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Can we obtain the coefficient of restitution from the sound of a bouncing ball?
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The coefficient of restitution may be determined from the sound signal emitted by a sphere bouncing repeatedly
off the ground. Although there is a large number of publications exploiting this method, so far, there is no
quantitative discussion of the error related to this type of measurement. Analyzing the main error sources, we
find that even tiny deviations of the shape from the perfect sphere may lead to substantial errors that dominate
the overall error of the measurement. Therefore, we come to the conclusion that the well-established method to
measure the coefficient of restitution through the emitted sound is applicable only for the case of nearly perfect
spheres. For larger falling height, air drag may lead to considerable error, too.
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I. INTRODUCTION

The coefficient of restitution characterizes the degree of
inelasticity of colliding particles. It is of great importance as it
is the foundation of both granular hydrodynamics and kinetic
theory of granular gases [1,2] as well as event-driven particle
simulation of granular matter [3]. In a somewhat simplified
version, considered in this paper, it characterizes the inelastic
collision of a sphere impacting a plane, where the coefficient
of restitution is defined by

ε = −v ′

v
, (1)

where v and v′ are the components of the velocity of the sphere
normal to the plane before and after the impact, respectively.

The definition, Eq. (1), goes back to Newton [4] and
since then the coefficient of restitution and its dependence
on material properties, particle size, and impact velocity was
under permanent debate, e.g., Refs. [5,6]. A critical review on
the early literature can be found in Refs. [7,8].

There is a large body of literature regarding the experimen-
tal measurement of the coefficient of restitution, using different
techniques, such as high-speed photography [9–11], pendulum
systems [12–14], LASER Doppler velocimetry [15], particle-
tracking velocimetry [16], and others [17,18]. The most
prominent technique exploits, however, the time lag between
consecutive impacts of a particle bouncing repeatedly on a
horizontal plane:

εi =
∣∣∣∣v′

i

vi

∣∣∣∣ =
∣∣∣∣vi+1

vi

∣∣∣∣ = ti+1 − ti

ti − ti−1
,

vi = g

2
(ti − ti−1) = g

2
�ti, i = 2,3, . . . . (2)

Here, vi and v′
i are the normal pre- and postcollisional

velocities of the ith impact occurring at time ti , and g =
−9.81 m/s2 is the gravitational acceleration. This way, from
a sequence t1,t2, . . . ,tN we obtain N − 2 measurements of
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the coefficient of restitution for specific values of the impact
velocity. In Eq. (2), we have assumed a reference frame with
the vertical axis pointing upwards; this convention will be used
for the rest of this work. The measurement of the coefficient
of restitution is, thus, reduced to the measurement of the times
ti determined from the sound emitted due to the collisions,
using microphones or acceleration sensors. This technique
is, obviously, of striking simplicity and therefore applied
extensively for scientific as well as educational purposes, e.g.,
Refs. [19–35] and many others.

In several references, the precision of this technique was
praised, e.g., in Ref. [31] where its accuracy was even claimed
explicitly in the title. Surprisingly, however, despite the great
popularity of this method, by now there is no detailed error
analysis related to this type of measurement, beyond the
analysis of the standard deviation computed from the data,
thus, quantifying the statistical error [21,23,34,35]. Therefore,
in the present paper we analyze the error of the coefficient of
restitution measured by means of the described technique. We
will show that for typical setups, the error of the measurement
of the dissipated energy due to a collision may be as large as
50%.

Albeit historically the coefficient of restitution, ε, was
defined by Eq. (1), the quantity of physical interest is rather
(1 − ε) or (1 − ε2) since the latter expressions characterize
the dissipation due to inelastic impact and, thus, quantify the
system’s deviation from the trivial behavior, i.e., perfectly
elastic rebound. Therefore, it might be more appropriate to
relate the error of a measurement, σε, to 1 − ε rather than to
ε. We will return to this point in Sec. IV.

II. EXPERIMENT

The experimental setup is sketched in Fig. 1: A small
vertical glass tube connected to a vacuum pump via a flexible
hose is attached to a robotic arm movable in all three spatial
directions. In the beginning of each experiment, a steel sphere
of radius R = 3 mm and mass m = 0.9 g resides at a specified
position on a massive glass plate of size (30 × 20 × 1.9) cm3.
From there, the sphere is picked up, that is, it is suspended at
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FIG. 1. Schematic diagram of the experimental setup.

the lower end of the tube by means of vacuum. The robot moves
the sphere then to a desired position {x,y,z}. By switching off
the vacuum pump, the sphere is released to bounce repeatedly
off the ground. When the ball eventually comes to rest, it is
pushed to a defined position by a fan, from where the robot
picks it up again. Sound emission caused by the impacts is
detected by a piezoelectric sensor (EKULIT EPZ-Piezoelectric
ceramic element with characteristic frequency 18 kHz). The
sensor was mounted on the lower side of the plate, 5 cm away
from the corner, and recorded by a computer; see Sec. III B.
A LASER sheet oriented parallel to the plate in distance of
slightly more than the sphere diameter and a camera were
used to determine the location of the impact; see Sec. III C.

