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We present exact and approximate results for a class of cooperative sequential adsorption models using matrix
theory, mean-field theory, and computer simulations. We validate our models with two customized experiments
using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and
their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state
systems with cooperative effects.
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I. INTRODUCTION

Two-state stochastic models with cooperative effects have
been successfully used to describe diverse physical systems
ranging from surface kinetics [1] to problems in epidemics
[2,3] and voting behavior [4]. A particular application for such
models, the dynamics of nanoparticle deposition, is currently
an active area of research in nanotechnology studies [5,6] that
raises interesting questions on the theoretical front.

The class of cooperative sequential adsorption (CSA)
models [7], in which adsorption rates depend upon the
occupation of neighboring sites, was solved exactly for the
one-dimensional case [8], but higher-dimensional models are
less understood [9]. Adding evaporation to such models brings
additional complications. One of the standard tools used to
study these systems, the empty-interval method [10], fails
when evaporation is considered.

Our study is motivated by a very specific experimental prob-
lem, the ionic self-assembly of nanoparticles, and builds upon
previous work [11]. This class of experiments is referred to in
the literature as ionic self-assembled monolayers (ISAMs) [12]
and has been successfully used in the creation of antireflective
coatings [13]. During the manufacturing process, it is highly
desirable to know the analytical relationship between the index
of refraction and the particle density on the surface. Our goal
is to find ways to predict this particle coverage as a function
of time by solving relevant cooperative sequential adsorption
models. These models are ideally suited for modeling ISAMs
since the deposition process of nanoparticles is stochastic
and the deposited nanoparticles are electrically charged, as
are the substrate deposition sites, suggesting a cooperative
sequential adsorption model with attachment rates dependent
on nearest-neighbor site occupation. The cooperative effects of
the model are due to the interactions between charged particles
and are reflected in the attachment rates, that is, a particle will
have a lower probability of attachment if particles of the same
charge are already attached to the neighboring sites.

Our focus is the class of cooperative sequential adsorption
models with limited evaporation defined on a general lattice.
We study and compare two types of such models. The first type
consists of cooperative sequential adsorption models where the
attachment rates are general functions of the total number of

particles present in the system. Because of the overall effect
of the lattice occupation on the attachment rates, we will call
these models total lattice cooperative sequential adsorption
(CSATL) models. The second type of CSA models are the ones
for which the attachment rates depend on the occupation of
the nearest neighbors (CSANN). For both types of models we
discuss the case where evaporation of particles is present, but
limited. We will use the abbreviation CSAETL (or CSAENN)
when evaporation is present.

We present exact analytical results for the probability
distribution and particle density of the CSAETL model using
matrix theory. We also discuss the limitations of matrix theory
in solving these models. Using mean-field theory and Monte
Carlo simulations, we find the range of parameters for which
the CSAETL model matches well with the CSAENN one. We
further discuss the relevance of our analytical results to ISAM
experiments. We show a good fit between our CSAETL model
and experimental data for the concentration dependence of the
particle coverage. On the experimental side, we report data for
the time dependence of particle coverage and interpret it in the
context of CSAETL models.

The mathematical results and the analysis presented in
this paper can be extended to other physical problems for
two-state systems, such as generalized biased random walks
with variable step lengths, voting problems, or the spread
of epidemics. Our model, which includes evaporation (or
detachment) of particles, can account for the mechanism of
susceptible-infected-susceptible epidemics, for example [14].
If the lattice considered is a Cayley tree, the model can also
be related to the attachment and release of drug molecules
on synthetic polymers called dendrimers, a mechanism with
potential use as a drug delivery mechanism via drug encapsu-
lation [15,16]. Analytical solutions on Cayley trees were found
in [17–19].

In the following section of this paper we describe in
detail the experimental process of ionic self-assembly of
nanoparticles and its connection to cooperative sequential
models. In Sec. III we discuss the general two-state model
of particle attachment and detachment and outline the general
matrix theory methodology. In Sec. IV we present exact results
for CSATL with and without evaporation. We discuss the use
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FIG. 1. Sketch of the ISAM process for creating one PDDA-silica
bilayer on a glass substrate.

and the limitations of our models in explaining the ISAM
experiments in Sec. V. We compare our analytical results to
experimental data in Sec. VI and present a summary of our
work in Sec. VII.

