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The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale
model which provides access to the lamellar configurations and the rheology. Based on the equations and free
energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number
(ργ̇L2/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ̇ /B), the interface sharpness parameter r , the
ratio of the viscosities of the hydrophilic and hydrophobic parts μr, and the ratio of the system size and layer
spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ̇ is the applied strain rate, D is the
coefficient of diffusion, B is the compression modulus, μr is the maximum difference in the viscosity of the
hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream
direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two
dimensional system of moderate size (L/λ = 32) and for a low Reynolds number, and the other parameters
are systematically varied to examine the qualitative features of the structure and viscosity evolution in different
regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local
formation of randomly aligned domains with “grain boundaries,” which are rotated by the shear flow to align
along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do
not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned
lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers
before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers
by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high
Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression
and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very
high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear
results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a
long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity
due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move
as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does
not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity,
due to pinning of the layers between defects, which results in a plug flow between defects and a localization of
the shear to a part of the domain.
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I. INTRODUCTION

Oil, water, and surfactants, when mixed in appropriate
proportions, form structured fluids such as micellar, hexagonal,
or lamellar mesophases. These are important in numerous
commercial applications such as food and personal care
products, and accurate prediction of the rheology of these
structured fluids is of importance in the design of industrial
processes. The lamellar mesophase, which consists of a stack
of equally spaced layers at equilibrium is used in products
where high viscosity is desired. Lamellar phases possess
positional order in the direction perpendicular to the layers
and fluidlike behavior along the plane of the layers. Intuitively,
the shear flow is expected to align initially disordered lamellae
along the flow direction, so as to form a well-aligned structure.
The viscosity (defined as ratio of shear stress and strain
rate) of the lamellar phase in this final configuration would
then obey the inverse sum rule for viscosity of binary
mixtures. In experiments, the steady state viscosity of a
macroscopic sample is always orders of magnitude higher
than that calculated by the inverse sum rule, indicating that
there is significant disorder in the system [1–3]. There are,
at present, no reliable models that can be used to predict the

macroscopic rheology, and the structure-rheology relationship,
of disordered lamellar phases.

One reason for the difficulty of modeling lyotropic lamellar
phases is the scale separation between the layer scale and typi-
cal sample sizes. The layer thickness is of the order of 1–10 nm,
and a typical macroscopic sample of size 1 mm would contain
about 106 layers. This scale separation also implies that a long
time is required to achieve equilibrium, because the longest
relaxation time diverges with system size [4]. In addition, due
to the high viscosity of surfactant systems, the approach to
equilibrium is slowed down by kinetic constraints at room
temperature. The scale separation also makes it difficult to
examine structure-property relations using simulations based
on molecular models. The maximum system sizes that can
be attained in molecular simulations is 1–2 bilayers, where
the properties at the bilayer level such as the equilibrium
spacing and the correlations in the height fluctuations can
be studied, but not the collective properties of a stack of
bilayers. At the mesoscale, continuum models, which do not
resolve the molecular structure but only distinguish between
the hydrophilic and hydrophobic parts of the lamellar fluid,
can be used to simulate up to a few hundreds of layers. The
other difficulty is the two-way structure-rheology relationship
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in lamellar phases under large deformation. Not only are the
rheological properties of lamellar fluids anisotropic, but the
viscoelastic properties depend on the alignment of the layers
relative to the principal axes of deformation, and the layer
alignment is in turn modified by the flow [5,6]. It is necessary
to include this two-way coupling between structure and flow
in rheological models.

In the mesoscale description, the dynamical variable is
the concentration (order-parameter) field which distinguishes
the hydrophilic and hydrophobic parts. The free energy
functional for the order parameter field is chosen to be
a modification of the Landau-Ginzburg free energy which,
when minimized, results in a periodic spatial variation in
the concentration field with the correct lamellar spacing.
Dynamical equations for the concentration and momentum
fields, which are modifications of the model H equations [7]
for a binary fluid, have been used to simulate the evolution
of the structure and rheology of initially disordered lamellar
samples [8–15]. These mesoscale models have been used in
mesoscale simulations [11,13] to study the structure-rheology
relationship for samples consisting of a few tens of layers.
In these simulations, it is possible to identify defects in the
background lamellar phase, visualize the annealing of defects
due to shear, and also to identify the mechanisms of creation
of defects due to the background shear. Two different defect
creation mechanisms, the “buckling instability” (where defects
are created due to expansion of layers along the extensional
axis) and the “compressional instability” (where defects are
created due to compression along the compressional axis) have
been identified in the simulations. However, it should be noted
that these studies are two dimensional, and it is not yet possible
to simulate large system sizes consisting of even a few tens of
layers in three dimensions.

The presence of defects in a background ordered lamellar
phase could have a significant effect on the rheological
properties. Experiments [16] show clear correlation between
variations in viscosity and defect density. Simulations [8–15]
have been used extensively to study restructuring of lamellar
phases under shear. Simulation studies [13,14] also show
that the layers align completely in small system sizes, and
the viscosity value follows the inverse sum rule. Larger
systems reach a steady state where there is a balance between
annihilation and creation of defects, and the viscosity increases
with system size. The defect creation mechanisms include
the undulation instability along the extensional axis of layers
subjected to an expansion, and compressional instability along
the compressional axis of the shear flow [13]. Shear is
also shown to reorganize ordered lamellar mesophases into
multilamellar vesicles known as onion phases [17,18] by a
mechanism that is still not well understood. It should be
noted here that the largest system sizes in simulations, which
comprise 102–103 layers in two dimensions and a smaller
number of layers in three dimensions, are still very small
compared to macroscopic samples. Nevertheless, simulations
do show that defects obstruct flow around them, modify
resulting stresses and in turn could get created, deformed,
or annealed due to the flow.

The common defect structures of relevance to lamellar
phases are disclinations, edge dislocations, screw dislocations,
and focal conic defects [19]. Focal conic defects arise because

the layers around a defect have to conform to shapes known
as Dupin cyclides, in order to maintain the layer spacing
constancy. Since focal conic defects typically involve hundreds
of layers, they are visible in polarizing microscopy as fan-
type structures. Additionally, self-assembled structures formed
with defects as building blocks are finding potential appli-
cations in preparing lithographic templates, superhydrophic
surfaces, etc. [20]. Since the present study is restricted to
two dimensions, not all defect structures are accessible. In
two dimensions, there are two broad types of disorder that
are observed [13]: edge dislocations in a background nearly
aligned lamellar phase, and grain boundaries between two
differently aligned domains. The edge dislocations in two
dimensions are linked to the focal conic defects discussed
above; the focal conic defects are formed when pairs of
edge dislocations of opposite signs come together to form
a dislocation pair (visible as long “oily streaks” in polarizing
microscope images), and these break up perpendicular to the
plane of the dislocation to form focal conics defects. Grain
boundaries between different disordered domains are also
visible in disordered lamellar mesophases in three dimen-
sions [16], and the stability and dynamics of grain boundaries
under shear has been studied [21]. The screw dislocation is
the only defect type that is not present in two dimensions.
Screw dislocations are known to have a significant effect on
rheology in small amplitude strain measurements. However, a
screw with an axis in any direction is not commensurate with
continuous shearing, and so these are likely to be annealed
quickly under steady shear.

Here, we identify a minimal set of dimensionless parame-
ters which influence the rheology of the lamellar mesophase,
and then we use continuum simulations in order to examine
the effect of the variations in these parameters on the rheology
during the shear alignment process from an initially disordered
state in two dimensions. There are formal procedures to cal-
culate the parameters in the mesoscale model from molecular
properties [22,23], and it has been shown that the mesoscale
model is able to capture linear response results of fundamental
excitations of an aligned lamellar phase near equilibrium [22].
Theoretical approaches have also been developed for the effect
of defects on the rheology of nearly aligned sheared lamellar
mesophases [24]. However, there is as yet no comprehensive
understanding of how the mesoscale parameters affect the
rheology, and the structure-rheology relationship, for samples
of size a few tens to hundreds of layers. For this, it is necessary
to reduce the parameters in the problem to a minimal set of
dimensionless groups, and then study the shear alignment
as a function of these dimensionless parameters. Here, the
effect of different dimensionless groups on the shear alignment
process is studied for a modest system size of 32 layers in two
dimensions. Even though the system size is not large, it is
necessary to carry out a large number of simulations in order
to sample variations in all the dimensionless parameters that
are of importance, and to build a comprehensive picture of
the different types of structures and the structure-rheology
relationship.

The mesoscale free energy functional contains three pa-
rameters: the layer spacing λ, the energy density parameter
A, and a parameter r which determines the thickness of the
interface between the hydrophilic and hydrophobic parts. For
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large r , the concentration modulation is sinusoidal, whereas
for small r , the concentration modulation is close to a step
function with a sharp transition between the hydrophilic
and hydrophobic parts. There are three parameters in the
dynamical concentration and momentum equations for the
concentration field: the density, viscosity, and a diffusion
coefficient or Onsager coefficient which is related to the
permeability of the water through the bilayers. From these
parameters, it is possible to construct three dimensionless
numbers: the Reynolds number which is the ratio of fluid
inertia and viscosity, the Schmidt number which is the ratio
of momentum and mass diffusion, and the Ericksen number
which is the ratio of the viscous and elastic stresses. In addition
to these, there is also a possibility of a difference in viscosity
between the hydrophobic and hydrophilic parts, because the
hydrophilic component is usually water with relatively low
viscosity, while the hydrophobic part contains surfactant tails
which are long chain alkanes with relatively high viscosity.
In the present analysis, we consider the Reynolds number
to be small, because lamellar phases usually have very high
viscosity. The effect of variations in the interface sharpness
parameter r , the Schmidt number, the Ericksen number, and
the viscosity contrast on the rheology during the shear ordering
process are examined in detail. We have used single relaxation
time lattice Boltzmann method (LBM), with two distribution
functions, one each for concentration and momentum field,
to perform the simulations [8,11,13]. The simulations have
been carried out with wall [25] as well as periodic boundary
conditions [26,27] for a system containing 32 lamellae in two
dimensions.

II. MODEL

The dimensionless scalar order parameter (ψ) for concen-
tration field is defined as the ratio of concentration difference
of individual components (cw − co) and the total concentration
(cw + co) where cw and co are concentrations of hydrophilic
(water) and hydrophobic (oil) parts. The lamellar mesophase
is modeled using the model H mass and momentum equations
for a binary fluid [7], with an additional term in the free energy
functional which, when minimized, gives a one-dimensional
periodically varying concentration field as the equilibrium
solution [22,23]. Attention is restricted to symmetric lamellar
phases where the hydrophilic and hydrophobic parts have
equal volume fractions. A free energy functional can also be
written for asymmetric systems where the volume fractions
of the hydrophilic and hydrophobic parts are not equal, by
adding a term that is cubic in the order parameter ψ , the
coefficient of which is proportional to the relative difference
in the volume fractions of the hydrophilic and hydrophobic
parts [23]. However, we do not pursue this in the present
analysis. The free energy functional (F [ψ]) is of the form

F [ψ] = A

∫
dV

(
−1

2
ψ2 + 1

4
ψ4 + g

2k2
(∇ψ)2

+ r

2k4
[(∇2 + k2)ψ]

2
)

. (1)

The first two terms in the integral on the right are the quadratic
and the quartic terms in the Landau-Ginzburg free energy

functional, and the negative sign on the first term promotes
segregation of the constituent (hydrophilic and hydrophobic)
parts. The third term is the surface tension term, and the value
of parameter g is chosen so that the surface tension is zero at
macroscale, as required by symmetry. The last term promotes
formation of layers with wavelength (layer width) λ = (2π/k),
where k is the wave number. The parameter r in Eq. (1) controls
the ratio of the wavelength of the concentration modulation and
the thickness of the interface over which there is a transition
between the hydrophilic and hydrophobic regions, as discussed
a little later.