The initial horizontal (x,y) position is chosen randomly
within the central region of the ground plate for each cycle.
Edge effects [36] are, therefore, not noticeable. The initial
impact velocity is randomly chosen from v ∈ (1.33,1.4) m/s
(corresponding to z ∈ (9,10) cm), resulting in 90–100 bounces
of the ball in each trial. This way, via Eq. (2), we perform
about 6 000 measurements of ε(v) per hour. To assure
stationary conditions, the experiment was performed in a
climate chamber to keep temperature and humidity of the
experimental environment at constant values. The experiment
was performed in darkness with the only illumination from the
LASER sheet to conveniently determine the locations of the
impacts from the reflections of the LASER at the sphere’s
surface; see Sec. III C. Figure 2 shows the coefficient of
restitution as a function of the impact velocity, for the system
described above. The figure shows about 280 000 data points.
For the statistical analysis we neglected the first 104 bounces
in order to suppress effects due to initial wear; see Sec. III E.
The characteristic frequency of the sensor is far away from the
frequency of flexural oscillations of the base plate (96.2 Hz; see
Ref. [37]). Therefore, we can exclude that the sound signal is
due to flexural oscillations of the base plate whose propagation
speed might depend on the velocity of the impact. Further
information regarding the details of the experimental setup will
be given below in relation to the estimation of experimental
errors.
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FIG. 2. Coefficient of restitution as a function of the impact
velocity. Each of the approximately 280 000 data points corresponds
to an impact. The lines shows the median (full line) and the 90 %
quantile (dashed lines).

III. ESTIMATION OF THE EXPERIMENTAL ERRORS

A. Main sources of errors

The results obtained from the experiment described above
are affected by different kinds of imperfections, resulting in
experimental uncertainty and, thus, errors. We identified the
following imperfections as putative main sources of errors:
� uncertainty of the time of impact by measuring the emitted

sound
� different location of consecutive impacts
� air drag
� wear of the plate and the sphere in long-time experiments
� imperfection of the spherical shape with respect to surface

roughness
� imperfection of the spherical shape with respect to eccen-

tricity
In the following sections, we consider the above itemized

sources of error in detail.
Besides the mentioned sources of error, fluctuations of the

humidity may contribute to the uncertainty of the measurement
as humidity influences the contact forces between the surface
and the sphere. Fluctuations of temperature would change the
material stiffness of the plate and the sphere. We disregard
these sources of error here, since the experiment was per-
formed in a climate controlled chamber such that no influence
of variations of temperature or humidity was apparent.

When quantifying the error, we should keep in mind that
the inelastic nature of a collision is not characterized by the
coefficient of restitution, ε, but rather by the deviation of the
(trivial) elastic case, (1 − ε). Therefore, an experimental error
should be better related to (1 − ε). We will see below that an
experimental error that appears acceptable when related to ε

can lead to very large relative errors of (1 − ε).

B. Uncertainty of the time of impact

The experimental method relies on the precise measurement
of the impact times [see Eq. (2)], which is affected by
experimental errors. There are two factors of different nature
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FIG. 3. Sound signal measured by the piezoelectric sensor in
different resolution. Gray shaded areas in panels (a)–(c) indicate
the time interval displayed in the subsequent panel of higher
resolution, panels (b)–(d). (a) Full signal corresponding to one drop
and approximately 100 subsequent bounces; (b) sound due to a
single bounce at t ≈ 8.498 s. The next impact occurs at t ≈ 8.518 s;
(c) sound at the beginning of an impact; (d) high resolution where
discrete sample points are shown with symbols. Dashed lines show
the thresholds, Vthr, used for the impact recognition. In this case, the
impact was recognized about two sample intervals after the physical
contact, corresponding to a delay of 4 μs.

limiting the precision of the measurement: (a) the precision of
the (digital) clock, and (b) the criterion by which an impact is
detected.