II. EXPERIMENTAL MOTIVATION: IONIC
SELF-ASSEMBLY OF NANOPARTICLES

Ionic self-assembly of monolayers is a quick and low
cost process used for the creation of uniform and conformal
thin films on charged substrates. The process, sketched in
Fig. 1, is based on the sequential layering of oppositely
charged ions, typically either alternating charged polyions
or using a polyion as an electrostatic glue between layers
of ionic nanoparticles [12]. Due to the variety of ions that
can be used, the method can yield thin films with vastly
different physical structures and allows for the thickness to
be controlled with precision on the order of 1 nm [13].
Differing structures, specifically in regard to void space
between particles, can alter a film’s index of refraction, which
is an important factor in the production of optical coatings
[20–22]. Our research has focused on alternating layers of
cationic polymer, specifically poly(diallyldimethylammonium
chloride) (PDDA), with anionic silica nanoparticles. Because
of the large nanoparticle size relative to the polymer width, the
only observable change during layer-by-layer assembly is due
to the silica monolayer of each PDDA-silica bilayer.

We found cooperative sequential adsorption models to be
very helpful in modeling the ISAM process. The cooperative
aspect of the model captures the electrostatic interactions
between the silica nanoparticles. For example, an open site
on the lattice that is surrounded by other particles will have a
lower probability of attachment compared to open sites with
no neighbors. Also included in our model is the stochastic
nature of the self-assembly process.

In order to model the ISAM process, we used both
CSAETL and CSAENN models. Our CSATL model considers

deposition and evaporation rates that are general functions
of the overall number of particles present in the system at
the time and works for arbitrary size and topology. Natural
systems exhibit more subtle behaviors that are often modeled
by adsorption and evaporation rates that depend upon the states
of cells near a potential adsorption or evaporation site. This
dependence on the nearest neighbors is captured by a CSANN
model, also presented in [11].

We first discuss the general class of two-state models that
lead to useful results for our experiment. We use matrix theory
to derive exact solutions for the probability distribution of
particle attachment for specific CSA(E)TL models. Unfortu-
nately, this method is limited to only special cases. We further
our study by using a mean-field approach to the problem and
computer simulation results that show the range of parameters
for which our CSATL model can be a good approximation for
a CSANN model with nearest-neighbor interactions. In both
cases we consider the possibility of particle detachment at a
small constant rate.

III. DESCRIPTION OF THE GENERAL
TWO-STATE MODEL

Our general model for deposition and evaporation of
particles is defined on a grid, in which a set of n connected
cells is arranged on a lattice of arbitrary dimension and
topology (rectangular grids, Cayley trees, etc.). Our particles
are monomers of size equal to the size of a cell on the grid.
Each cell of the grid has two states: empty or filled. Empty cells
are filled at a rate ai ; filled cells are emptied at a rate bi . Here ai

and bi are general functions of the overall number of particles
present in the system. This general model can be solved exactly
for special cases and it exhibits sufficient complexity to be
useful as a standard of comparison for experimental results as
well as analytic and computational models that include more
complex rate assumptions. Since there is no dependence of
the two rates upon the states of any cells other than the cell
to be filled or emptied, the results are fully independent of
dimension and topology of the grid.

Let Pi represent the time-dependent ensemble-average
probability that exactly i cells of the lattice are filled. This
obeys the rate equation

dPi

dt
= −(ai + bi)Pi + ai−1Pi−1 + bi+1Pi+1. (1)

This transforms into an equation for the (n + 1)-dimensional
vector P with components P0,P1, . . . ,Pn as

dP

dt
= TnP,

in which Tn is the tridiagonal (n + 1) × (n + 1) matrix

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a0 b1

a0 −(a1 +b1) b2

a1 −(a2 + b2) b3

a2
. . .

. . .
. . .

. . . bn

an−1 −bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2)
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For the above matrix, we assume an = 0, which is justified
by the fact that particles will not be able to attach once the
lattice is full. In the next section we present general results for
the case of nonzero an that may be relevant for other physical
situations.