At macroscale, the free energy functional is written in
terms of layer displacement variable u which is the local
displacement of the layers from their equilibrium positions
due to applied stresses. The free energy functional for the
displacement field, derived from that for the concentration
field (1) using the linearization approximation, is [22]
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The first term in the integrand represents the free energy change
due to compression or expansion of layers along the layer
normal, and B is the compression modulus. The second term
accounts for the change in free energy due to the change in area
in the plane of the layers, and G is the surface tension. Since
the free energy of the lamellar mesophase system is invariant
when the layers are tilted, the surface tension G is zero. The
third term is the energy penalty due to layer bending, and K

is the bending (curvature) modulus. For a single membrane,
the free energy is written as an integration over the membrane
area, such that

F [u] =
∫

ds
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)2}
, (3)

where ds is the differential surface area of the membrane. It
is easy to see that B = B∗/λ, G = G∗/λ, and K = K∗/λ.
The relation between the free energy functional (1) for the
concentration field, and that in Eq. (2) for the displacement
field, is shown in Appendix A. Also provided are the mass and
momentum equations expressed in terms of the concentration
and the displacement fields. The simulation technique, based
on the lattice Boltzmann method (LBM), is described in
Appendix B.

Based on the description in Appendix A, the dimensionless
parameters which influence the equilibrium and dynamical
properties are as follows:

(1) The Schmidt number (Sc = ν/D) is defined as the ratio
of momentum diffusivity and mass diffusivity. Here, D is
the diffusion coefficient for the concentration field ψ , and
is related to the permeation coefficient for water through the
hydrophobic regions of the bilayer as shown in Appendix A.
The kinematic viscosity ν is the ratio of the dynamic viscosity
μ and the density ρ, ν = (μ/ρ). The Schmidt number is varied
from 0.33 to 5.0 in the most of the simulations, though we have
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considered lower values of the Schmidt number in some cases
to distinguish qualitatively different morphologies during the
alignment process.

(2) The interface parameter r determines the thickness of
the interface between the hydrophilic and hydrophobic parts
in the lamellar mesophase. Once r is fixed, the parameter g

is determined from the requirement that the surface tension
has to be zero [Eq. (A7)]. The equilibrium interface profiles
for three values of r shown in Fig. 28 in Appendix A. It
was shown [22,23] that the molecular concentration profiles
from molecular simulations can be used to construct the
concentration field ψ , and this can be used to evaluate
the parameter r which can then be used in mesoscopic
simulations. For large r , the concentration profile resembles a
sinusoidal profile. This corresponds to the weak segregation
or high temperature limit where there is interdiffusion of the
hydrophobic and hydrophilic parts and the layers are weakly
defined. For small r , the concentration profile resembles a
step function. This is the strong segregation limit where the
hydrophilic and hydrophobic parts do not diffuse through each
other.

Simulations have been carried out for three different values
of r: 1.0, 0.1, and 0.01 (cases 1, 6, and 7 in Table I). For
r = (1,0.1,0.01) the value of interface thickness (r1/4λ) is (λ,
0.56λ, 0.32λ) respectively.

(3) In the dynamical equations, the ratio of the inertial
and viscous forces is the Reynolds number (Re = ρ ¯̇γL2/μ̄),
where ¯̇γ is the average strain rate and μ̄ is the average viscosity.
Though the Reynolds number is usually defined in terms of
the flow velocity, it is more convenient to define it in terms
of the strain rate which is the ratio of the difference in the
velocities of the two walls (or periodic images when Lees-
Edwards boundary conditions are used) and the separation L.
The Reynolds number is usually low in practical applications,
and so we set it to a value of 1 in the simulations which is low
enough that inertial effects are not important.

(4) The dimensionless Ericksen number (Er) is defined
as the ratio of viscous stress to the elastic stress due to
nonequilibrium structure. Here, we prefer a definition based on
layer compression modulus which has dimensions of energy
per unit volume, so that the Ericksen number is independent
of the system size,

Er = μ̄ ¯̇γ

B
, (4)

where we have used average strain rate instead of flow velocity
to define the Ericksen number. When the compression modulus
B is used, the Ericksen number is independent of the system
size.

To examine the effect of Ericksen number on the shear
alignment, simulations are also carried out for four other
values, namely 0.49 (case 3), 4.9 (case 2), 0.1 (case 4), and
4.9 × 10−3 (case 5), in addition to the reference value of 0.2.

(5) The effect of viscosity variation across one wavelength
of the concentration modulation is incorporated using a model
for the viscosity of the form

μ = Maximum[μ0[1 + μ1ψ(x,t)],0.01μ0], (5)

where ψ(x,t) is the local concentration. Four different values
of μ1 are considered, 0.32, 0.53, 1.07, and 2.13, for a diffuse
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FIG. 1. The mean velocity ux , scaled by the difference in velocity
across one concentration modulation, (	Uλ/L), as a function of the
cross-stream distance (y/λ) for an aligned lamellar phase with viscos-
ity contrast with the parameter μ1 = 0.32 (◦), 0.53 (�), 1.07 (�),
and 2.13 (�) in Eq. (5). The dashed line shows the linear velocity
profile when there is no viscosity contrast, μ1 = 0.

interface with r = 1. For the last two values, in order to
prevent the viscosity from becoming negative, a condition is
imposed on the minimum value for the viscosity, as indicated in
Eq. (5). The velocity profiles across one concentration wave,
ψ = sin (2πy/λ), when the viscosity is given by Eq. (5) is
shown in Fig. 1. For μ1 = 0.32 and 0.53, there is only a small
modification in the velocity profile from the linear profile for
μ1 = 0. In contrast, for μ1 = 1.07 and 2.13, shear banding
is clearly observed where there is a near-linear variation of
velocity across the region with low viscosity and virtually no
change in the velocity in the regions with high viscosity, as
expected for a water-surfactant lyotropic lamellar mesophase.

While the median viscosity is μ0 when the viscosity
variation is given by Eq. (5), the average viscosity (stress
divided by the ratio of the velocity difference across one
concentration wave and the wavelength) is given by the inverse
sum rule,

μ̄ =
(

1

λ

∫ λ

0
dy

1

μ(y)

)−1

. (6)

This average viscosity could be much smaller than the median
viscosity when μ1 is greater than 1, as shown in Table II.
The viscosity ratio is defined as the ratio of the difference
between the maximum and minimum viscosities and the
average viscosity. This ratio is also numerically large when
μ1 is greater than 1. In the following analysis, the Reynolds,
Schmidt, and Ericksen numbers, denoted by Re0, Sc0, and
Er0, are defined on the basis of the viscosity μ0, and not
the viscosity μ̄. The ratios of the Reynolds, Schmidt, and
Ericksen numbers defined using μ0 and μ̄ are given in Table II.
The details of the implementation of viscosity contrast in the
simulations are given in Appendix B.

(6) Periodic boundary conditions are used in the simulations
along the flow (x) direction. In the direction perpendicular to
the flow, two different types of boundary conditions are used:
the no-slip boundary condition (where the fluid velocity is set
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equal to the wall velocity and the value of the concentrations is
set equal to zero) [25], and the Lees-Edwards boundary [26,27]
conditions, where periodic images of the simulation cell above
and below are moved with velocity (γ̇ L/2) and −(γ̇ L/2)
respectively, in order to create a shear flow with strain rate
γ̇ within the simulation cell. Here, γ̇ is the applied strain rate
and L is the height of the box. The implementation of these
two types of boundary conditions is discussed in Appendix B.
The no-slip boundary conditions are implemented using
the bounce-back scheme of Ladd [25], while the constant
concentration condition ensures that there is no change in the
concentration at the boundary after the streaming and collision
time steps [13]. The boundary conditions are briefly explained
in Appendix B. These two types of simulations do not show
any qualitative differences and quantitative differences are not
significant, so we present results only for the wall boundary
conditions here. A comparison between the the results obtained
with the two boundary conditions is shown in Fig. 31 in
Appendix B.

Table I in Appendix A contains a comprehensive list of
the dimensionless parameters in the simulations. For cases
with viscosity contrast, the viscosity used in the dimensionless
parameters can be either μ0 [Eq. (5)], which is the median
viscosity, or the average viscosity for a layered configuration
calculated using the inverse sum rule. In the present analysis,
the viscosity μ0 is used for all the dimensionless parameters.
The relation between the average viscosity μ̄ and μ0, as well
as the values of dimensionless parameters determined using
μ̄, are provided in Table II in Appendix A.

The initial disordered configuration is generated using a
uniform random number generator. For systems with relatively
smoother interfaces (r � 0.1), the initial value of ψ at each
lattice site is set to a value ±0.5 depending upon the outcome
of the random number generator. When the same protocol
was used for initialization of systems with steep interface,
regions of high concentration gradients at length scales smaller
than the layer spacing were found to exist even at much later
time in simulations (>500γ̇ t , where γ̇ is the strain rate).
To avoid formation of such domains, and to generate an
initial concentration profile with smaller gradients, a different
initialization protocol is used. In this case, the system is divided
into number of blocks of equal size. Each block is assigned
a value of ±1 randomly (with equal probability), as opposed
to a lattice site in the previous protocol. The concentration
(ψ) field value at a particular lattice site inside a block is
a weighted fraction of the value assigned to the block. The
weights are decided as follows: Each block is further divided
into concentric spherical shells. All the lattice sites within
a shell are assigned an equal weight inversely proportional
to the radius of the spherical shell. The concentration field
then varies gradually within each block and the outer most
lattice sites in each block have nearly same values (close to
zero) ensuring a smooth interface between neighboring blocks.
A contour plot of these blocks could be seen in Figs. 18(b)
and 18(d).

Different measures are examined in order to quantify the
extent of order in the system, and the relationship between the
ordering and rheology.

(1) The layer configurations and concentration fields are
examined visually to classify the different types of ordering

that take place. In the images of the layer configurations, the
hydrophobic (ψ < 0) and hydrophilic (ψ > 0) regions are
distinguished using two colors and the lines represent contours
of ψ = 0; the resolution in the figures is not sufficient to plot
the details of the concentration fields over the entire domains.
In order to examine the concentration variations, contour plots
of the concentration field over smaller domains are shown
separately.

(2) The root mean square of the concentration fluctuations,
defined as

〈ψ2〉 = 1

V

∫
dV ψ(x)2, (7)

is useful for identifying the degree of homogenization in
the lamellar mesophase system. For sinusoidal concentration
profile (r = 1, diffuse interface), the root mean squared
(
√〈ψ2〉0) value of concentration fluctuations is 0.81. Hence

during simulations, if
√

〈ψ2〉 approaches 0.81, it implies
locally phases are well segregated; while a value smaller than
0.81 implies incomplete segregation between the hydrophilic
and hydrophobic parts. The

√〈ψ2〉0 value for r = 0.1 and 0.01
is 0.85 and 0.88 respectively.

(3) The total free energy (F [ψ]) attains a minimum at
equilibrium when the layers are completely aligned, and
disorder leads to an increase in F [ψ]. Hence, F [ψ] could be
used as an order parameter to monitor the alignment process.

(4) In large systems, we expect disorder to be primarily
in the form of defects in a background ordered lamellar
phase. Due to the disorder in the concentration field at defect
locations, the gradient terms in free energy would be larger
than the quadratic and quartic contributions in the free energy
functional. Hence we define an order parameter (f ), which
considers only the increase in energy due to gradients as
follows:

f = 1

V

∫
dV [(∇2 + k2)ψ]

2
. (8)

The parameter f is isotropic; it is zero if the layer spacing is
2π/k, irrespective of the layer orientation.

