shows a three-pulse echo sequence in jammed systems. The
signal is the average of 10 000 systems composed of 1000
particles each and is identical to Fig. 1(a), with the addition of
a third pulse at a later time. If the third pulse is placed prior
to the first echo, then τ1 − τ2 is positive, and all four echoes
occur after the three pulses.

Although jammed systems of frictionless spheres provide
the simplest example of model glasses, we have also studied
echoes with more realistic two-particle potentials. Figure 9
shows the average response of 10 000 systems, each composed
of 1000 particles with Lennard-Jones interactions. Specifi-
cally, we use a Kob-Andersen binary system, as described in
Sec. II. The density of states of these systems looks somewhat
different from jammed systems [27]. The excitation frequency

FIG. 9. Echoes in systems with Lennard-Jones interactions. The
signal is the average of 10 000 independent systems, each composed
of 1000 particles. The pulse width is tp = 45 cycles.
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FIG. 10. Amplitude versus time showing an echo in systems of
8000 particles. The signal is the average of 5000 independent systems.
The pulse frequency is half of that used in 1000-particle systems. The
pulse width is tp = 45 cycles.

was chosen to be approximately 5% of the maximum frequency
in the system and consistent with the longest-wavelength plane
wave that could fit inside the simulation boundaries [Fig. 1(b)].
The echo looks nearly identical to those in Figs. 1(a) and 5(a),
where the particles interact via Hertzian potentials.

All of the data that we have reported here so far has been
taken on systems with 1000 particles, then averaged over
many configurations. This is partially due to the fact that
the calculation and characterization of the dynamical matrix
and vibrational modes is straightforward. We can also average
over fewer configurations of systems with a larger number
of particles and obtain similar results. Figure 10 shows an
echo signal resulting from averaging the response of 5000
systems, each composed of 8000 particles. Each cubic system
of particles is twice as long on one side as a 1000-particle
system, so the frequency of excitation was smaller by a factor
of two, and the wavelength was longer by a factor of two [cf.
Fig. 1(b)].

However, for systems with more than 8000 particles,
the computational requirements to observe an echo become
expensive. This is mostly due to the fact that our simulations
require simulating many thousands of cycles of low-frequency
oscillations. However, we can estimate the conditions nec-
essary to observe an echo in only one system, rather than
averaging over many systems. In order to observe an echo
clearly, there must be a sufficient number of excited modes,
Ne, which will average to zero in regions between the pulses
and the echo. The number of excited modes is proportional to
the number of systems, Ns , the density of vibrational states at
the excitation frequency, D(ω), and inversely proportional to
the pulse width, tp:

Ne ∝ NsD(ω)

tp
. (22)

For simplicity, let us assume that the density of states obeys a
Debye-like behavior, so that D(ω) ∝ Npω2, where Np is the
number of particles in the system. The pulse width used in our
simulations is tp = 45 cycles = 45 × 2π/ω. Then Eq. (22)
reduces to

Ne ∝ NsNp

(
ω

ωD

)3

. (23)

The frequency in Eq. (23) has been normalized by the
Debye frequency in order to easily compare to experiments. We

are interested in comparing our simulations with experiments
from low-temperature glasses where possible. For that reason
we chose tp = 45 cycles, and ω/ωD ≈ 0.0002, which are
typical values used in the original experiments, which observed
phonon echoes in glasses at low temperatures [22]. Using these
values, Ne ∼ 640. We would need the same number of excited
modes in a single system to see the echo. If we assume we have
one system (Ns = 1), then we would need Np ≈ 8 × 1013

particles to observe an echo at such low frequencies. We
have also assumed that the density of states is quadratic in
frequency. At temperatures below T = 100 K, the density of
states in glasses is known to decrease faster that ω2 [55–57].
This would only strengthen the dependence of Ne on ω and
necessitate even larger systems in order to observe an echo,
thus our estimate constitutes a lower bound on the system size.

We would, of course, like to observe an echo in a single
system, but this is computationally unfeasible. Not only does
it require very large systems, but it also requires that the
anharmonic oscillators do not couple the energy in between
them strongly. In order to minimize this latter constraint, we
suggest that we only apply frequencies in the region of the
quasilocalized modes.

The amount of coupling depends on the frequency dif-
ference between two modes: ω1 − ω2. As we increase the
number of particles, the density of states also increases, so
the frequency spacing between the modes decreases. This is
unavoidable. Also, the amount of coupling depends on the
spatial overlap between the modes. Plane waves are extended
modes that will inevitably share particle vibrations. However,
two localized or quasilocalized modes, if sufficiently far away
from each other, will have very little coupling, regardless of
the frequency.

Thus, given a fixed excitation frequency ω, as Np → ∞,
the energy flow between modes will eventually destroy the
coherence of the echo. This can only be remedied if most of the
excited modes are quasilocalized so that they can still behave
as independent anharmonic oscillators. We suspect that echoes
could be observed in a single, very large system provided that
the density of plane waves is much smaller than the density of
quasilocalized modes.