In principle, the general time-dependent solution for the
elements of vector P is given by

Pi =
n∑

k=0

ckEik exp(λkt), (3)

where λk is the kth eigenvalue of Tn and Eik is the ith
component of its kth eigenvector. Treating the values Eik as
elements of a matrix of eigenvectors, we can use elements of
its inverse to solve for the coefficients ck from a known initial
state Pk(0):

ck =
∑

j

(E−1)kjPk(0). (4)

The knowledge of the probability distribution leads to the
possibility to calculate other quantities relevant to experimen-
tal work, such as the particle density, for example,

ρ̄ ≡ 1

n

∑
i

iPi, (5)

or the standard deviation of the coverage distribution

σ 2 = 1

n2

[∑
i

i2Pi −
( ∑

i

iPi

)2
]
. (6)

However, there are very few tridiagonal matrices with
analytical solutions for the eigenvectors and eigenvalues. For
example, in a previous work [23] we showed that for the case
when the attachment and detachment rates are linear in i,
an exact solution is possible for the probability distribution
for any initial conditions. In this case, the same results for
specific initial conditions can be obtained using the generating
function technique. Next we present some useful exact results
for special cases of this tridiagonal matrix.

IV. EXACT SOLUTIONS OF SPECIAL CASES
USING MATRIX THEORY

A. Cooperative sequential adsorption model

The first case that we discuss is the case of a cooperative
sequential adsorption model with no evaporation. Total lattice
CSA models a system in which particles attach to the empty
sites with general attachment rates ai . Here ai can be any
general functions of the number of occupied sites i. The
results can also be extended for complex functions that may be
relevant for other models where oscillatory behavior is present.
Detachment of particles is forbidden, therefore bi = 0. In this
case, the master equation becomes

dPi

dt
= ai−1Pi−1 − aiPi, (7)

where i goes from 0 to n (the number of particles in the
system), the coefficients ai are general functions of variable
i, and an = 0. From a physical point of view, an = 0 means
that the lattice is full and the final steady state has a probability

Pn = 1, while the rest of the probabilities go to zero. Below we
present exact results for a more general case that also includes
the possibility of an being nonzero.

The corresponding transition matrix based on the master
equation for Pi is

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a0 0

a0
. . .

. . .
. . . −an−2 0

an−2 −an−1 0
an−1 −an

⎤
⎥⎥⎥⎥⎥⎥⎦. (8)

Because the matrix Tn is triangular, its eigenvalues are the
elements of the main diagonal

−a0, − a1, . . . , − an.

An eigenvector associated with the −an eigenvalue is clearly

(0, . . . ,0,1).

An eigenvector associated with −ai is of the form

(0, . . . ,0, ∗, . . . ,∗︸ ︷︷ ︸
n−i+1

).

The nonzero pattern has the form

(−1)i
n∏

k=i+1

(ai − ak),

(−1)i+1ai

n∏
k=i+2

(ai − ak),

(−1)i+2aiai+1

n∏
k=i+3

(ai − ak),

...

(−1)nai · · · an.

The elements of the inverse of the matrix A = aij whose
columns are the eigenvectors of Tn are

aij = (−1)i+j+1 aj−1 · · · ai−2

n∏
k=j−1
k �=i−1

(ai−1 − ak)−1.

Notice that the product aj−1 · · · ai−2 = 1 if i = j and 0 if
i < j .

B. Cooperative sequential adsorption with limited evaporation

We now include limited evaporation and use matrix theory
to explore the possibility of new exact results for the probabil-
ity distribution. Detachment of particles translates into nonzero
bi’s in Eq. (2). We demonstrate the change in the matrix
spectrum with the easiest case of a single-particle detachment
once the lattice is completely full, with an associated transition
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(a) (b)

(c) (d)

FIG. 2. Probability distribution of an n = 4 system as a function of time (in arbitrary units) for (a) attachment rate ai = 1 − i

n
and zero

evaporation, (b) attachment rate ai = (1 − i

n
)2 and zero evaporation, (c) attachment rate ai = 1 − i

n
and nonzero evaporation, and (d) attachment

rate ai = (1 − i

n
)2 and nonzero evaporation.

matrix

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a0 0

a0
. . .

. . .
. . . −an−2 0

an−2 −an−1 bn

an−1 −bn

⎤
⎥⎥⎥⎥⎥⎥⎦. (9)

The matrix Tn is not quite triangular and its eigenvalues change
slightly. Here an is assumed to be zero, which is the relevant
case for the particle deposition model. As in the CSATL case,
the first n − 2 eigenvalues are the elements along the main
diagonal ak , with 0 � k � n − 2. The eigenvalue λk = −ak −
bn corresponds to k = n − 1 and λk = 0 corresponds to k = n.