The signal from the piezoelectric sensor was processed
using an AD converter (NI PCIe-6251) with 16-bit signal
resolution sampled at 5 × 105 s−1, which results in a time
resolution of 2 μs. We will see below that the error due to
the finite time resolution is subdominant to the uncertainty
related to (b).

Consider now (b), the criterion by which an impact is
detected: Fig. 3 shows the sound signal of one particle drop,
where the particle bounces approximately 100 times.

In low resolution, Fig. 3(a), we see that the impacts can be
well separated in the sound signal due to a high signal-to-noise
ratio and steep gradient at the beginning of an impact. The
sudden jump in the signal amplitude apparent in Fig. 3(b)
occurs in far less than a millisecond. In high resolution,
Figs. 3(c) and 3(d), we see, however, that the amplitude of the
signal at the beginning of an impact does not rise abruptly but
gradually at the scale of the time interval between contiguous
samples. Therefore, in order to determine the time of an impact,
we need a criterion that takes into account both the finite noise
level and the gradual rise of the sound signal emitted when the
sphere touches the plane.

We defined the time of an impact, ti , as the time when
the signal exceeded a threshold Vthr, which has to be chosen
with some care: The threshold should be significantly larger
than the noise level |Vthr| > |Vnoise|. On the other hand, a low
threshold is needed to record a long sequence of bounces for

each drop. Moreover, the value of the threshold determines
the delay between the physical impact and its identification
and, thus, the error of the measurement. In our experiment, we
measured a noise level of about |Vnoise| � 1 μV. Assuming a
threshold Vthr = 1 mV as a criterion for the start of an impact
we could safely distinguish 80–100 consecutive bounces. After
approximately 100 bounces, the signal-to-noise ratio turned
too small to allow for a reliable measurement.

By visual inspection of about 50 signals due to impacts
close to the end of the sequence of bounces for several drop
experiments, we found the delay between the impact and the
time when the corresponding voltage exceeds Vthr always less
than 5 sample points. An example is given in Fig. 3(d), where
the high resolution allows us to inspect the single data points.
Consequently, the error of the measurement of ti is bound by
�t = 10 μs. The mean delay of all inspected signals was 1.6
sample points corresponding to ≈ 3 μs.

To compute the error due to the uncertainty of the impact
times, ti , we consider the coefficient of restitution as given by
Eq. (2) as a function of the measured times, ε = ε(ti−1,ti ,ti+1):

σε,i =
√(

∂εi

∂ti−1
�t

)2

+
(

∂εi

∂ti
�t

)2

+
(

∂εi

∂ti+1
�t

)2

= − �t

g

2v2
i

√
v2

i+1 + (vi+1 + vi)2 + v2
i . (3)

Note that g was defined with a negative sign. In agreement
with Fig. 2, σε,i increases for low velocities. This can be also
seen writing Eq. (3) in the form

σε,i = − �t

g

2vi

√
v2

i+1

v2
i

+
(

vi+1

vi

+ 1

)2

+ 1

= − �t

g√
2

√
ε2
i + εi + 1

vi

. (4)

For large i, εi approaches unity whereas the impact velocity,
vi , decays to small values. Therefore, the standard deviation,
σε,i , becomes large for large impact counter, i. Hence, the
largest error is obtained at small velocities vi ≈ 0.2 m/s and,
with εi ≈ 0.98, we obtain σε,i ≈ 6 × 10−4.

C. Different location of consecutive impacts

The sound signal emerging at the point of the impact needs
some time to reach the piezoelectric sensor mounted close to
the corner of the plate to its lower side, due to the finite speed
of sound in the plate material. This delay would not affect the
measurement if the points of impact would be the same for all
bounces since only differences of times, ti+1 − ti , enter Eq. (2).
Therefore, the error is due to the distance of the location of
consecutive impacts.

In order to estimate the corresponding error, we attached
a second piezoelectric sensor close to the opposite side of
the plate and recorded both signals simultaneously. Choosing
the initial point of impact such that the difference of the
distances to both sensors is about 10 cm, we obtained a delay
of 18 μs between the signals corresponding to the speed of
sound 5.5 × 103 m/s in the glass plate. When we determine the
coefficient of restitution due to Eqs. (2) independently by using
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FIG. 4. Two typical images obtained by long-time exposure.
When the sphere crosses the LASER sheet, the sphere’s reflection
indicates the spacial location of its impacts on the glass plate. A star
indicates the position of the first impact. Reflections of the spots from
the glass plate were removed by digital post-processing.

the signals from both sensors, the difference, ε1 − ε2, does
not show systematic deviations beyond very small statistical
fluctuations. In particular, we do not see a dependence of
ε1 − ε2 as a function of the location of the impact, that is,
the difference of the distances of the point of impact from the
locations of the sensors. This may be considered as further
evidence for the fact that the details of sound transmission
from the point of impact to the locations of the sensors is
irrelevant for the measurement.