(5) We define a new order parameter, fn̂, in order to
ascertain the orientation of the formed layers as follows:

fn̂ = 1

V

∫
dV [(̂n·∇)2 + k2)ψ]

2
, (9)

where n̂ is a unit vector. As mentioned earlier, in the present
study, the shear flow is simulated by moving the bottom
bounding surface (mirror images when the Lees-Edwards
boundary condition is used) towards the right (positive x

direction) and the top surface in the opposite direction. To
determine whether the layers are aligned along the flow
direction due to applied shear we set n̂ = ey (unit vector
along the y direction) and the corresponding orientation order
parameter then is

fy = 1

V

∫
dV

[(
∂2
y + k2)ψ]2

. (10)

The parameter fy is sensitive to gradients in concentration
field only along the shear direction and would be equal to zero
if the system is perfectly aligned with normal along the shear
direction.
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FIG. 2. Defects identified using Eq. (11) shown in black circles for three different parameter values: Sc0 = 0.33, Er0 = 0.2, r = 1, γ̇ t = 87
(a); Sc0 = 1, Er0 = 4.9, r = 1, γ̇ t = 27 (b); and Sc0 = 5, Er0 = 0.2, r = 0.01, γ̇ t = 257 (c). The defect locations are correctly predicted in
case (a). In other cases, they are sometimes overpredicted for steep interfaces for r < 1 (c) or underpredicted because the concentration field
is not equilibrated locally for high Er (b). The lines show contours of zero concentration.

(6) To understand the relation between structure and
dynamics, it is necessary to identify the defects in the system
and relate their behavior with parameters based on rheology. A
site is characterized as a defect based on two criteria. First all
the possible defect sites are identified by comparing the value
of local defect energy d(x), defined as

d(x) = Ar

2k4
[(∇2 + k2)ψ]

2
. (11)

A location is identified as part of a defect if d(x) is larger
than a cutoff, and the cutoff is set using the procedure
explained in Ref. [13]. In a system with uniform concentration
[ψ(x) = ψo], the local defect energy do would be equal to
(Arψo

2/2) everywhere. We use a suitable fraction (0.1) of this
value as defect energy cutoff (dcutoff = 0.1do). At the defect
core, an edge dislocation is at least (λ/2) units in width. Thus,
there should be (λ/2) lattice sites which would exceed the
local defect energy cutoff, and a defect is identified only
if the number of defect sites is greater than (λ/2) in both
directions. The defect density then is the number of defect
sites per unit area. This procedure works fairly accurately
in identifying edge dislocations in an otherwise well-aligned
lamellar background, as shown in Figs. 2(a) and 25 when the
concentration profile is sinusoidal (r = 1) and the layers are
well formed. They are usually overpredicted for low values
of r when the interfaces are sharp, as shown in Fig. 2(c),
and are underpredicted at high Ericksen number, as shown in
Fig. 2(b). The defects observed in our simulations are edge

dislocations, which are defined by their “Burgers vector.” The
Burgers vector is defined as the vector from the start to the end
of the Burgers loop, over a contour moving anti-clockwise as
shown in Fig. 3. For the present two-dimensional simulations,
where there are defects in a background well-aligned lamellar
phase with layers along the x direction, the magnitude of
the Burgers vector is 2 since there is one incomplete layer
in between nearly aligned layers, and the Burgers vector is
directed along either the +y or −y direction, as shown in Fig. 3.
Isolated edge dislocations cannot disappear in the bulk since
they are topological defects, and it is necessary for dislocations
of opposite sign to come together and cancel for the system to
anneal.

(7) In linear shear flow, the local flow velocity ux(x) is
given by the relation γ̇ y, where γ̇ is the strain rate and y is
the distance from the zero velocity stream line in the cross
stream direction. The presence of disorder in the structure
(concentration field) however modifies the local velocity field.
To quantify this deviation, we define velocity field order
parameter (〈	γ̇ 2〉) as

〈	γ̇ 2〉 = 1

V (γ̇ L)2

∫
dV (ux(x) − γ̇ y)2. (12)

The parameter 〈	γ̇ 2〉 will be zero in the case of linear
shear flow with no viscosity contrast. When there is viscosity
contrast, γ̇ will be a function of the order parameter (ψ), and so
〈	γ̇ 2〉 will be nonzero even for the perfectly aligned lamellar

y

x
b

(a)

b

y

x

(b)

FIG. 3. Edge dislocation with Burgers vector in the +y direction (a) and −y direction (b).
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phase. For systems with a nonzero value of (	μ/μ̄) chosen
in this study, the value of 〈	γ̇ 2〉 in the perfectly aligned state,
calculated using simulations, is 0.0061, 0.0116, 0.1267, and
0.1274, respectively, for μ1 = 0.32, 0.53, 1.07, and 2.13 in
Eq. (5).

(8) In a perfectly aligned state the fluid viscosity is equal
to bare fluid viscosity (μ̄). However, under imposed flow,
the divergence of the stress tensor in Eq. (A12) has an
additional contribution proportional to ( δF

δψ
). The macroscopic

fluid viscosity (defined as the ratio of shear stress and applied
strain rate) then would be higher than that in the aligned state
(μ̄). The scaled shear viscosity (μ) is defined as the ratio of
average viscosity (stress across the configuration divided by
the strain rate, which is the ratio of the velocity difference and
the distance between the top and bottom surfaces) (μ′) and μ̄,
i.e.,

μ = μ′

μ̄
. (13)

For the perfectly aligned system, μ = 1.
Simulations have been carried out for at least three different

randomly generated initial configurations in each case, and
the mean and standard deviations are determined by averaging
over the three different runs. The error bars in the simulations
show one standard deviation above and below the mean value.
In the graphs, the points and error bars are shown only at
representative location values, to enhance clarity.

III. RESULTS AND ANALYSIS

The simulations, based on the lattice Boltzmann method
(LBM), have been carried out at different values of parameters
shown in Table I for a two dimensional (2D) system of size
32λ × 32λ, where λ is the wavelength of the concentration
modulation. In cases 1–5, variations in the Schmidt and
Ericksen number are considered (Sec. III A) for a diffuse
interface with r = 1 and no viscosity contrast. Cases 6 and
7 involve a variation in the interface thickness (Sec. III B)
for Er0 = 0.2, no viscosity contrast, and a range of Schmidt
numbers. The viscosity contrast between the hydrophilic and
hydrophobic parts of the bilayer is varied in cases 8–11
(Sec. III C) for a diffuse interface with r = 1, Er0 = 0.2. It
should be noted that the dimensionless numbers are all defined
using the constant μ0 in Eq. (5); the conversion between
dimensionless numbers based on μ0 and μ̄ is given in Table II.

A. Schmidt and Ericksen numbers

We first examine how variations in the Schmidt number
affect the shear alignment for a smooth interface (r = 1) and
constant viscosity [μ1 = 0 in Eq. (5)] [13], in order to provide a
reference for the effect of interface thickness, relative viscosity,
and Ericksen number on the rheology. Figure 4 shows ψ

evolution with time for different values of the Schmidt number.
For Sc = 0.33, we see the formation of domains of layers with
different orientations at intermediate time [see concentration
field configuration at γ̇ t = 5 in Fig. 4(a)]. The domains with
layers along the extensional axis grow at the expense of
other domains as time progresses [γ̇ t = 20–50 in Fig. 4(a)].
Bilayer deformation and movement leads to alignment along

FIG. 4. Layer evolution for Sc0 = 0.33 (a), Sc0 = 1.0 (b), and
Sc0 = 5.0 (c) for r = 1, and Er0 = 0.2 at (from top to bottom)
γ̇ t = 0.1, 5, 20, 50, 100, 350. The lines show contours of zero
concentration.

the flow, though distinct domains continue to exist even at later
times (γ̇ t = 100). The appearance of shear banding, that is of
aligned and misaligned domains forming bands in the gradient
direction, is observed in the long time limit for γ̇ t > 100,
leading to ordering at very long times. In most cases, the layers
in the bands are aligned in one of two directions, either in the
flow direction or along the extensional axis. The domains with
alignment along the extensional axis shrink while those with
alignment along the flow direction grow, leading to ordering
at long times. The qualitative behavior can also be inferred
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1 101 102 103
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f,f
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FIG. 5. The variation of f (solid line) and fy (dashed line) with
scaled time (γ̇ t) for an initially disordered lamellar mesophase at
Er0 = 0.2, r = 1, and Sc0 = 0.33 (red, ◦), Sc0 = 1.0 (blue, �) and
Sc0 = 5.0 (brown, �).

from the behavior of the order parameters f and fy with time,
shown in Fig. 5, where it is observed that fy is significantly
greater than f for Sc = 0.33, implying that the concentration
field relaxes locally to a sinusoidal profile but the layers do not
align along the flow direction. At Sc0 = 0.33, mass diffusion
is faster than momentum diffusion, and so the concentration
field equilibrates fast locally, but the local domains are not
aligned with the global direction of least resistance to flow.
For Sc = 5, where momentum diffusion is faster than mass
diffusion, alignment takes place due to breakage of misaligned
layers and reformation of layers aligned along the flow, as
shown in Fig. 4(c). The layers are aligned in the flow direction
even before they are fully formed [compare the ψ field at
γ̇ t = 5 in Fig. 4(c) with corresponding field in Fig. 4(a)]. As
time progresses, these partially formed layers join together
and form an aligned configuration that spans the domain.
This can be seen from later (γ̇ t = 20–350) configurations of
concentration field in Fig. 4(c). Consequently, parameters f

and fy quickly become equal for Sc0 = 5, as shown in Fig. 5,
and then decrease due to ordering. However, there are still
edge dislocations in the background well-aligned system.

We now analyze the shear alignment process of systems
at Sc0 = 1, where the mass and momentum diffusivities have
equal magnitudes. Based on the concentration field evolution
shown in Fig. 4(b), we see that the alignment mechanism
for systems at Sc0 = 1 is morphologically similar to that for
the system with Sc0 = 0.33 at early times (γ̇ t < 5), and to
Sc0 = 5 at later times (γ̇ t > 20), and then there is complete
alignment for γ̇ t > 100. As can be seen from comparison of
Figs. 4(a)–4(c), the time taken for shear alignment appears
to have a minimum for Sc0 = 1. This is because the shear
banding seen in the long time limit for Sc0 = 0.33 appears at
shorter times for Sc0 = 1, and this results in a localization of
the edge defects which then efficiently cancel. An analysis of
parameters f and fy with time for Sc0 = 1 (Fig. 5) confirms
the presence of misaligned domains at short times, and the
existence of defects in a background lamellar phase at long
times.

1 101 102 103

(γ⋅ t)

10-2f

10-2

10-1

1
μ - 1

FIG. 6. The variation of μ − 1 (solid line, right y axis) and f

(dashed line, left y axis) with time for an initially disordered lamellar
mesophase at Er0 = 0.2, r = 1, and Sc0 = 0.33 (red, ◦), Sc0 = 1.0
(blue, �), and Sc0 = 5.0 (brown, �). The dotted lines indicate a slope
of −1 on the log-log graphs.

Although not shown here, the concentration field evolution
for Sc0 = 0.66 and Sc0 = 2 are morphologically similar to
that for Sc0 = 0.33 and Sc0 = 5 respectively. From this, we
conclude that at lower Schmidt numbers (Sc0 � 1), alignment
takes place due to initial rotation of microdomains formed
due to local relaxation of concentration field, followed by
growth of domains aligned along the extensional axis at the
expense of layers aligned along the compressional axis, and
later growth of layers aligned along the flow direction and
shrinkage of layers aligned along the extensional axis. At
higher Schmidt numbers (Sc0 > 1), alignment of layers along
the flow direction is due to melting and reformation of layers,
resulting in a well aligned system with edge dislocations,
which have to approach each other and cancel for complete
alignment. However, unlike the Sc0 = 0.33 case, the f and fy

values tend to zero in the long time limit for Sc0 = 0.66 and
2, implying that the system aligns completely.