The eigenvectors change in the following way.
(i) The eigenvector associated with eigenvalue λn = 0

changes its next to last element from 0 to bn

an−1
.

(ii) The eigenvector for eigenvalue λn−1 remains the same.
(iii) In the remaining fractional entries, bn is subtracted

from terms in the numerator that contain an−1. If an−1 is present
only in the denominator (next to the last entry of the remaining
eigenvectors), bn is subtracted from the numerator.

For a more general case of particle detachment, we can
find the eigenvalues of the system for the case of a tridiagonal
matrix of this type:

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a0

a0 −a1 b1

a1 −a2 − b1

a2 −a3 b2

a3 −a4 − b2

a4
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠.

The last block of Tn on the right lower corner is(−an−2 b(n−1)/2

an−2 −b(n−1)/2

)
.

If we view Tn in terms of a block partitioned matrix, the matrix
is a block lower triangular matrix. Therefore, the eigenvalues
of Tn are in fact the eigenvalues of each main diagonal block.
In this case they are

0, − a0, − an−2 − b(n−1)/2

and

− 1
2 [a2i−1 + a2i + bi ±

√
−4a2i−1a2i + (a2i−1 + a2i + bi)2]

for i = 1,2, . . .. This pattern for the eigenvalues continues no
matter the size of the matrix, as long as there is at least one
zero on the off-diagonal that contains b’s, with the appropriate
change in the index for a’s.

The eigenvectors for large system sizes become intractable.
Numerical results for the eigenvectors and the associated
matrix inverse can be found for small finite matrices. It is worth
noting that this model can be mapped onto a dual cooperative
sequential evaporation with limited evaporation model via a
simple translation ai → an−i .

Figure 2 shows the significant change in the probability
distribution due to a small evaporation rate of bn = 0.05
consistent with Eq. (9). We considered a small system of
n = 4 particles with attachment rates of the following form:
ai = (1 − i

n
)r , where r = 1 for Figs. 2(a) and 2(c) and r = 2

for Figs. 2(b) and 2(d).
As expected, when the evaporation is zero, the steady state

is reached when the lattice is full, therefore the probability
P4 = 1 for this scenario of n = 4. In all cases, P0 decays
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exponentially, with rate a0. The other probabilities peak at
different times, but eventually tend to zero in the steady state.
Comparing Fig. 2(a) with Fig. 2(c), we notice that the curves
for P0, P1, and P2 have the exact same equations for CSA and
CSAE; only the equations for P3 and P4 are different due to
the possibility of evaporation in CSAE. Here P3 has a higher,
nonzero steady-state value in Fig. 2(c). The same pattern holds
for the case of quadratic attachment rates, namely, Figs. 2(b)
and 2(d), with different, higher peak times for the Pi , with
i = 1, . . . ,4.

V. APPLICATIONS OF THE CSAETL AND CSAENN
MODELS TO THE ISAM PROCESS

From a practical point of view, the observable for the
ISAM process is the particle density defined as the percentage
covered of the substrate surface. It is important to know
how this particle density varies with time. In order to get
an exact solution for the particle density, we need to solve for
the associated probability distribution. Matrix theory leads to
exact solutions for special cases, but it breaks down for more
complex master equations and other methods are needed, such
as mean-field or computer simulations.

A. Example of the CSAETL model solved using matrix theory

We first exemplify how to apply the matrix theory for
specific attachment and detachment rates for a CSAETL

model with attachment rate defined as linear functions of the
overall number i of particles present in the system at time t :
ai = a(n − i) and bi = bi, where a and b are positive constants
between 0 and 1. This model has the virtue of simplicity and
can be solved exactly, but it exhibits sufficient complexity to be
useful as a standard of comparison for experimental results as
well as analytic and computational models that include more
complex rate assumptions. Since there is no dependence of
the two rates upon the states of any cells other than the cell
to be filled or emptied, the results are fully independent of
dimension and topology of the grid.

Let Pi represent the time-dependent ensemble-average
probability that exactly i cells of the lattice are filled. This
obeys the rate equation

dPi

dt
= −[(n − i)a + ib]Pi + (n − i + 1)aPi−1

+ (i + 1)bPi+1. (10)

This equation transforms straightforwardly into an equa-
tion for the (n + 1)-dimensional vector P with components
P0,P1, . . . ,Pn as

dP

dt
= TnP,

in which Tn is the associated tridiagonal n × n matrix in this
case with the elements

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−na b

na −(n − 1)a − b 2b

(n − 1)a −(n − 2)a − 2b 3b

(n − 2)a
. . .