To determine the locations of the impacts, we used a LASER
sheet oriented parallel to the plate (see Fig. 1) and in distance
7 mm to the plate, which is slightly more than the particle
diameter. Therefore, immediately before the particle impacts
the plate, the LASER was reflected by the sphere’s surface
in vertical direction and the corresponding flash was recorded
by a camera located about 1 m above the plate. The camera’s
shutter was opened for the duration of 10 s starting at the time
when the sphere was released from the vacuum tube, such that
the locations of the impacts could be identified for the sequence
of bounces. The sequence terminates when the height of the
jumps drops below 1 mm such that the upper surface cannot
cross the LASER sheet. Figure 4 shows an example image.

Analyzing these data we found that (a) the distance of
consecutive bounces decays rapidly with the impact counter.
The largest leaps in horizontal direction occur within the
very first bounces, and (b) in no case, the distance between
consecutive impact points was larger than 5 mm.

From these observations, we conclude that the maximum
uncertainty of the measured time differences due to differ-
ent location of consecutive impacts is ��t ≈ 5 mm/5.5 ×
103 m/s ≈ 0.9 μs. This yields an error on ε = ε(�ti,�ti+1)
calculated as

σε,i =
√(

∂εi

∂�ti
��t

)2

+
(

∂εi

∂�ti+1
��t

)2

= − ��t

g

2

√
ε2
i + 1

vi

. (5)

Again the uncertainty is maximized at small impact velocities.
For vi ≈ 0.2 m/s and εi ≈ 0.98 this is found to be σε,i ≈ 3 ×
10−5.

D. Influence of air drag

When computing the coefficient of restitution according to
Eq. (2), we assume that the postcollisional velocity of collision
i − 1 equals the impact velocity of collision i, up to the sign

vi = −v′
i−1 , (6)

which neglects the effect of air drag during the free flight.
Indeed, the true impact velocity is slightly smaller by absolute
value,

vair
i < −v′

i−1 , (7)

which leads to an underestimation of the coefficient of
restitution. Note that in difference to all other sources of error
discussed in this paper, this error is systematic. However, it
is common to compare random and systematic uncertainties
to obtain the overall measurement error [38]. Denoting the
coefficient of restitution corresponding to vair

i by εair
i , the

relative error is defined as the ratio of the absolute error
εair
i − εi and the quantity εair

i [38]:

�εair(vair
i ) = εair

i − εi

εair
i

= 1 − v′
i

v′
i−1

[
− v′

i

vair
i

]−1

= 1 + vair
i

v′
i−1

.

(8)

In order to estimate the error �εair, we compute the velocity
of the next collision, vair

i , of a particle rebouncing at velocity
v′

i−1.
Given the initial impact velocity v ≈ 1.38 m/s, resulting

from the dropping height of ≈ 10 cm, the maximal Reynolds
number is

Re = ρvL

η
≈ 629, (9)

where ρ = 1.3 kg/m3 is the density of air, L = 2R = 6 mm
is the characteristic length and η = 17.1 μPa s is the dynamic
viscosity of air. For Re � 1, the flow is laminar, such that
Stokes drag force applies and for Re � 500, Newton’s drag law
is in order. Since the motion is not clearly laminar nor turbulent,
we consider both types of drag and assume the maximum
resulting error for the coefficient of restitution.

The equations of motion between the impacts are, thus,

z̈ − g + αSż = 0, αS ≡ 6πRη

m
, (10a)

z̈ − g + αN

ż

|ż| ż
2 = 0, αN ≡ CdρπR2

2m
, (10b)

where Cd = 0.47 is the drag coefficient of a sphere and
g = −9.81 m/s2 is gravity. Equation (10a) applies to Stokes
drag and Eq. (10b) to Newton drag.