The relationship between the order parameter f and the
viscosity is examined in Fig. 6, where the parameter f is
plotted on the left y axis and the difference between the scaled
viscosity and the bare viscosity of an ordered lamellar phase,
(μ − 1), is plotted on the right y axis. It is evident that there is
a strong correlation between f and μ − 1. For high Schmidt
number (Sc0 > 1), both f and (μ − 1) initially increase, reach
a maximum, and then decrease in time. The time required
to reach the maximum values of f and μ − 1 decreases as
the Schmidt number is increased. The system takes longer to
reach the maximum viscosity and f for Sc0 = 0.33, and both
f and (μ − 1) do not decrease to zero even for the largest (γ̇ t)
in the simulations, since the system does not reach the fully
ordered state. The maximum value of the viscosity decreases
as the Schmidt number is increased due to the difference in
the mechanism of alignment—the nearly aligned background
lamellar phase with defects, observed at high Schmidt number,
has a lower viscosity than the intermediate state with domains
containing layers aligned along the extensional direction at
low Schmidt number. The relationship between defect density
and viscosity is examined in Fig. 7. The defect density also
increases with time under steady shear, reaches a maximum,
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FIG. 7. The time variation of the defect density d (dashed line,
right y axis) and μ − 1 (solid line, left y axis) at Er0 = 0.2, r = 1,
and Sc0 = 0.33 (red, ◦), Sc0 = 1.0 (blue, �), and Sc0 = 5.0 (brown,
�). The dotted lines indicate a slope of −1 on the log-log graphs.

and then decreases in a manner similar to f and the viscosity
for Sc0 � 1. However, the maximum of the defect density
increases as the Schmidt number is increased, in contrast
to the viscosity. This is because at high Schmidt number,
the incompletely formed layers give rise to a larger number
of defects in comparison to the misaligned domains at low
Schmidt numbers. At Sc0 = 0.33, the defect density first
increases as the layers form, but does not decrease upon
further shearing, in contrast to the viscosity. The defect density
exhibits much larger fluctuations in time; we have tried other
criteria for identifying defects, and the best results are those
reported in Fig. 7. Thus, despite the ease of visually identifying
defect locations, it is difficult to define a quantitative criterion
which does not exhibit large fluctuations. The defect numbers
also do not correspond very well to the viscosity, and the
parameter f appears to be a much better structural indicator
of the rheology of the system at Er0 = 0.2.

A salient feature of the time variation of structural parame-
ters and viscosity is the decrease proportional to (γ̇ t)−1 as time
increases. This characteristic is clearly evident over a decade of
variation in γ̇ t in Fig. 6 for all Schmidt numbers, and is evident
to a lesser extent in the defect density in Fig. 7. This variation
of defect density and viscosity proportional to t−1 is expected
if the alignment takes place due to the cancellation of defects of
opposite signs due to shear [24]. This mechanism is expected
at high Schmidt numbers where the structure at intermediate
time consists of nearly aligned layers distorted by the presence
of edge dislocations, in which defects of opposite sign cancel
when they approach each other due to shear. However, in the
simulations, the f and the viscosity decrease proportional to
t−1 even at Sc0 = 0.33.

In simulations so far, the Ericksen number Er0 = (μ0γ̇ /B),
is set to 0.2. Since the Reynolds number and the system size (L)
are kept constant during the simulations, a variation in Ericksen
number would also change the compression modulus (B) and
the bending modulus (K) of lamellae, and the energy density
A in the equation for the free energy functional [Eq. (1)]. The
shear alignment process has also been examined for two higher
values of Ericksen numbers, 0.49 and 4.9. The configurations

FIG. 8. Layer evolution for Sc0 = 0.2 (a), Sc0 = 0.33 (b), and
Sc0 = 5.0 (c), and the layer evolution without shear at Sc0 = 0.2 (d)
at Er0 = 4.9 and r = 1 at (top to bottom) γ̇ t [equivalent lattice time
steps for (d)] = 0.1, 5, 20, 50, 100, 350. The lines show contours of
zero concentration.

are shown in Fig. 8 for Er0 = 4.9 at (Sc0 = 0.2, 0.33, and
5). The qualitative features of the ordering at Er0 = 0.49 and
4.9 are similar to that at Er0 = 0.2. At low Schmidt number,
there is the formation of domains with layers aligned along
the extensional axis at intermediate times [Fig. 8(b)]. At high
Schmidt number, alignment takes place by the breakage and
reformation of layers, as shown in Fig. 8(c). However, the
transition between the two different types of ordering occurs at
a lower Schmidt number (between 0.2 and 0.33) in comparison
to that for Er0 = 0.2. There are also significant differences. At
low Schmidt number Sc0 = 0.2 close to the boundaries, there
is breakage of layers, and the formation of what appear to
be vesicles through an apparent pearling instability even in
the long time limit [Fig. 8(a)] at γ̇ t � 100. Such instability is
not observed when the initially disordered system is allowed
to evolve without shear [see Fig. 8(d)]. At Er0 = 4.9, the
layers are not as sharply defined as that at Er0 = 0.2 during
the shear ordering process. This is shown by the gray-scale
contour plots of the concentration field in Fig. 9. For low
Ericksen number, there is large variation in the concentration
even at early times, but as the Ericksen number increases, the
concentration is close to 0 throughout the domain, indicating
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FIG. 9. Contour plots of concentration field evolution for Er0 =
0.2 (a), 4.9 (b), 49 (c), and 490 (d) at Sc0 = 0.33 at, from top to
bottom, γ̇ t = 0.1, 5, 20, 50, 100, 350 respectively. Only the central
8λ × 8λ portion is shown for clarity.

that separation of the hydrophilic and hydrophobic constituents
in the lamellar phase is suppressed due to shear. This is
because the viscous stresses are much larger than the elastic
stress, and the viscous stresses prevent the layers from
attaining their equilibrium configurations. This indicates that
there may be an upper limit on the shear rate (or Ericksen
number) beyond which a well-defined lamellar phase cannot be
formed.

The structural order parameter f for Er0 = 0.49 and 4.9 are
shown in Fig. 10. At high Schmidt number, it takes longer for f

to reach its maximum values as the Ericksen number increases,
but there is also a rapid decrease in f as the system quickly
reaches the well aligned state after the peak in the disorder. At
low Schmidt number (Sc0 = 0.33), there is significant disorder
even in the long time limit for Er0 = 0.49, though the disorder
decreases for Er0 = 4.9. At the lowest Schmidt number of 0.2
for Er0 = 4.9, both f (and fy , not shown here for conciseness)
increase with time due to the significant disorder generated
by the breakage of layers at boundaries and the pearling
instability; the system never reaches a well-aligned state in this

case. The correlation between structure and viscosity is shown
in Fig. 10. Here, μ − 1, the difference between the apparent
viscosity and the viscosity of an aligned sample, is shown
along with the order parameter f . The magnitude of μ − 1
decreases significantly as the Ericksen number is increased,
in contrast to the disorder parameter f which increases as
the Ericksen number is increased. This indicates that even
though there is an increase in the disorder with an increase
in the Ericksen number, the disordered domains offer lower
resistance to flow. There is a good correlation between f

and the viscosity for Er0 = 0.49, though the correlation is
poor for Er0 = 4.9. At high Schmidt number Sc0 = 5, the
(μ − 1) ∝ t−1 scaling for the viscosity is evident even at
Er0 = 4.9. At intermediate Schmidt number, Sc0 = 1.0 for
Er0 = 0.49 and Sc0 = 1.0 and 0.33 for Er0 = 4.9, the viscosity
first increases and then decreases sharply when the system
orders to the perfectly aligned state. At low Schmidt number,
Sc0 = 0.33 for Er0 = 0.49 and Sc0 = 0.2 for Er0 = 4.9, the
viscosity does not decrease to zero even after a thousand strain
units, but seems to attain a steady state in which there is
significant disorder.

The evolution of the root mean square of the concentration
field, 〈ψ2〉 averaged over the entire domain [Eq. (7)], provides
further insight into the reason for the decrease in the viscosity
despite the increase in the disorder (as reflected by the
parameters f and fy) as the Ericksen number is increased. As
shown in Fig. 11, the root mean square of the concentration
fluctuations quickly reaches its equilibrium value when the
Ericksen number is 0.2 or lower, but there is a considerable
delay in attaining the equilibrium value at high Ericksen
number. In particular, at Er0 = 0.2, the root mean square of
the concentration is close to its steady-state value within about
5 strain units [see ψ field snapshot at γ̇ t = 5 in Fig. 9(a)]; in
contrast at Er0 = 4.9, it takes more than 100 strain units for
the

√
〈ψ2〉 to reach the steady state value (compare ψ fields at

γ̇ t = 100 at different Er0 in Fig. 9). Interestingly, at Er0 = 4.9,
the value of

√
〈ψ2〉 first decreases up to about 10 strain units,

and then increases, indicating that shear initially tends to mix
and homogenize the disordered state. This can be seen at
γ̇ t = 50 in Fig. 9. The application of a shear flow disrupts
the segregation of the hydrophilic and hydrophobic parts;
increasing Ericksen number enhances mixing (see ψ fields
in Fig. 9). The concentration homogeneity due to the delay in
segregation results in a very low viscosity combined with high
disorder parameters f and fy . After about 100 strain units,
the concentration modulation is aligned perpendicular to the
flow direction at Er0 = 4.9, and then the segregation proceeds
until the root mean square of the concentration fluctuations
attains its final steady state value [see snapshot at γ̇ t = 350 in
Fig. 9(b)]. At Er0 = 490, the concentration does not reach its
equilibrium value even after 1000 strain units, and the value
of

√
〈ψ2〉 is one to two orders of magnitude smaller than the

equilibrium value.
The evolution of the concentration field at a low value of

Ericksen number, Er0 = 4.9 × 10−3, is shown in Fig. 12. In
this case, the layers are very sharply defined even at the very
early times. The two distinct types of ordering, which are
the formation of disordered domains with grain boundaries at
low Schmidt numbers and the presence of defects in a well-
aligned background at high Schmidt number, are observed in
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FIG. 10. The variation of f (dashed line, left y axis) and μ − 1 (solid line, right y axis) with scaled time (γ̇ t) for an initially disordered
lamellar mesophase at r = 1, Er0 = 0.49 (a) and Er0 = 4.9 (b), and Sc0 = 0.33 (red, ◦), Sc0 = 1.0 (blue, �), Sc0 = 5.0 (brown, �), and only
for (b), Sc0 = 0.2 (black, �).

this case as well. However, there is a significant shrinkage
of misaligned domains at intermediate times at low Schmidt
number, resulting in the formation of well aligned layers with
edge dislocations. The evolution of the configuration at Er0 =
0.1 is similar to that at Er0 = 0.2 [compare ψ fields in Figs. 4(a)
and 12(a) at Sc0 = 0.33 and 4(c) and 12(b) at Sc0 = 5.0].
There is however, a rather dramatic change in the evolution
of the structural order parameters as the Ericksen number is
decreased from 0.1 to 4.9 × 10−3, as shown in Fig. 14. At
Er0 = 0.1, the parameters f and fy do not decrease to zero for
Sc0 = 0.33 where there are persistent defects in the long time
limit (see Fig. 6 for the equivalent evolution for Er0 = 0.2), but
they do decrease to zero in the long time limit for higher values
of the Schmidt number. There is a difference between f and
fy at low Schmidt numbers due to the formation of disordered
domains with grain boundaries, but there is less difference
at high Schmidt number due to the presence of defects in
a background aligned lamellar phase. For the lowest value

of Er0 = 4.9 × 10−3, the system does not completely align
even after 300 strain units, and there is a persistent difference
between f and fy at all times. This result is surprising because
the layer configurations in Figs. 12(c) and 12(d) indicate the
presence of defects in a background of well aligned layers,
and the reason for the difference is the following. Since the
layers are very stiff at low Ericksen numbers, defects result in a
significant tilt of layers which persists for long distances. Due
to the long-range tilt generated by defects, fy is significantly
higher than f even though there are relatively few defects in
a well-aligned background, as shown in Fig. 13. The stiffness
of the layers also prevents the breakage and reformation of
layers which is required for the glide of defects in the cross-
stream direction and the annihilation of defects. Due to this,
the time taken for complete ordering increases as the Ericksen
number decreases. However, the variation in the parameters
f and fy at Er0 = 0.1 is similar to that for Er0 = 0.2, as
shown in Fig. 13. In contrast, for Er0 = 4.9 × 10−3, there is a
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FIG. 11. The variation of the root mean square of the concentration averaged over the entire domain,
√〈ψ2〉, with γ̇ t for Er0 = 0.2 (◦),

0.49 (�), 4.9 (�), and 490 (�) for r = 1, for Sc0 = 0.33 (a) and Sc0 = 5.0 (b).
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FIG. 12. Layer evolution at Er0 =0.1, (a) and (b), and 4.9×10−3,
(c) and (d), for Sc0 = 0.33, (a) and (c), and 5, (b) and (d). Top to
bottom, (γ̇ t) = 0.1, 5, 20, 50, 100, 350. The lines show contours of
zero concentration.

decrease in f and fy in the long time limit even at low Schmidt
numbers.