. . .
. . .

. . . nb

a −nb

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The general time-dependent solution for the elements of P is
given by

Pi =
n∑

k=0

ckEik exp(λkt), (12)

where λk is the kth eigenvalue of Tn and Eik is the ith
component of its kth eigenvector. The derivation of these
eigenvalues and eigenvectors has been presented in [23]:

λk = −k(a + b)

and

Eik =
n−k∑

�=i−k

(−1)i+k+�ηn−k−�

(
k

i − �

)(
n − k

�

)
,

with η ≡ b/a.
Treating the values Eik as elements of a matrix of

eigenvectors, we can use elements of its inverse to solve for

the coefficients ck from a known initial state Pi(0):

ck =
∑

j

(E−1)kjPk(0). (13)

Elements of the inverse matrix are simply related to elements
of E itself:

(E−1)ij = (1 + η)−nEn−i,n−j .

The results above will be used to examine in detail the
evolution from each of two specific starting configurations:
an initially empty grid and an initially filled grid. These
cases are easily established experimentally in physical settings
where the current model might apply and yield particularly
straightforward analytical expressions for interesting physical
properties.

1. Initially empty grid

In this case, the t = 0 configuration has no deposited
particles and is characterized by P0 = 1 and Pj = 0 for
j �= 0. From Eq. (13) we determine the constant coefficients
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appropriate to this case:

ck =
n∑

j=0

(E−1)kj δj0

= (1 + η)−nEn−k,n = (1 + η)−n(−1)k
(

n

k

)
. (14)

Inserting this result into Eq. (12) produces the following
expression for Pi :

(1 + η)−n

n∑
k,�=0

(−1)i+�ηn−k−�

(
n

k

)(
k

i − �

)(
n − k

�

)
e−k(a+b)t ,

which can be manipulated simply into the form

(1 + η)−n n!

(n − i)!

∑
�

(−1)i+�ηn−�

(i − �)!�!

∑
k

(ηz)−k

(
n − i

k + � − i

)
,

where z ≡ exp[(a + b)t].
The k sum is evaluated as

∑
k

(ηz)−k

(
n − i

k + � − i

)
= (ηz)�−i

(
1 + 1

ηz

)n−i

,

leaving Pi (after some simplification)

(−1)i
n!

(n − i)!

(
η

1 + η

)n

(ηz)−i

(
1 + 1

ηz

)n−i

× 1

i!

∑
�

(−z)�
(

i

�

)
.

The � sum evaluates to (1 − z)i , producing the result

Pi =
(

n

i

)(
1 + ηz

(1 + η)z

)n(
z − 1

1 + ηz

)i

, (15)

giving a simple form for the time evolution of every term in
the distribution of occupation probabilities. The Pi’s are easily
seen to be elements of a binomial distribution

Pp(i|n) =
(

n

i

)
pi(1 − p)n−i

that gives the probability of getting exactly i successes out of
n trials when the probability of success for each trial is p. The
value for p in Eq. (15) is

p = z − 1

z(η + 1)
= 1 − exp[−(a + b)t]

1 + η
.

Known properties of the binomial distribution produce an
expression for the mean coverage

ρ̄ ≡ 1

n

∑
i

iPi = 1 − exp[−(a + b)t]

1 + η
,

in agreement with the mean-field results for this model.
Properties of the binomial distribution also allow simple
expressions for all moments of the coverage function. Of

particular interest is the variance

σ 2 = 1

n2

[∑
i

i2Pi −
(∑

i

iPi

)2
]

= 1

n

(1 − e−(a+b)t )(η + e−(a+b)t )

(1 + η)2
, (16)

which expresses the statistical stability of the system at any
time during its evolution.

2. Initially filled grid

This case closely parallels the previous one, but with an
initial state given by Pj (0) = δjn, which leads to a different
set of coefficients ck:

ck =
n∑

j=0

(E−1)kj δjn

= (1 + η)−nEn−k,0 = (1 + η)−n(η)k
(

n

k

)
. (17)

Through manipulations like those above, we derive a form for
the time dependence of the elements of P :

Pi =
(

n

i

)(
η(z − 1)

z(1 + η)

)n(
z + η

η(z − 1)

)i

,

leading to a form for the time dependence of the mean coverage
for this case as

ρ̄ = z + η

z(1 + η)
= 1 + η exp(−(a + b)t)

1 + η

and its variance

σ 2 = 1

n

η(1 − e−(a+b)t )(1 + ηe−(a+b)t )

(1 + η)2
, (18)

both of which approach the same late-time limits as for the
initially empty case above.