Consider first Stokes drag. For convenience we assume that
the table is located at z = −R such that the impact takes place
when the center of the sphere is at z = 0. Solving Eq. (10a)
with initial conditions z(0) = 0 and ż(0) = v′

i−1 gives

z(t) = gAS

α2
S

(e−αS t − 1) + gt

αS

, (11)

where

AS ≡ g − αSv
′
i−1

g
(12)
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FIG. 5. Relative error of the coefficient of restitution due to air
drag [Eq. (8)], as a function of impact velocity. Full line, with
the assumption of Stokes drag, Eq. (10a); dashed line, with the
assumption of Newton drag, Eq. (10b).

characterizes the drag force as compared to the weight of the
particle. The corresponding velocity reads

ż(t) = g

αS

(1 − AS e−αS t ). (13)

From Eq. (11) we obtain the time of the next impact ti by
z(ti) = 0,

ti = 1

αS

[W(−ASe
−AS ) + AS], (14)

where Lambert’s function, W(x), is the solution of
W(x) expW(x) = x.

Inserting Eq. (14) into Eq. (13) one obtains the impact
velocity, vair

i = ż(ti). Finally, using Eq. (8), the error due
to the air drag is calculated. For the range of parameters
considered, this can be well approximated with a first-order
Taylor expansion around αS = 0, which gives

�εair = −2αSv
′
i−1

3g
. (15)

The systematic error due to the air drag as a function of the
impact velocity is shown in Fig. 5 and it is bound by �εair <

9 × 10−5.
The same calculation can be done with the assumption of

Newton drag. This time Eq. (10b) has to be solved separately
for the upwards and downwards motion of the sphere, in order
to easily take into account the different sign of the drag force.
The resulting error is again approximated to first order in αN

to give

�εair = −αNv′2
i−1

2g
, (16)

which is also shown in Fig. 5 (dashed line) as a function
of impact velocity. Thus, for the case of Newton drag, for
our parameters we obtain �εair � 7 × 10−4. For details of the
calculation see Ref. [39].

In conclusion we see that in the relevant interval of impact
velocity, for both cases Newton drag and Stokes drag the
systematic error due to air resistance is �εair � 7 × 10−4.

E. Wear of the plate and the sphere

When designing an automated bouncing ball experiment,
there are two fundamentally different layouts: Type (a) uses
a reservoir of identical spheres and releases one after the
other to record the noise emitted from their bounces. Type
(b) uses a single sphere that is released, bounces on the
plate until it comes to rest, and is then transported back to
the starting position. The layout of type (a) is technically
simpler; however, there is an additional source of error
originating from the statistical distribution of the mechanical
properties of the spheres. Type (b) is free of this error; however,
a possible drift of the results due to wear of the ball and the
plate should be considered given that the sphere suffered from
up to ∼ 106 violent bounces.

We analyzed the surface of the sphere by means of a
scanning electron microscope (SEM) before the experiment
and in regular intervals of about 105 bounces. As a result,
except for the initial period of about 105 bounces, no significant
wear was observed. Figures 6(a) and 6(b) show SEM pictures
of the sphere before the experiment and after about 105 impacts
where only very minor damages of the surface are visible.
Figures 6(c)–6(e) show magnifications of the sphere’s surface
after 0, 105, and 106 impacts. The shown region covers about
1.8% of the contact area for a collision starting at height 10
cm. While the number of tiny scratches on the sphere’s surface
increased initially, the surface structure saturated quickly such
that we did not notice further roughening due to repeated
impacts of the sphere. The structure of the surface remains
approximately invariant. A very similar analysis was done to
investigate damages of the plate but no sign of roughening
was found. Therefore, possibly except for the initial period,
we exclude errors and in particular a systematic drift due to
wear of the sphere or the plate.

As further evidence, in Fig. 7(a) we replot the data shown
in Fig. 2, ε(v) (median value), where we analyze the first
104 impacts, the last 104 impacts and the full set of impacts
separately.

Figure 7(b) shows the histogram of measured data for
fixed impact velocity, v = (0.7 ± 0.05) m/s, characterizing the
fluctuations. Again, three sets of data correspond to separate
analysis of the first 104 impacts, the last 104 impacts and the
full data set. Except for larger scatter of the restricted sets,
due to smaller amount of data, all three sets lead to the same
statistics up to fluctuations. No systematic trend due to wear
was apparent.

F. Imperfections of the spherical shape

1. Classification and method

The coefficient of restitution describes the change of
relative velocity of the particle and the plate in normal
direction at the point of contact. Therefore, bouncing-ball
experiments as described in Sec. II are only useful to determine
the coefficient of restitution if the bouncing body is a
sphere. Surprisingly, this simple but important detail is rarely
mentioned in the literature. Deviations from the spherical
shape will lead to sizable errors of the measured coefficient
of restitution. In this section, we discuss the error due to
imperfections of two different types: (a) surface roughness,
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FIG. 6. SEM pictures of the sphere. (a) before the experiment (0 impacts) and (b) after 105 impacts. Only very small scratches at the surface
are noticeable. Panels (c)–(e) show magnifications of the surface, (c) before the experiment (0 impacts), (d) after about 105 impacts, (e) toward
the end of the experiment after about 106 impacts. Very small scratches are noticeable. The region shown in each image covers about 1.8% of
the contact area for a collision starting at height 0.1 m.

that is, small scale impurities of the surface, and (b) eccen-
tricity, that is, deviations of the overall shape from the perfect
sphere.