The stiffness of the layers also results in a significantly
higher viscosity at Er0 = 4.9 × 10−3, as compared to that
at Er0 = 0.1, as shown in Fig. 14. At Er0 = 0.1, the scaled
viscosity does not decrease to 1 in the long time limit only
at low Schmidt number Sc0 = 0.33, and shows a decreases
proportional to t−1 for high Schmidt number. For Er0 = 4.9 ×
10−3, the scaled viscosity is significantly larger, and it does not
decrease to 1 even after 400 strain units for any value of the
Schmidt number. Even though the structural order parameter f

is smaller by an order of magnitude, the viscosity is higher by
an order of magnitude for Er0 = 4.9 × 10−3 in comparison
to Er0 = 0.1. This is because the small number of edge
dislocations at low Ericksen number, and the consequent layer
tilt which seems to span the system, results in a significantly
higher resistance to flow. At Er0 = 4.9 × 10−3, the viscosity
does decrease as the Schmidt number is increased, though
the correlation between the structural order parameter and
viscosity is not as good as that at higher Ericksen number.
The significant increase in viscosity at Er0 = 4.9 × 10−3 is

due to the rigidification of the layers between defects or the
defect pinning mechanism, as shown in Fig. 15. Even though
the layer configurations contain a relatively small number of
defects, as shown in Figs. 15(a)–15(c), there is no straining
in the region between the defects, and the strain is localized
to the near-wall regions, as shown in the velocity profiles in
Fig. 15(d). Due to this strain localization and shear banding,
the apparent viscosity is much higher than the fluid viscosity.
In contrast, at Er0 = 0.2, there is straining throughout the
system as shown in Fig. 16(d), despite the disorder in the
configurations shown in Figs. 16(a)–16(c). Since the velocity
profiles are nearly linear, the apparent viscosity is close to the
true fluid viscosity.

The shear localization at high Ericksen number is illustrated
in Fig. 17, which shows the parameter 〈	γ̇ 2〉 [Eq. (12)]
which provides a measure of the departure of the velocity
profile from the linear velocity profile. The value of 〈	γ̇ 2〉
at Er0 = 4.9 × 10−3 is higher by an order of magnitude in
comparison to that at Er0 = 0.1 at low and high Schmidt
numbers. The qualitative nature of the variation of 〈	γ̇ 2〉
is also independent of the Schmidt number at Er0 = 4.9 ×
10−3. At high Schmidt number, the value of 〈	γ̇ 2〉 remains
large even after 300 strain units for Er0 = 4.9 × 10−3, in
contrast to the behavior at high Ericksen number where
〈	γ̇ 2〉 decreases when the system reaches a well aligned
state.

B. Interface thickness

The evolution of concentration field (ψ) for systems with
a thin interface (r <1) are shown in Fig. 18. At Sc0 =0.33,
[Figs. 18(a) and 18(b)], the evolution of the ψ field is
qualitatively similar to that for diffuse interfaces r = 1,
exhibiting the formation of misaligned domains at γ̇ t = 5,
and the deformation of these domains due to shear from
(γ̇ t = 20) onward. Although concentration field contours at
intermediate Schmidt numbers (Sc0 = 0.6–2) and r < 1 are
not shown, the shear alignment mechanism for systems with
Sc0 � 1 is qualitatively similar. The evolution in ψ field
with time for Sc0 = 5 and r < 1 is shown in Figs. 18(c)
and 18(d). The alignment process for Sc0 = 5 exhibits the
melting and reformation mechanism seen in shear alignment
of systems with smooth interfaces (Fig. 4). However, there
are significant variations in layer thickness during reformation
(see the concentration field for γ̇ t = 20–50). Figures 18(c)
and 18(d) show that the layers are aligned in the long time
limit at γ̇ t = 350, but there are still variations in the layer
thickness.

The order parameters f and fy are shown as a function
of dimensionless time for r = 0.1 and r = 0.01 in Fig. 19.
The magnitude of the order parameters becomes larger as r

decreases, as evidenced by comparing Fig. 5 (for r = 1) and
Fig. 19. This is primarily due to the variability in the layer
spacing when the interfaces are sharp, as seen in Fig. 18.
Unlike the case of a diffuse interface with r = 1 (Fig. 5), the
values of parameters f and fy in Fig. 19 for Sc0 = 1 and 5 do
not decrease to zero in the long time limit even after hundreds
of units of strain. This is because the concentration field and
the layer spacing have not equilibrated, and the wavelength of
concentration modulation is different from the wavelength that
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FIG. 13. The variation of f (solid line) and fy (dashed line) with scaled time (γ̇ t) for an initially disordered lamellar mesophase at r = 1,
Er0 = 0.1 (a), and Er0 = 4.9 × 10−3 (b), and Sc0 = 0.33 (red, ◦), Sc0 = 1.0 (blue, �), Sc0 = 5.0 (brown, �).

minimizes the free energy functional (F [ψ]). Accordingly,
in Fig. 18, we see lamellae with varying thickness even at
γ̇ t = 350. The difference between f and fy is evident even
at long times for Sc = 0.33, because the layer normals are not
aligned in the gradient direction even after hundreds of strain
units. However, for Sc = 1.0 and 5.0, both f and fy are equal at
long times, indicating that the layer normals are perpendicular
to the flow direction, even though the layer spacing has not
attained equilibrium.

Though there is an increase in the parameters f and
fy as r decreases due to the imperfect development of the
concentration profile, the viscosity decreases as r decreases,
as shown in Fig. 20. There is a poor correlation between the
viscosity and the parameters f and fy in Fig. 19, but there
is a very good correlation between the viscosity increase and
the departure from linearity of the velocity field, as shown
in Fig. 20. For given Schmidt number, the value of 〈	γ̇ 2〉
[Eq. (12)] is much smaller for steep interfaces (r = 0.01, 0.1)

than for smooth interfaces (r = 1). Thus, despite the very high
disorder in the system, the velocity profile is nearly linear
and the effective viscosity, even for a highly disordered state,
is low. Figure 20 also shows that there is a rather sharp
decrease in the scaled excess viscosity (μ − 1) when the
system aligns between 200 and 100 strain units for Sc0 = 1 and
5 respectively, due to the formation of layers that are aligned
but which have not yet attained their equilibrium spacing.
However, the decrease in μ − 1 proportional to t−1 is apparent
for Sc0 = 5 at long times, and to a lesser extent for Sc0 = 1 at
intermediate times. For Sc0 = 0.33, the system does not reach
an aligned state even for strain units of the order of 300, and
the scaled viscosity is significantly higher than 1.

Even though the shear alignment at low r shares many
of the features of that at high Ericksen number, including
low viscosity and high disorder parameters f and fy , the low
viscosity here is not due to imperfect segregation between the
hydrophilic and hydrophobic parts (as was the case at high
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FIG. 14. The variation of f (dashed line, left y axis) and μ − 1 (solid line, right y axis) with scaled time (γ̇ t) for an initially disordered
lamellar mesophase at r = 1, Er0 = 0.1 (a) and Er0 = 4.9 × 10−3 (b), and Sc0 = 0.33 (red, ◦), Sc0 = 1.0 (blue, �), Sc0 = 5.0 (brown, �).
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FIG. 15. The layer configurations at Er0 = 4.9 × 10−3, and for (a) Sc0 = 0.33 and γ̇ t = 193.94, (b) Sc0 = 1.0 and γ̇ t = 203.55, and (c)
Sc0 = 5.0 and γ̇ t = 310.06, and the scaled velocity profiles along the center of the simulation box in the streamwise direction (d) for Sc0 = 0.33
(◦), Sc0 = 1 (�), and Sc0 = 5 (�). In (a)–(c), the vertical dashed lines show the locations where the velocity profiles are evaluated. In (d), the
bottom of the cell is at (y/L) = 0, and the top of the cell is at (y/L) = 1. In (a)–(c), the lines show contours of zero concentration.

Ericksen number). The root mean square of the concentration
fluctuations 〈ψ2〉 [Eq. (7)], not shown here for conciseness,
reaches its equilibrium value in about 5 strain units, and the
time taken is independent of the parameter r . This indicates
that the amplitude of the concentration has quickly reached the
equilibrium values shown in Fig. 28. However, the wavelength
of the concentration field does not attain its equilibrium value
even after 300 strain units. The reason for the persistent
variation in the layer thickness for r � 1 is as follows. From
the concentration diffusion equation (A12), the concentration
flux has contributions proportional to the Laplacian and
the square of the Laplacian of the concentration field. For
r � 1, the concentration field is close to a step function with
sharp variations at the interface locations and nearly constant
concentrations in the hydrophilic and hydrophobic phases,
as shown in Fig. 28. The initial location of the interface
seems to be a stochastic process during coarsening, resulting
in lamellar phases with varying thickness of hydrophilic and
hydrophobic parts. Once these are formed, there is very little
driving force for a concentration flux within the hydrophilic
and hydrophobic parts, since the concentration is nearly a
constant at these locations. In fact, the dominant contributions
to the flux in Eq. (A12) arise from the largest n contributions

when the expansion (A2) is used for the concentration field,
since the flux contains terms proportional to n2 and n4. The
contribution to the flux due to the contribution n = 1, which
captures the variations in the layer thickness, is relatively
small. Since the driving force for equalizing layer thickness is
small, it takes a long time for the layer spacing to alter and
attain the equilibrium value. This can be seen by comparing
Figs. 4 and 18. At r = 1, the system has attained local
equilibrium and correct layer spacing at all Sc, whereas at
r < 1, at the same dimensionless time (γ̇ t = 350), we do not
see local equilibrium (Sc0 = 0.33), or correct layer spacing
(Sc0 = 1, 5).

C. Viscosity contrast

Next, we study the effect of a variation in the viscosity
between the hydrophilic and hydrophobic parts on the rheology
of the system, using the model in Eq. (5). The structural
evolution during the shear alignment for μ1 = 1.07 and 2.13
(cases 10 and 11 in Table I) is shown in Fig. 21. The qualitative
features are similar to those for the case of constant viscosity
analyzed earlier. At Sc0 = 0.33, the formation of misaligned
domains is observed at γ̇ t = 20 in Figs. 21(a) and 21(b)
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FIG. 16. The layer configurations at at Er0 = 0.2, and (a) Sc0 = 0.33, γ̇ t = 50, (b) Sc0 = 1.0, γ̇ t = 20, and (c) Sc0 = 5.0 and γ̇ t = 5,
and the scaled velocity profiles along the center of the simulation box in the streamwise direction (d) for Sc0 = 0.33 (◦), Sc0 = 1 (�), and
Sc0 = 5 (�). In (a)–(c), the vertical dashed lines show the locations where the velocity profiles are evaluated. In (d), the bottom of the cell is at
(y/L) = 0, and the top of the cell is at (y/L) = 1. In (a)–(c), the lines show contours of zero concentration.
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FIG. 17. The measure 〈	γ̇ 2〉 of the departure from a linear velocity profile as a function of time for Sc0 = 0.33 (a) and Sc0 = 5 (b) for
Er0 = 4.9 × 10−3 (red, ◦), Er0 = 0.1 (blue, �), Er0 = 0.49 (brown �). For Er0 = 4.9, the value of 〈	γ̇ 2〉 is lower than 10−3.
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FIG. 18. Layer evolution for (a) r =0.1, Sc0 =0.33, (b) r =0.01,

Sc0 = 0.33, (c) r = 0.1, Sc0 = 5, and (d) r = 0.01, Sc0 = 5. Top to
bottom, (γ̇ t) = 0.1, 5, 20, 50, 100, and 350. The lines show contours
of zero concentration.

for μ1 = 1.07 and 2.13. This is followed by the rotation
at γ̇ t = 50 and subsequent deformation (configurations at
γ̇ t = 100). Shear banding is observed at for γ̇ t > 100, where
horizontally aligned layers coexist with layers aligned along
the extensional axis, and further alignment takes place by the
expansion of the zone with horizontally aligned layers and
the shrinkage of layers aligned along the extensional axis. At
Sc0 = 5.0, there is bilayer melting (γ̇ t = 5) and reformation
(γ̇ t = 20) in Figs. 21(c) and 21(d) for μ1 = 1.07 and 2.17.
Thus, as in the case of a system with no viscosity contrast,
the alignment mechanism changes from domain growth to
melting and reformation as the Schmidt number is increased,
at approximately the same Schmidt number based on the
viscosity μ0.