It is worth noting that Eq. (10) can also be solved using the
generating function technique, as this is essentially an example
of a biased random walk. We used this specific example due
to its relative simplicity, but the methodology can be applied
to other attachment and detachment rates.

B. Comparison of CSAETL and CSAENN models using
mean-field theory and computer simulations

We explore further the use of cooperative sequential
adsorption models for the ionic self-assembly of nanoparticles.
Based on the analysis above of a special case of CSAETL, we
can see that CSAETL models are in general more amenable
to analytical solutions than CSAENN models for which
local nearest-neighbor interactions lead to strong particle
correlations that make the system unsolvable by mean field
of matrix theory methods. We want to identify the range of
parameters for which CSAETL and CSAENN models are
equivalent.

We choose two cooperative sequential adsorption models,
CSAETL and CSAENN on a two-dimensional lattice. We
introduce the occupation numbers ni = 0 for an empty site and
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ni = 1 for an occupied site, with transition rates as follows:

c[ni → (1 − ni)] = niγ + μ(1 − ni)

(
1 −

∑n
i=1 ni

n

)
(19)

for the CSAETL model and

c[ni → (1 − ni)] = niγ + (1 − ni)αβη (20)

for the CSAENN model.
In Eq. (19), the term

∑n
i=1 ni

n
represents the overall particle

density of the grid and it is subtracted from one so that there is
a decreasing likelihood of deposition as the grid fills. For each
rate, the system is programmed to change state if a randomly
generated decimal is less than or equal to the value of the rate
equation at the time. The evaporation of particles happens at a
constant rate γ in this model.

The CSAENN transition rate [Eq. (20)] does not consider
the overall particle density, but instead takes into account the
influence of a particle’s nearest neighbors via η = ∑

j∈NN nj ,
which is the sum of the occupied sites that neighbor site i. In
this particular case we restrict the values of the parameter β

between 0 and 1, to model the electrostatic interaction present
for the ionic self-assembly of silica particles. Just as in the
previous model, there is a constant evaporation rate given
by γ , yet the attachment rate has changed considerably. In
both cases, the parameters μ and α ensure particle deposition
for the case of either an empty lattice or no neighbors
present.

The computer simulations were coded in PYTHON and run
on a wide range of two-dimensional grids (10 × 10, 50 × 50,
100 × 100, 300 × 300, 500 × 500, 700 × 700, and 1000 ×
1000). We used a standard Monte Carlo algorithm, where sites
were picked at random, occupation of neighboring sites is
checked, and the transition rates defined above dictate if the site
picked changes state. To ensure that a steady state was reached
in a simulation, the number of iterations in each simulation was
set at 5 × 107. Random number generation utilized the PYTHON

built-in random module, which uses the Mersenne twister,
a very reliable generator. The evaporation rate γ was kept
constant and low at γ = 0.1 for both cases. To be consistent
with the experiments, the initial configurations were all empty
lattices.

We derived equations for the particle density in both
cases using the mean-field theory. The CSAENN model was
previously discussed in [11]. We now give a very short review
of the mean-field results.

Given the transition rate from Eq. (20), the number of
particles on the lattice changes according to the following
equation:

∂ni

∂t
= −γ ni + (1 − ni)αβη. (21)

In the mean-field approximation [11], the equation for the rate
of change of the particle density is

∂ρ

∂t
= −γρ + (1 − ρ)αβ4ρ. (22)

FIG. 3. Comparison of steady states for both models found from
mean-field theory (solid line) and simulations (squares). Here μ =
0.8 and γ = 0.1 for both models.