VI. CONCLUSIONS

These results illustrate how the anharmonic vibrational
modes in a jammed system of particles can give rise to
phonon echoes, similar to those measured in glasses at low
temperatures. The mechanism of echo generation is distinctly
different from echoes produced by quantum-mechanical two-
level systems [41]. In our simulations, echoes are produced by
a purely classical mechanism caused by the frequency shift of
the anharmonic vibrational modes. This shift acts as a slowly
varying phase that evolves in the time between the pulses,
resulting in a nonzero average of the ensemble.

The anharmonicity of the vibrational modes can be studied
at T = 0. At low frequencies, model glasses based on jammed
sphere packings have quasilocalized modes that contribute to
the density of states [30]. It has been argued that jammed
systems are marginally stable and inherently close to an
instability where the structure will rearrange [58–60]. The
contribution of such incipient instabilities to the density of
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states is currently being evaluated [61]. The anharmonicity
that is important for echoes is generated by the frequency shift
of a mode with increasing amplitude; this is due to expansion
nonlinearity [62,63] and is measurable at small amplitudes.
If the amplitude becomes too large, then there will be energy
transfer between modes and the modes will lose coherence. At
even higher amplitude in a system with only finite-ranged
interactions, the contacts can break and reform [64]. This
would destroy echo formation.

The echoes observed in our simulations have many features
that are consistent with parametric, two-level system echoes,
such as the three-pulse echo sequence (Fig. 8). However, many
features are quite different. First, anharmonic echoes do not
have a simple, intuitive condition for maximizing the echo
signal, such as a π/2 pulse followed by a π pulse. In fact, Fig. 4
shows that the maximum echo amplitude is a complicated
function of pulse spacing and amplitude. However, here we
note that for small amplitudes, Eq. (20) reduces to

|G2τ | =A1α
2
τ = A1A

2
2ξωτ, (24)

which is in agreement with previous authors [45], and has the
same dependence on A1 and A2 as the small-amplitude result
for spin echoes [22].

Graebner and Golding [22] measured this small-amplitude
dependence in silica glass and also showed that the maximum
echo intensity does not precisely occur when A1 = A2/2,
among other discrepancies with a model of echoes based on
two-level systems. In addition, at small amplitudes, Graebner
and Golding observed a small increase in echo amplitude with
pulse spacing. This feature is characteristic to anharmonic
echoes and is seen in our simulations [Fig. 5(b)]. However, the
experiments probe ≈1000 times lower frequencies than we can
access in the simulations, and also involve additive reflections
of pulses, so a more quantitative comparison is complicated.
Qualitatively, we note that the appearance of multiple echoes
after two excitation pulses in the echo experiments [22] is a
natural and unique feature in anharmonic echoes and does not
depend on the details of the system.

At very low temperatures, a quantum mechanical picture
of the dynamics is certainly necessary. The traditional ex-
planation for the excess excitations in glasses at very low
temperatures relies on two-level tunneling systems created
by the splitting of the ground-state energy in a double-well
potential (Fig. 11). The distribution of the energy barriers are
assumed to be broad, and the states are spatially localized. We
offer an alternative picture based on localized, anharmonic
vibrational modes that can be understood both classically
and quantum mechanically. A wide and shallow anharmonic
potential (Fig. 11), characterized by low-frequency, nearly
unstable modes, will have energy levels that are not equally
spaced. These modes arise naturally due to the amorphous
nature of the solid and do not depend on specific particle
interactions.

Our results have focused solely on the origin of phonon
echoes in glasses and have not addressed many other well-

FIG. 11. Quantum mechanical picture of energy levels corre-
sponding to the low-frequency excitations in glasses. The double-well
is the traditional view of the origin of two-level systems, where
the lowest energy level is split in two by the presence of the
barrier. Alternatively, a wide, anharmonic potential can produce low-
frequency modes, nonuniform level spacing, and nonlinear acoustic
phenomena such as echoes.

known nonlinear acoustic properties in glasses, such as
saturation of attenuation and hole-burning. However, the
existence of these phenomena in glasses may not be restricted
to models that require two-level systems. Past theoretical
results suggest that some universal thermodynamic properties
in glasses need only modest assumptions about the nature of
the low-temperature modes [65]. More recent results show
that universal features of acoustic attenuation in glasses can
be explained by generic, elastically coupled resonant modes
and that the details and origins of the resonant modes are less
important [15].

Finally, we note that the simulations presented here were
performed on small systems. The detailed properties of the
anharmonic modes at very low frequencies have yet to be
investigated due to computational limitations on system size.
One benefit of using jammed spheres with finite-ranged
repulsions as a model glass is that there are two limiting
regimes to investigate [62]. Although the limit N → ∞ is
inaccessible, we can take the limit 
φ → 0, bringing the
system on the verge of instability. In this regime it is well
known that jammed systems develop an enormous increase
in the density of states. The fate of these excess modes as
the system is compressed above 
φ = 0 provides a starting
point for our understanding of the low-frequency, anharmonic
modes.
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