The change in the ordering mechanism is confirmed by the
plots of the order parameters f and fy in Fig. 22, where the
order parameters f and fy are shown for different values of
μr. For Sc0 = 0.33, the order parameter fy is much larger
than f at early times, indicating that the equilibrium layer
spacing is attained relatively quickly, but the layer normal is
not along the gradient direction. As time progresses, the values

of f and fy are comparable, due to the shear banding where a
significant fraction of the layers are aligned with layer normal
along the gradient direction, though complete alignment is not
observed even for the longest times (strain units of 1000) in
the simulations. In contrast, for Sc0 = 5.0, the values of f

and fy are comparable even at early times, indicating that the
layers normals are aligned along the gradient direction even
when the layers are not fully formed. The order parameters f

and fy decrease approximately as t−1 in the long time limit.
Significantly, there is not much difference in the values of f

and fy as the viscosity contrast is increased from μ1 = 0 to
μ1 = 2; in fact, there appears to be a slight decrease in the
disorder as the viscosity contrast is increased.

The coarsening of the concentration variations is slower as
the viscosity contrast increases. The root mean square of the
concentration fluctuations,

√
〈ψ2〉, is shown as a function of

γ̇ t in Fig. 23. There is a systematic increase in the number
of strain units required for the concentration to reach its
final steady state value, from about 2 strain units for no
viscosity contrast (μ1 = 0) to about 10 strain units at high
viscosity contrast (μ1 = 2.13). Though the number of strain
units required at μ1 = 2.13 is not as large as that required
at high Ericksen number in Fig. 11, there is a clear trend of
increasing coarsening time as the viscosity contrast increases.
However, the strain required for

√
〈ψ2〉 to evolve to its steady

state value is much smaller than the alignment time as shown
by the order parameters f and fy in Fig. 22, or the time required
for viscosity evolution discussed next. This suggests that layer
alignment, and not the coarsening of the concentration field,
influences the rheology at high viscosity contrast.

In contrast to the variation in the structural order parameters
f , fy and the defect density, the average viscosity does show a
dramatic increase with an increase in μ1, as shown in Fig. 24.
There is very little change in the viscosity when the parameter
μ1 is increased from 0 to 0.53, but there is a significant increase
in the viscosity, by orders of magnitude, when μ1 is increased
to 1.07 and 2.13. Despite the increase in magnitude, the
qualitative dependence of the viscosity on the Schmidt number
does not change significantly. For low Schmidt number, the
viscosity does not decrease to that for an aligned system even
after 1000 strain units, and the viscosity shows a nonmonotonic
variation with time. For high Schmidt number, the viscosity
decreases proportional to t−1, in a manner similar to the
decrease in f and the defect density. This suggests that while
there is a correlation between the disorder or the defect density
and the viscosity at each value of the viscosity contrast (μ1),
the ratio of the viscosity and the order parameter (f or defect
density) increases sharply as the viscosity contrast is increased.
Another salient feature is that there is not much variation in the
average viscosity when μ1 is 0.53 or less, there is a dramatic
increase in the average viscosity of the disordered states when
μ1 increases to 1.07, and then there is not much increase when
μ1 increases from 1.07 to 2.13. This suggests that there are
two distinct rheological states, one at low viscosity contrast
and the other at high viscosity contrast, with little variation
within each state and a large difference in viscosity (of about
two orders of magnitude) between the two states.

There are two reasons for the very high viscosities when
μ1 is increased. First, for large μ1, the average viscosity of the
aligned state (stress divided by strain rate) is much smaller than
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FIG. 19. The parameters f (solid lines) and fy (dashed lines) for r = 0.01 (a) and r = 0.1 (b) for Er0 = 0.2, Sc0 = 0.33 (red, ◦), Sc0 = 1
(blue, �), and Sc0 = 5 (brown, �). The equivalent plot for r = 1 is given in Fig. 5.

μ0 in Eq. (5). As indicated in Table II, the ratio (μ̄/μ0) is 0.11
for μ1 = 1.07, and 2.89 × 10−2 for μ1 = 2.13, as evaluated
using the inverse sum rule. For a disordered lamellar fluid, the
viscosity is expected to scale with μ0, since it is necessary to
strain the high viscosity regions to facilitate flow. Therefore,
the ratio of the instantaneous viscosity (ratio of stress and
strain rate) and the average viscosity of well-aligned layers is
large at intermediate times for a disordered state. The other
reason is the defect pinning mechanism, which results in a
large resistance to deformation in solids and was previously
observed at low Ericksen number. In the simulations, we
observe that when there are even a small number of edge
dislocations in the material, the region between the defects
moves as a solid plug at constant velocity without straining,
while the fluid strain rate is nonzero only over a part of the
domain not pinned by the defects. This is illustrated in Fig. 25
for Sc0 = 5.0, where the layer configurations are shown along
with the velocity profiles across the center of the simulation
cell in the streamwise direction. When there is no viscosity
contrast, it is observed that there is a linear shear flow, even

though the configuration shown in Fig. 25(a) has substantial
disorder. In contrast, for μ1 = 1.07, there is absence of shear
in the regions where there are defects in the system, even
though the number of defects is smaller for the configuration
shown in Fig. 25(b) in comparison to that without viscosity
contrast. In Fig. 25(c), we have chosen a configuration which
has only two defects in it. Strikingly, it is observed that there
is no shear in between the two defects at all in the velocity
profile in Fig. 25(d). Due to this, the viscosity is very high
until very late times when all the defects in the system are
annealed. This indicates that the defect pinning mechanism
in solids is operative when there is a significant variation in
viscosity between the hydrophilic and hydrophobic parts. A
similar feature is observed at low Schmidt number as well, as
shown in Fig. 26. The configuration in Fig. 26(a) in the absence
of viscosity contrast shows significant disorder. However, for
this configuration, the velocity profile in Fig. 26(d) indicates
that there is shearing throughout the bulk of the simulation
box, though there is some departure from the linear velocity
profile due to the disorder. In contrast, for the configurations
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FIG. 20. The parameters 〈	γ̇ 2〉 (dashed lines, left y axis) and μ − 1 (solid lines, right y axis) for r = 0.01 (a) and r = 0.1 (b) for Er0 = 0.2,
Sc0 = 0.33 (red, ◦), Sc0 = 1 (blue, �), and Sc0 = 5 (brown, �). The black dashed lines show a slope of −1 on the log-log graph.
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FIG. 21. Layer evolution for r = 1, Er0 = 0.2, (a) Sc0 = 0.33,

μ1 =1.07; (b) Sc0 =0.33, μ1 =2.13; (c) Sc0 =5, μ1 =1.07; and
(d) Sc0 =5, μ1 =2.13. Top to bottom, ¯̇γ t =0.1, 20, 50, 100,

500, 800. The lines show contours of zero concentration.

in Fig. 26(b) (for μ1 = 1.07) and Fig. 26(c) (for μ1 = 2.13),
it is observed that the regions aligned along the extensional
axis move as a block with no internal shearing, and there
is shearing only in the regions where the layers are well
aligned. This results in very large viscosities for the inter-
mediate disordered configurations when there is a difference
in viscosity between the hydrophobic and hydrophilic parts
of the lamellar mesophase, and relatively low viscosity when
there is no difference in the microscopic viscosity.

The parameter 〈	γ̇ 2〉 [Eq. (12)], which provides a measure
of the instantaneous departure of the velocity profile from the
linear profile, is shown in Fig. 27. For low Schmidt number, the
parameter 〈	γ̇ 2〉 is significant even in the absence of viscosity
contrast, due to the shear banding and the alignment of layers
along the extensional axis at intermediate times. However, the
parameter 〈	γ̇ 2〉 does increase by a factor of about 5 as μ1 is
increased from 0 to 2.13, because the misaligned layers do not
admit strain when the viscosity contrast is significant. For high
Schmidt number, 〈	γ̇ 2〉 at intermediate times is significantly
higher, by a factor of 10 or more, when the parameter μ1

increases from 0 to 2.13, even though the structure does not
change, due to the lack of straining (plug flow) in the regions
between defects for μ1 = 1.07 and 2.13.

IV. CONCLUSIONS

A mesoscopic model has been used to examine the quali-
tative features of the evolution of viscosity under steady shear
of an initially disordered lamellar mesophase. The important
limitations in the simulation study are the relatively small size
of the simulation box (about 32 times the layer spacing) and
the restriction to two dimensions. These limitations arise due
to the computational power required to carry out simulations,
the requirement of reducing the lattice spacing to at most
(1/8) of the layer spacing to resolve the concentration fields,
and more notably due to the requirement of covering a large
parameter space and carrying out multiple simulations for the
same parameter set in order to obtain the standard deviations
in the properties. The value of this study lies in the complete
set of dimensionless parameters that have been identified
which affect the rheology, based on the mesoscopic governing
equations, and the qualitatively different types of flow behavior
and structure-rheology relations that have been identified in
different regimes.

The small system size limits the length scale of the disorder
that is accessible in the simulations. Previous studies [13]
have shown that the viscosity does depend on system size
even for small systems. In experiments, the focal conic defects
that are examined using polarizing microscopy have length
scales 103–104 times the layer spacing. Such large defect
structures clearly cannot be studied in our simulations of
modest size. The restriction to two dimensions limits the
topological nature of the defects that can be observed to edge
dislocations and misaligned domains with grain boundaries.
The three-dimensional screw dislocations which are observed
in experiments are not captured in the present simulations.
Moreover, in three dimensions, the edge dislocations are not
stable and they break up into focal-conic defects. All of
these three-dimensional effects are not captured in the present
simulations. The effect of screw dislocations is not likely to
be significant under steady shear of hundreds of strain units,
because a screw dislocation aligned in any direction cannot be
deformed in a manner commensurate with a linear shear flow.
In fact, edge dislocations are observed but screw dislocations
are not observed in simulations of three dimensional shear
flows [14,28], albeit of small system size. The important qual-
itative features observed here are not topologically restricted
to two dimensions, and are likely to be observed in three
dimensions as well, though the exact nature of the defects
would change, for example, from edge dislocations in two
dimensions to focal conic defects in three dimensions.

The objective of the present analysis is an extensive
study of the effect of different dimensionless parameters on
the process of alignment under shear. A comprehensive list
of dimensionless parameters is enumerated on the basis of
the free energy functional and the dynamical equations that
govern the evolution of the coarse-grained concentration field
which distinguishes between the hydrophilic and hydrophobic
constituents of the lamellar fluid. With the exception of the
Reynolds number, which is almost always low in practical
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FIG. 22. The parameters f (solid lines) and fy (dashed lines) as a function of ¯̇γ t for Sc0 = 0.33 (a) and Sc0 = 5 (b) for Er0 = 0.2, μ1 = 0
(red, ◦), μ1 = 1.07 (blue, �), and μ1 = 2.13 (brown, �). In (b), the dotted line shows a slope of −1 on the log-log graph.