For the steady state ∂ρ

∂t
= 0, this is a self-consistent transcen-

dental equation that can be solved numerically:

ρ = αβ4ρ

γ + αβ4ρ
. (23)

Although Eq. (23) is a nonlinear function, a linear approxima-
tion matches the numerical solution well, as shown in [11]:

ρ = α

γ + α
− (1 − β)

[
4

(
α

γ + α

)2(
1 − α

α + γ

)]
. (24)

Using the same methodology as in [11], we can derive the
mean-field equation for the particle density of our CSAETL
model as

∂ρ

∂t
= −γρ + μ(1 − ρ)2 (25)

with an immediate solution for the steady state

ρ = 1

2

γ + 2 μ −
√

γ 2 + 4 γ μ

μ
. (26)

We can match the two steady-state solutions to find the
relationship between the parameters for which this match is
possible. We also check the validity of this approximation us-
ing simulations. Figure 3 shows such a comparison and match
for specific values for μ = 0.8 and γ = 0.1 (the evaporation
rate was kept the same for both models). Mean-field theory
predicts β = −1.25 × 10−3(593.1α − 822.1 − 22.2

α
− 1.4

α2 ) for
CSAETL and CSAENN to produce matching steady states.
As presented in Fig. 3 for a 100 × 100 lattice, simulations
show that the match holds true only for a small range of
values, approximately 0.2 � α � 0.4 and corresponding β’s.
The results for the 100 × 100 lattice size remains accurate
for lattice sizes between 50 × 50 and 1000 × 1000, within a
margin of error of 3%. A discrepancy appeared for small lattice
sizes. For example, for a 10 × 10 lattice, the first data point
in Fig. 3, (α = 0.1,β = 1.38), shifts to (α = 0.1,β = 1.42) in
order for the CSATL and CSANN models to have the same
steady states.
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FIG. 4. Comparison of theory and experimental data for the
particle density as a function of the inverse of concentration of the
colloidal suspension in arbitrary units. The equations associated with
the linear fit are from theory (solid line), y = −0.0077x + 0.7468
from Eq. (26), and experiment (squares), y = −0.0078x + 0.7566
with R2 = 0.9468.

VI. COMPARISON: THEORY AND EXPERIMENTS

We tested the validity of our models in the context of ISAM
experiments. In the first set of experiments, presented in the
following section, we analyzed how the concentration of the
colloidal suspension of nanoparticles affects the steady-state
particle density of the thin film. We wanted to see how
experimental observables, such as the particle density and
suspension concentration, connect to our CSAETL model
parameters. In the second set of experiments we analyzed
the time dependence of the particle density for a fixed
concentration and compared it to the analytical solution
provided by the CSAETL model.

A. Concentration dependence

In our experiments we deposited negatively charged
spherical silica nanoparticles of nominal 40–50 nm
diameter on negatively charged glass slides using
poly(diallyldimethylammonium chloride) (PDDA) as poly-
cation, following the steps outlined in Sec. II. The silica
nanoparticles (SNOWTEX ST-20L from Nissan Chemical)
were in a colloidal suspension at stable pH = 10.3 and room
temperature T = 21 ◦C. The glass slides were cleaned under
sonication, in three successive 20-min steps, with LABTONE
detergent, 1N sodium hydroxide solution, and deionized water,
and then dried with flowing nitrogen gas. The dipping time
was 10 min for each bilayer. We varied the concentration
of the silica suspension by diluting it with deionized water.
We examined the nanoparticle coverage of the substrate
using scanning electron microscope (SEM) micrographs, in
which deposited particles appear as light regions on a dark
background. The details of the experimental procedure to
create one-bilayer thin films were also presented in our
previous study [11].

We fitted our CSAETL model to the concentration data and
found a good match between the two, as shown in Fig. 4. A
clear relationship emerges between the parameter μ defined
earlier in Eq. (19) and C, the concentration of the colloidal

suspension,

μ = e−γ /2C. (27)

This relationship is valid for low detachment rates γ = 0.1
and is consistent with the experiments.

The fit with the concentration data works better for low
concentrations. At high concentrations, it appears that the
evaporation rate is higher and a better fit would be for
γ = 0.15 and μ = 0.7, consistent with the time dependence
data presented below.

B. Time dependence

The kinetics of particle adsorption has been studied in
[13,20], but there is little consensus in terms of the time
scale of the process. In [13] it was reported that silica
adsorption onto PDDA reached 90% of its full saturation in
10 s. It seems that for low densities there are two regimes of
particle attachment due to the electrostatic screening: a fast
Langmuir-type adsorption for a short interval of time followed
by a very slow approach to the maximum surface concentration
for longer times. The nanoparticles that initially attach to
the PDDA glue decrease the probability of attachment for
the subsequent nanoparticles from the colloidal suspension.
Despite all the time estimates from these studies, there is
very little information regarding the kinetics of nanoparticle
attachment at times less than 2 s.