Since there is no experimental means to individually control
these deviations, we use a numerical simulation to estimate
the corresponding errors. We describe the imperfect sphere by
means of a mechanical model whose validity was confirmed by
direct comparison with experimental data [40]. By varying the
characteristics of the simulated particle we are able to isolate
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FIG. 7. (a) Replot of Fig. 2 [only median of ε(v)], where we
analyze the data from the first and last 104 impacts separately.
(b) Histogram of the measured data for a particular velocity, v =
(0.7 ± 0.05) m/s. In both figures (a, b), no systematic trend is
apparent.

imperfections of type (a), Sec. III F 2, and (b), Sec. III F 3,
from all other sources of error.

2. Surface roughness

In a recent model [40] a rough sphere was modeled by a
central (perfect) sphere and a large number (several millions)
of microscopic spherical asperities located at random positions
at the sphere’s surface (Fig. 8).

The contact between the particle and the plane occurs, thus,
via one of the asperities. The local change of velocity at the
point of contact is then described by a microscopic coefficient
of restitution, ε(vc), which was derived analytically for the
viscoelastic collision of a perfect sphere with a plane [41–43]
at normal velocity vc at the point of contact. For the simulation
we represented the microscopic coefficient of restitution by
means of a convergent Padé approximant of order [1/4], for

FIG. 8. Numerical model of a rough sphere [40], where a large
number of tiny spheres is attached to random positions at the surface of
a large central (perfect) sphere. For visibility, the number of asperities
is much smaller than in the simulation. For the same reason, the size
of the asperities is not to scale.
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details see Refs. [44,45]:

ε(vc) ≈ 1 + c1vc∗

1 + b1vc∗ + b2v2
c∗ + b3v3

c∗ + b4v4
c∗

,

(17)
vc∗ = β1/2v1/10

c ,

with the universal (material independent) constants c1 =
0.501086, b1 = 0.501086, b2 = 1.15345, b3 = 0.577977,
b4 = 0.532178. The material constant β = 0.0467 was de-
termined by fitting Eq. (17) to the experimental data; see
Ref. [40].

In numerical experiments we released the particle from
a certain height just as in the experiment described above
and simulated the sequence of collision in analogy to the
experiment. When the particle contacts the plane through
one of its asperities, we compute the local change of velocity
due to the impact geometry and the microscopic coefficient of
restitution, to obtain the impulse on the particle at each impact.
These impulses govern the dynamics of the particle in an event-
driven molecular dynamics simulation. Micromechanically,
when the particle collides with the plane, there act torques due
to the asperities which cause transfer between the translational
and rotational degrees of freedom. Since the rotation of
the particle does not influence the coefficient of restitution
determined via Eq. (1), the rotational degrees of freedom
act like a reservoir of energy and at each collision a certain
amount of energy is exchanged between the rotational and
translational degrees of freedom. The amount depends on
the details of the contact mechanics, that is, on the angular
orientation of the particle at the instant of the contact and
on the positions of the asperities, which may be considered
as random variables, thus appearing like an uncertainty of
measurement. It was shown that the coefficient of restitution
obtained from numerical simulations of the described model
reveals the same characteristics as the experimental results.
This concerns both mean values of the function, ε(v), and
also the statistical characteristics of the data [40,46]. Figure 9
shows the coefficient of restitution obtained from a numerical
simulation. Here the central sphere of radius R = 3 mm was
covered by 3 × 106 asperities of size Ri � R × 10−3.

FIG. 9. Coefficient of restitution for a rough particle plotted
against the impact velocity. The data are colored according to the
normalized frequency of occurrence.
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FIG. 10. Standard deviation of the data shown in Fig. 9 computed
due to Eqs. (18), as a function of impact velocity.