1 101 102 103

γ.− t

10-1

1

√〈
ψ

2
〉

(a)

1 101 102 103

γ.− t

10-1

1
√〈

ψ
2

〉

(b)

FIG. 23. The variation of the root mean square of the concentration averaged over the entire domain,
√

〈ψ2〉, as a function of ¯̇γ t for μ1 = 0
(◦), 1.07 (�), and 2.13 (�) for Sc0 = 0.33 (a) and Sc0 = 5.0 (b).
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FIG. 24. The viscosity as a function of time for Sc0 = 0.33 (a) and Sc0 = 5 (b) for Er0 = 0.2, μ1 = 0 (red, ◦), μ1 = 0.53 (blue, �),
μ1 = 1.07 (green, �) and μ1 = 2.13 (brown, �). In sub-figure (b), the black dashed lines show a slope of −1 on the log-log graph.

032609-19



S. J. JAJU AND V. KUMARAN PHYSICAL REVIEW E 93, 032609 (2016)

-0.4 -0.2 0 0.2 0.4
(ux /(γ.−  L))

0

0.2

0.4

0.6

0.8

1

(y
/L

)

(a) (b) (c)

(d)

FIG. 25. The layer configurations at Er0 = 0.2, and Sc0 = 5.0, and (a) μ1 = 0, ¯̇γ t = 56.61, (b) μ1 = 1.07, ¯̇γ t = 81.67, and (c) μ1 =
2.13, ¯̇γ t = 614.06, and the scaled velocity profiles along the center of the simulation box in the streamwise direction (d) for μ1 = 0 (◦),
μ1 = 1.07 (�), and μ1 = 2.13 (�). In (a)–(c), the vertical dashed lines show the locations where the velocity profiles are evaluated. In (d), the
bottom of the cell is at (y/L) = 0, and the top of the cell is at (y/L) = 1. In (a)–(c), the lines show contours of zero concentration.

situations, the effects of variation in all other parameters are
systematically studied. The parameters include the Schmidt
number which is the ratio of momentum and mass diffusion,
the Ericksen number which is a ratio of viscous and elastic
forces, the interface sharpness parameters which is a measure
of the ratio of the interface thickness (between the hydrophilic
and hydrophobic parts) and the layer spacing, and the contrast
in viscosity between the hydrophilic and hydrophobic parts.
The methodology involves the definition of a set of parameters
which provide quantitative measures of the layer alignment,
the extent of segregation between hydrophilic and hydrophobic
constituents, a measure of the number of defects in the system,
and the macroscopic sample viscosity.

Different types of structure and viscosity evolution are
observed in steady shear in different parameter regimes. The
first two items listed below confirm the observations in the
previous study [13], where simulations were carried out on
smaller systems and the time dependence of the viscosity
decrease was not evident, while the remaining items are new
observations of the present analysis.

(1) At low Schmidt number, mass diffusion is fast compared
to momentum diffusion. There is rapid formation of layered
domains locally which are randomly oriented and not aligned
with the global shear. The domains with layers aligned along

the extensional axis grow in comparison to those aligned
along the compressional axis during coarsening, and in the
long time limit domains aligned along the extensional axis
are consistently found to coexist with layers with unit normal
along the velocity gradient direction, as shown in Fig. 4(a).
The system does not fully align even after it is deformed
through many hundreds of units of strain, as shown by the
order parameters in Fig. 5. The intermediate states with
layers aligned along the extensional axis have very high
resistance to flow, and so there is a large initial increase in
the macroscopic viscosity (ratio of stress and strain rate), and
the viscosity does not decrease to that for the well-aligned
state even after hundreds of strain units, as shown in Fig. 6.
There is a creation of defects due to shear. Two mechanisms
have been identified earlier, the buckling instability due
to expansion of layers along the extensional axis and the
compressional instability along the compressional axis [13].
The physical mechanism of defect creation has also been
analyzed [24].

(2) In contrast, at high Schmidt number, where momentum
diffusion is fast compared to mass diffusion, the shear tends to
break and reform the layers, resulting in configurations where
the layer normal is aligned in the gradient direction even at very
early times. This results in configurations where isolated edge

032609-20



STRUCTURE-RHEOLOGY RELATIONSHIP IN A SHEARED . . . PHYSICAL REVIEW E 93, 032609 (2016)

-0.4 -0.2 0 0.2 0.4
(ux /(γ.− L))

0

0.2

0.4

0.6

0.8

1
(y

/L
)

(a) (b) (c)

(d)

FIG. 26. The layer configurations for Er0 = 0.2, r = 1, and Sc0 = 0.33 for (a) μ1 = 0, ¯̇γ t = 87.43, (b) μ1 = 1.07, ¯̇γ t = 997.86, and (c)
μ1 = 2.13, ¯̇γ t = 2648.6; and the scaled velocity profiles along the center of the simulation box in the streamwise direction (d) for μ1 = 0 (◦),
μ1 = 1.07 (�), and μ1 = 2.13 (�). In (a)–(c), the vertical dashed lines show the locations where the velocity profiles are evaluated. In (d), the
bottom of the cell is at (y/L) = 0, and the top of the cell is at (y/L) = 1. In (a)–(c), the lines show contours of zero concentration.

dislocations are observed in a background well-aligned lamel-
lar phase, resulting in a lower resistance to flow and a lower
viscosity, as shown in Fig. 4(c). The time required for complete
alignment decreases as the Schmidt number is increased. At
moderate and high Schmidt numbers, the difference between
the instantaneous viscosity (ratio of stress and strain rate) and
the viscosity for a well-aligned state decreases proportional to
t−1 (or the inverse of the number of strain units) in the long
time limit, as shown in Fig. 6. This scaling law was predicted
if the alignment is due to the cancellation of edge dislocations
of opposite Burgers vectors due to the shear flow [24], and
this scaling law is consistently observed in the simulations at
moderate and high Schmidt numbers.

(3) At high Ericksen number, where the viscous forces
are large compared to the elastic restoring forces, the shear
flow tends to homogenize the concentration fluctuations in the
disordered state, resulting in incomplete segregation between
the hydrophilic and hydrophobic components, as shown in
Figs. 8 and 9. The amplitude of the concentration fluctuations
increases to its equilibrium value only after 50–100 units
of strain at Er0 = 4.9, and the equilibrium concentration
profiles are not observed even after 1000 units of strain at
Er0 = 490, as shown by the measure

√
〈ψ2〉 in Fig. 11. At

low Schmidt number and high Ericksen number, the layers

are not completely formed, and there appears to be a pearling
instability of the layers which prevents layer formation, as
shown in Fig. 8. This results in a decrease in the macroscopic
viscosity during the shear alignment as the Ericksen number
is increased, as shown in Fig. 10.

(4) At low Ericksen number, where viscous forces are
small compared to elastic restoring forces, the formation of
misaligned domains is observed initially during shearing,
followed by the transition to a nearly well aligned state with
edge dislocations. However, due to the high stiffness of the
layers, the defects do not anneal completely even after shearing
for hundreds of strain units at Er0 = 4.9 × 10−3 as shown in
Fig. 12. The high stiffness of the layers prevents the glide
motion of the defects perpendicular to the layers, which is
required for the motion and cancellation of defects. The defect-
pinning mechanism, where regions between defects move as
a block without shearing, is also observed at low Ericksen
numbers, as shown in Fig. 15. When defect pinning takes place,
there is straining only in a small part of the domain, and this
results in a significant increase in the macroscopic viscosity as
the Ericksen number is decreased, as shown in Fig. 14.

(5) The defect pinning mechanism is also found to be
operative when there is a significant difference in viscosity
between the hydrophilic and hydrophobic constituents, as
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FIG. 27. The measure 〈	γ̇ 2〉 of the departure from a linear velocity profile as a function of time for Sc0 = 0.33 (a) and Sc0 = 5 (b) for
Er0 = 0.2, μ1 = 0 (red, ◦), μ1 = 0.53 (blue, �), μ1 = 1.04 (green, �), and μ1 = 2.13 (brown, �).

shown in Fig. 25, resulting in a significant increase in the
macroscopic viscosity, as shown in Fig. 24. There is a modest
delay of up to 5 strain units in the development of the
concentration modulation at high viscosity contrast, as shown
indicated by the measure

√
〈ψ2〉 in Fig. 23, but this does not

seem to significantly affect the dynamics.
However, we do not observe any viscous fingering insta-

bility, even at the highest viscosity contrast considered here.
Viscous fingering is usually observed in a pressure driven flow
through a porous medium or in thin channels. It is an open
question whether this will be observed at still higher viscosity
contrasts between the hydrophilic and hydrophobic parts.

(6) A decrease in the parameter r in the free energy
functional 1, which results in a decrease in the width of the
interface between the hydrophilic and hydrophobic parts (in
comparison to the wavelength of the equilibrium concentration
modulation) leads to a larger variation in the layer spacing even
at long times. Layers initially form stochastically with spacing
different from the equilibrium spacing, as shown in Fig. 18.
In these layers, the concentration profile resembles a step
profile, and the concentration is nearly a constant within the
hydrophobic and hydrophilic parts of the bilayer, with a rapid
variation in concentration between the two. Since there is a
driving force for diffusion only in the regions with gradients in
the concentration field, the driving force for diffusion is present
only in a small part of the domain. This results in a reduction
in the flux, and the variations in the layer spacing is permitted
even after a few hundreds of strain units. Despite the increased
disorder, the viscosity decreases as the parameter r is decreased
or the interface becomes sharper, as shown in Fig. 20.

The above qualitative features are likely to be observed
in real systems as well, since they are not limited to two
dimensions. For lyotropic lamellar systems, the prominent
contribution to the high viscosity is likely to be due to the high
viscosity contrast between the hydrophilic and hydrophobic
parts, which results in defect pinning and an increase in
viscosity increase by up to two orders of magnitude in
comparison to the well aligned state.
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APPENDIX A: MESOSCALE DESCRIPTION

The free energy governing the concentration field is given
in Eq. (1). The parameter A is an energy density, which
determines the compression and bending moduli in the free
energy (2) expressed in terms of the displacement field, as
shown below. The wave number k = (2π/λ), where λ is the
wavelength of the concentration modulations. The parameter r

determines the interface thickness between the hydrophilic and
hydrophobic parts. For r � 1, the concentration profile is close
to a sinusoidal profile, while for small r , the concentration
profile resembles a step function, as shown in Fig. 28. The
value of the parameter g is adjusted to ensure that the lamellar
phase has zero surface tension, as expected from symmetry.

At equilibrium, the free energy is minimum and the
concentration field satisfies the equation

δF

δψ
= A

(
−ψ + ψ3 − g

k2
∇2ψ + r

k4
(∇4 + 2k2∇2 + k4)ψ

)

= 0. (A1)

For a lamellar mesophase with layers in the x-z plane and the
layer normal along the y axis, the most general solution for
Eq. (A1) is

ψ =
∞∑

n=−∞
ψn exp(ιnky). (A2)

This general form of ψ Eq. (A2) is inserted in Eq. (A1)
and the coefficients of exp(ιnky) for each value of n are
equated to zero to calculate ψn as a function of r . Since the
concentration field is real and the average concentration is zero
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FIG. 28. Equilibrium profiles for the concentration field ψ as a
function of (y/λ) for values of parameter r chosen in this study,
namely 10−4 (dotted line), 10−2 (dashed line), and 1 (solid line).
Here, λ is the wavelength of the concentration modulations and y is
the direction perpendicular to the layers.

for a symmetric lamellar mesophase, ψ−n = ψn and ψ0 = 0.
For large r , Eq. (A1) reduces to [(∂2/∂y2) + k2]

2
ψ = 0, and

the equilibrium solution for ψ has a sinusoidal spatial variation
with wavelength (2π/k). In contrast, for r � 1 and small
g, −ψ + ψ3 = 0 indicates concentration profile is a step
function. Hence, with decreasing r , there is a transition from
a sinusoidal interface to one with a steep gradient between
the hydrophilic and hydrophobic parts, as shown in Fig. 28. A
detailed analysis [22] shows that the coefficients in Eq. (A2)
scale as ψn ∝ r−(n−1)/2 for r � 1. In the opposite limit
(r � 1), the interface thickness is proportional to (r1/4/k), and
ψn ∝ n−1 for n � nc = r−1/4 [22] where nc is the cutoff for
the expansion in Eq. (A2). The cutoff for n arises in the case of
r � 1, because for nonzero but small r , the terms proportional
to r in Eq. (A1) become comparable to the other terms when
n ∼ r−1/4. The effect of the steepness of the interface, through
the parameter r , on the shear alignment is one of the parametric
studies carried out here.