An alternative method had to be developed in order to
investigate the adsorption of silica nanoparticles at much
shorter time scales. We first cleaned the glass slides using
a standard method presented in [11]. The clean slides were
dipped in a 10 mM PDDA suspension for 10 min and then
given three 1-min rinses with deionized water. They were
then dried under a nitrogen stream before dipping in the silica
nanoparticle suspension.

Each slide was marked beforehand on its side with small,
regularly spaced dots and the dipping was done manually. We
filmed each dip with a high-speed camera at 1000 frames/s and
reviewed the footage measuring how long each dot was in the
silica suspension with precision down to the millisecond. This
method allowed for each slide to hold many data points, with
each dot’s horizontal plane being immersed for longer than
that above it. We collected a total of 11 data points, ranging
from 0.058 s up to 0.639 s.

We examined the nanoparticle coverage of the substrate
using SEM micrographs, in which deposited particles appear
as light regions on a dark background, and determined the
average coverage of light pixels, representing the presence
of deposited particles, using a pixel-counting technique. The
experimental results are presented in Fig. 5 and compared to
the theoretical predictions. The theoretical time was scaled by
a factor of 24 to match the real time. The theoretical curve
was obtained using the CSAETL model in the mean-field
approximation (26) with μ = 0.7 and the evaporation rate
γ = 0.2. We notice that the system settles into a steady state
with an overall particle density a little less that 60%, a feature
that signifies the presence of evaporation, as well as volume
constraints due to particle sizes.

Compared to published studies, it appears that the attach-
ment of particles for one bilayer happens even faster than

032803-8



CLASS OF COOPERATIVE STOCHASTIC MODELS: EXACT . . . PHYSICAL REVIEW E 93, 032803 (2016)

FIG. 5. Time dependence of particle density: experimental data
vs theoretical model using the CSAETL model with γ = 0.2 and
μ = 0.7.

previously reported and it exhibits the two regimes mentioned
at the beginning of this section. Roughly half of the particles
attach in the first 0.058 s, with a slower regime following
up to 0.639 s. It was proven in [24] that PDDA in a pure
water suspension adsorbs onto a silica surface in a flat rodlike
configuration, but adsorbs in random coils in the presence of
NaCl. Furthermore, the attractive force between the polyion
and colloid is weakened in its presence. The absence of NaCl
in our PDDA suspension could have allowed for more uniform
adsorption and stronger electrostatic bonding to silica because
the charges are not reduced by interaction with counterions.
This could provide a possible explanation for the very short
time scale of the adsorption process. We find the data intriguing
and plan to pursue a more extensive study of the time
dependence of the particle coverage.

VII. CONCLUSION

In this paper we discussed in detail a class of cooperative
sequential adsorption models relevant to the experimental
process of ionic self-assembly of silica nanoparticles. Using
matrix theory, we found exact solutions for the probability
distribution for general attachment and detachment rates that

fit a certain mathematical pattern. We also discussed this
model using the mean-field theory and found its limitations
in comparison to a previously studied model with nearest-
neighbor cooperative effects.

We compared our analytical findings with experimental
results for two sets of experiments: concentration dependence
of the steady-state particle density and time dependence of
the particle density. We found a good fit for our CSAETL
model for the concentration dependence data, with a clear
relationship between the parameters as reported in Eq. (27).
This result leads to the possibility of predicting, for a given
concentration of the colloidal suspension, the parameters for
the associated analytical model, which, in return, leads to
the predicted particle coverage for the steady state. From an
experimental standpoint, this method can be both cost and time
effective and can be generalized to a concentration-dependent
study of the index of refraction of multilayered thin films.

We explored both analytically and experimentally the time-
dependent process of particle attachment and detachment. Our
preliminary experimental curve (Fig. 5) seems to indicate a
much faster time scale of particle attachment than previously
reported. It will be interesting to analyze this further for other
concentrations and for an even smaller time interval to see
if this pattern still holds. Our theoretical curve based on the
mean-field approximation of the CSAETL model is a good
approximation of the experimental curve but does not capture
the two-stage process of particle attachment that the data show.

We hope that the analytical results reported in this paper
will be used to understand other two-state systems where
cooperative effects are present. Also, the exact results provided
by the matrix theory can contribute to finding general matrix
spectra for special tridiagonal matrices.
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