Having the experimental data sufficiently closely repro-
duced, the error due to roughness can be determined from
the standard deviation of the data, isolated from other sources
of experimental error. The error as a function of the impact
velocity is determined by

σr (v) =
√√√√ 1

n(v)

n(v)∑
i=1

[εi − ε(v)]2,

(18)

ε(v) = 1

n(v)

n(v)∑
i=1

εi,

where the sum is performed over all data points (εi,vi) where
|v − vi | < δv and n(v) is the number of such data points. The
value of δv must be chosen with care since it compromises
between good statistics (large δv) and good v resolution (small
δv); here we use δv = 0.01 m/s. Figure 10 shows the standard
deviation of the data shown in Fig. 9 due to Eqs. (18), as a
function of impact velocity, σr (v). We observe that the standard
deviation σr increases for small impact velocity.

The particle interaction model, Eq. (17), considers only
restitution in normal direction but does not take into account
friction. For the justification of this assumption we make the
following estimate: Assume N asperities are homogeneously
distributed on the surface of the sphere of radius R in
close packing. Thus, each sphere may be thought located in
the center of a regular hexagon of side length a such that
the abundance of hexagons fill the surface area completely.
We obtain

a = 4√
6 31/4

√
π√
N

R, (19)

and the distance of adjacent asperities,

d = 4

31/4
√

2

√
π√
N

R. (20)

With the largest possible horizontal distance, d/2, between the
center of the sphere and the point where one of the asperities
touches the plane, the vertical and horizontal components of
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the interaction force vector relate as

Ft

Fn

<
4

31/4
√

2

√
π√
N

≈ 3.81
1√
N

. (21)

Sliding friction becomes active when Ft � μFn according to
the Coulomb friction criterion, where the friction coefficient
adopts typical values 0.01 � μ � 1. Thus, for N � 1.5 × 105

the particle cannot slide and friction is, therefore, irrelevant.

3. Eccentricity

Complementary to surface roughness, that is, deviations
from the perfect sphere on a microscopic scale, in this section
we consider deviations from the spherical shape on the scale
of the particle size, disregarding roughness. To this end, the
particle is modeled by two identical spheres of radius R and
distance L, with L 	 R; see Fig. 11.

Similarly to the previous section, we perform bouncing-
body experiments and determine the coefficient of restitution
via Eq. (1), in analogy to the experiment [47]. Figure 12 shows
the coefficient of restitution obtained from a numerical simula-
tion of 4 × 104 bounces of the particle for two different values
of the eccentricity, L/R = 0.1. The scatter increases steadily
with decreasing impact velocity similar to our observations
for rough particles. Again, the reason for the scatter is transfer
between the translational and rotational degrees of freedom
similar as discussed in the previous section. The amount of the
transferred energy depends on the impact velocity and on the
angular orientation of the particle at the instant of contact. The
orientation may be considered as a random variable, except
toward the end of the collision sequence when the height of the
jumps approaches the order of L [47]. The randomness of the
numerically determined coefficient of restitution characterizes
the uncertainty of the measurement due to the deviation of the
particle shape from the perfect sphere.

Figure 13 shows the uncertainty of the numerical measure-
ment, quantified by the standard deviation due to Eqs. (18),
for eccentricity L/R = 0.01 and L/R = 0.02 corresponding
to high precision glass spheres [48] as frequently used in

FIG. 11. Sketch of a dumbbell particle consisting of two identical
spheres of radius R and distance L 	 R. For better visibility, the
value of L appears exaggerated.

FIG. 12. The coefficient of restitution as a function of velocity
for eccentricity L/R = 0.1. The data are colored according to the
normalized frequency of occurrence.

bouncing ball experiments. Again, the standard deviation σr

increases for small impact velocity.
Even small deviations from the spherical shape lead to

significant errors.

IV. DISCUSSION

One of the standard methods for measuring the coefficient
of restitution relies on the analysis of the sound emission from a
ball bouncing recurrently on a solid floor. There is a large body
of literature on this method; however, much less is known about
the precision and validity of it. In this work we quantified,
for the first time, the errors of this widely used experimental
method.

The concrete numbers of the experimental error depend, of
course, on the specific properties of the experiment, such as
particle size, material properties, etc. In this paper, we consider
experimental parameters typical to many experiments found in
the literature, where the coefficient of restitution was obtained

0.2 0.4 0.6 0.8 1 1.2
v (m/s)

0

0.001

0.002

0.003

0.004

0.005

σ r

L/R = 0.02
L/R = 0.01

FIG. 13. Standard deviation of the numerically determined coef-
ficient of restitution for eccentricity L/R = 0.01 and L/R = 0.02,
as a function of impact velocity.
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TABLE I. Comparison of the sources of error through their
induced standard deviations, σ , for impact velocity 0.2 m/s. For the
case of air drag, the value of the uncertainty, �εair for impact velocity
1.2 m/s is given. For the full range of velocity, see Fig. 14.

Error source Section σ ; |�ε|
(a) Time of impact III B 6 × 10−4

(b) Location of impact III C 3 × 10−5

(c) Air drag III D 7 × 10−4

(d) Wear III E Not noticeable
(e) Roughness III F 2 9 × 10−4

(f) Asphericity L/R = 0.01 III F 3 8 × 10−4

Asphericity L/R = 0.02 III F 3 4.5 × 10−3

from the time lag between consecutive impacts of a particle
bouncing on a flat plate [13,33–35,49,50].

We investigated the main sources of experimental error,
due to (a) the uncertainty of the measurement of time of the
impacts, (b) varying location of successive impacts, (c) air
drag, (d) wear of the plate and the sphere, (e) roughness
of the surface, and (f) eccentricity of the sphere. Other
sources of error such as varying temperature and humidity
were not considered as the experiment was performed in a
climate controlled chamber. Table I shows a comparison of
the maximal errors due to these sources, represented by the
standard deviation, σ , for impact velocity 0.2 m/s. For the
case of air drag (which is the only systematic error), the value
of the uncertainty, |�ε|, for impact velocity 1.2 m/s is given.

We conclude that, for all impact velocities considered, the
experiment is rather insensitive to wear, uncertainties of the
location of impact and time measurements. In contrast, the
method is sensitive to deviations from the perfect spherical
shape of the particles, that is, roughness and asphericity as
well as air drag. Figure 14 shows the total error due to
these main contributions for the full range of impact velocity
considered.

As a surprising result, we find that the geometrical prop-
erties of the particle, that is, its deviation from the perfectly
spherical shape dominates the error of the measurement of the
coefficient of restitution. Due to our knowledge, this source of
error was, so far, not even discussed in the literature. Even for
high precision glass beads with typical asphericity of 1...2%,
as frequently used in bouncing ball experiments the standard
deviation is σ ≈ 1 . . . 5 × 10−3.

An even more surprising result is the error due to air drag,
which can even exceed the error due to imperfect shape for
larger impact velocity. For our set of parameters specified in
Sec. II, which is typical for many experiments reported in the
literature, for dropping height h � 7 cm, air drag is the largest
contribution to the total error.

An error of σ ≈ 10−3 looks acceptable, at first glance.
However, in strict sense, it is not the coefficient of restitution, ε,
that quantifies the dissipation of a collision but rather (1 − ε).
Typical values for glass or steel spheres at typical impact
velocities are (1 − ε) ≈ 0.01 . . . 0.02. A standard deviation of
8 × 10−4 for high precision spheres implies a relative error
σ/(1 − ε) of typical 4 . . . 8 %. For slightly less precise spheres,
L/R = 0.02, with σ ≈ 5 × 10−3, the relative error of the

0.2 0.4 0.6 0.8 1.0 1.2v (m/s)

10-5

10-4

10-3

10-2

σ

asphericity L/R = 0.02
asphericity L/R = 0.01
roughness
time of impact
air drag (Newton)
air drag (Stokes)
impact location

0.001

0.002

0.003

0.004

0.005

σ

0.2 0.8 1.8 3.3 5.1 7.3h (cm)

FIG. 14. Top: Contributions to the total error characterized by the
standard deviations as a function of impact velocity. Bottom: Same
data but in logarithmic scale. For small impact velocity, imperfections
of the shape of the ball dominate the total error. For larger impact
velocity, v � 1.2 m/s, corresponding to dropping height h � 7 cm,
the error due to air drag becomes considerable (see second horizontal
scale). The given numbers are typical but specific for our set of
parameters; see Sec. II.

inelasticity (1 − ε) can easily exceed 20 . . . 50 %. The same
is true with respect to air drag—most experiments reported
in the literature use dropping height of 10–50 cm. From our
results, we may conclude, however, that for a typical system
(glass or steel spheres) a dropping height of more than about
5 cm renders the results questionable because of large errors
due to air drag.

In conclusion, we found that the details of the shape of
the particle are essential for the experimental error. Only
particles with very small deviation from the mathematical
sphere allow for the measurement of the coefficient of
restitution using the sound method at acceptable precision.
A second important contribution to the error comes from
air drag. We wish to point out that this contribution is a
systematic error that can be corrected. According to our
knowledge this was not done so far in the literature. Aside
from that, only the precision of the measurement of the
time of impact and the logical identification of impacts from
the sound data have significant impact on the precision of
the measurement.
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