The free energy functional F [u] could be obtained from
the free energy functional [F [ψ] in Eq. (1)], by perturbing the
equilibrium concentration field in Eq. (A2) as

ψ =
∞∑

n=−∞
ψn exp{ιnk[y − u(x,t)]}. (A3)

A series expansion in the displacement u(x,t) is used, linear
and quadratic terms in the expansion are retained, and the
resultant equation is compared with Eq. (2) to get the
expressions for B,G,K in terms of mesoscale parameters
(A,g,r). The results are of the form [22]

B = A

∞∑
n=−∞

[2rn2(3n2 − 1) + gn2]ψ2
n , (A4)

G = A

∞∑
n=−∞

[2rn2(n2 − 1) + gn2]ψ2
n , (A5)

K = A

∞∑
n=−∞

(rn2/k2)ψ2
n . (A6)

For Eq. (A5), it is clear that the parameter g at mesoscale has
to be set to a negative value, given by

g = −
∑∞

n=−∞[2rn2(n2 − 1)]ψ2
n∑∞

n=−∞ n2ψ2
n

, (A7)

for the surface tension to be zero at macroscale.
From Eq. (A6), the bending modulus K depends only upon

parameters A, r , and k in free energy functional (1), while
the compression modulus depends only on A and r . For r �
1, ψn ∝ r−(n−1)/2 exp (−an) for large r and n, where a is a
constant. Consequently, the expressions for the bending and
compression moduli, Eqs. (A6) and (A4), are dominated by
the first terms in the expansion,

K ∼ Ar

k2
; B ∼ Ar. (A8)

In limit r � 1, for n � nc = r−1/4, ψn ∝ n−1, and from
Eq. (A6),

K ∼ A
r

k2
nc ∼ A

r3/4

k2
; B ∼ Arnc ∼ Ar3/4. (A9)

The parameter A has been varied in present study to the
differences in layer alignment and rheology for different values
of the compression and bending moduli.

The dynamical equations, for concentration (ψ) and veloc-
ity (v) fields, are [7]

∂ψ

∂t
+ ∇ · (vψ) = �∇2

(
δF

δψ

)
, (A10)

∇ · v = 0, (A11)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + ∇ · {μ′[∇v + (∇v)T ]}

+ (∇ψ)
δF

δψ
. (A12)

Equation (A10) is the convection-diffusion equation for the
concentration field, where �, the Onsager coefficient, is
related to mass diffusivity D. Equation (A11) is the mass
balance condition for incompressible fluid, and Eq. (A12) is
the momentum balance equation. The left side in Eq. (A12)
represents inertial terms, and ρ is the fluid density. The first
two terms on the right side are the divergence of the pressure
p, and the divergence of Newtonian stress tensor, where μ′ is
the coefficient of viscosity. It should be noted that one of the
dependencies studied in the present analysis is the dependence
of the coefficient of viscosity on the concentration, and so
the viscosity μ′ is not a constant. The last term on the right of
Eq. (A12) is the divergence of an additional stress which arises
due to chemical potential gradients, and which is required
to ensure that the concentration and momentum equations
satisfy the Poisson bracket relations. Thermal fluctuations are
neglected in Eqs. (A10) and (A12), since we consider the
zero temperature limit where ordering occurs only due to the
imposed shear flow.
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In a “macroscale” description for a nearly aligned system
near equilibrium, the governing equations are employed for
layer displacement field u and for the fluid velocity field.
Here, u is the displacement, in the direction perpendicular
to the layers, about an equilibrium lamellar configuration.
A perturbation in an aligned lamellar configuration causes a
restoring force which results in movement of the layers relative
to the surrounding fluid. The permeation of the fluid through
the layers causes an opposing drag force proportional to the
difference in layer and fluid velocity (in a manner similar to
the Darcy law for flow through porous media). The equation
for the layer displacement u in the y direction is [22]

∂u

∂t
− vy = −P

δF [u]

δu

= P

(
B

∂2u

∂y2
− K

(
∂2

∂x2
+ ∂2

∂z2

)2

u

)
. (A13)

The left side of the above equation is the difference between
the layer velocity and the fluid velocity in the direction
perpendicular to the layers. On the right, the term, − δF

δu

represents the restoring force density, and P is the permeation
constant. The two terms on the right side of Eq. (A13) are
the force densities due to layer compression and bending
respectively. The force due to the relative motion between the
fluid and layers results in an additional term in the momentum
equation for the fluid in the direction perpendicular to the
layers,

ρ

(
∂v
∂t

+ v·∇v
)

= −∇p + ∇·{μ′[∇v + (∇v)T ]} + δF

δu
n,

(A14)

where n is the direction perpendicular to the layers. Equa-
tions (A13) and (A14) along with the mass balance condition
[Eq. (A11)] complete the description of lamellar phase systems
at macroscale. Equations (A13) and (A14) can be obtained by
inserting the perturbed concentration field in Eq. (A3) into
Eqs. (A10) and (A12). The resulting equations are simplified
by keeping only the term linear in u and v during the expansion,

TABLE I. List of values of various dimensionless numbers and
parameters used in the simulations of system size equal to 32 times
the layer spacing in the streamwise and cross-stream directions. The
value of Re0 is set equal to 1 in all cases, and the value of Sc0 is set
to values of 0.33, 0.66, 1.0, 2.0, and 5.0.

Case Er0 r μ1

1 0.2 1.0 0
2 4.9 1.0 0
3 0.49 1.0 0
4 0.1 1.0 0
5 4.9×10−3 1.0 0
6 0.2 0.1 0
7 0.2 0.01 0
8 0.2 1.0 0.32
9 0.2 1.0 0.53
10 0.2 1.0 1.07
11 0.2 1.0 2.13

TABLE II. The parameters μ1 [Eq. (5)] used in the simulations,
and the corresponding ratio of (μ̄/μ0) [Eq. (6)], the ratio of the
difference between maximum and minimum viscosities 	μ, and the
average viscosity μ0, and the ratios of the Reynolds, Schmidt, and
Ericksen numbers based on μ̄ and μ0.

(Reμ̄/Re0)
(Sc0/Scμ̄)

μ1 μ̄/μ0 	μ/μ̄ (Er0/Erμ̄)

0.0 1.00 0.00 1.00
0.32 0.95 0.63 1.05
0.53 0.86 1.16 1.16
1.07 0.11 17.90 9.00
2.13 2.89×10−2 103.38 34.60

to obtain a relation between the Onsager coefficient and
permeation constant,

P = �∑∞
−∞ ψ2

n

. (A15)

Since ψn ∼ n−1 when r � 1, P is approximately equal to
�. The ratio (P/�) tends to 1.5 for r � 1 [22]. Also, from
Eq. (A13), PB ∼ D, where D is diffusion coefficient.

The set of parameters used in the simulations is shown in
Table I. For each of these parameter sets, the Reynolds number
based on the viscosity μ0 is set equal to 1, and the Schmidt
number Sc0 based on the viscosity μ0 is set to values of
0.33, 0.66, 1.0, 2.0, and 5.0. The relation between the average
viscosity μ̄ and the viscosity μ0 in Eq. (5) is given in Table II.

APPENDIX B: LATTICE BOLTZMANN SIMULATIONS

In kinetic theory [29], the Boltzmann equation,

∂f

∂t
+ e · ∂f

∂x
+ a · ∂f

∂e
= ∂cf

∂t
, (B1)

describes evolution of the particle distribution function,
f (x,e,t), where f (x,e,t)dxde is the probability of finding a
particle in differential volume dxde around location x and
velocity e in phase space (�), and a is acceleration on the
particles. The important assumption here is the molecular
chaos approximation which states that the particle velocities
are uncorrelated before collision. The terms on the left hand
side of Eq. (B1) denote free streaming in phase space and ∂cf

∂t

is the collision integral which accounts for binary collisions
between particles. Due to the form of the collision integral
term it is difficult solve the integrodifferential Boltzmann
equation except in special cases. Different approximations,
known as collision models, have been proposed over the years
for the collision integral term to make the Boltzmann equation
amenable to analytical and computational treatment.

In single relaxation lattice Boltzmann simulations, we solve

fi(x + ei ,t + 1) − fi(x,t) = −fi − f
eq
i

τf

, (B2)

which is a peculiar discretization of Boltzmann equation, with
the Bhatnagar-Gross-Krook (BGK) [30] collision model, in
physical (x) and in velocity (e) space. As before, the left side
represents streaming where particles, which now can have only
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discrete velocities {ei}, move from one lattice site (x) to another
(x + ei) in unit time (	t = 1). The BGK collision term (right
side) relaxes the system towards local equilibrium, where τf is
relaxation time parameter. The macroscopic quantities such as
mass density, velocity, stress, etc., could be obtained by taking
the appropriate moment of distribution function, e.g.,∑

i

fi = ρ,

∑
i

fieiα = ρvα. (B3)

The additional force density for nonideal fluids could be either
included as an extra term in the right hand side of Eq. (B2)
or incorporated in equilibrium distribution function. We have
used the latter method in the present simulations. The f

eq
i is

then given as

f
eq
i (x,v) = ρ

[
Ai

1 + Ai
2(v · ei) + Ai

3(v · ei)
2

+ Ai
4(v · v) + (G : eiei)

]
. (B4)

The tensor G incorporates the additional contributions to
Newtonian stress tensor, in this case due to concentration
variations. The coefficients Ai

j (j = 1−4) and tensor G are
determined based on moments of the distribution function,
given as follows: ∑

i

f
eq
i = ρ,

∑
i

f
eq
i eiα = ρvα,

∑
i

f
eq
i eiαeiβ = ρc2

s + σαβ + ρvαvβ,

∑
i

f
eq
i eiαeiβeiγ should be isotropic, (B5)

where cs is the speed of sound and is equal to 1/
√

3 in
this model. The tensor σαβ represents the nonideal part of
the stress tensor in the momentum balance equation. Here,
∂ασαβ = (∂αψ) δF

δψ
; see Eq. (A12). While discretizing velocity

space we need to ensure that the correct hydrodynamics
(mass and momentum balance equations) is recovered in the
continuum limit. We have used the two dimensional nine
velocity (one zero velocity, four along coordinate axes, and
four along lines at 45◦ to the axes, as shown in Fig. 29)
lattice Boltzmann model (D2Q9) for current simulations. The
Chapman-Enskog expansion for this model shows that proper

FIG. 29. Lattice velocities for D2Q9 model.

equations describing the hydrodynamics are indeed retrieved
for macroscopic systems and the kinematic viscosity ν is given
as [31]

ν = (τf − 0.5)c2
s . (B6)

For viscosity contrast studies, as viscosity depends upon
the relaxation time parameter [Eq. (B6)], τf is assumed to be
a linear function of concentration and has been varied locally
using the following expression:

τf (x) = τ
(0)
f

(
1 + τ

(1)
f × ψ(x)

)
. (B7)

And since the relaxation time parameter in lattice Boltzmann
simulations cannot be less than or equal to 0.5, the values
of τ

(0)
f and τ

(1)
f are chosen such that τf is always greater

than 0.5. The parameter τ
(0)
f is set to a rather large value of

8 in simulations and τ
(1)
f is set to 0.3 and 0.5 respectively.

At very high viscosity contrast, a cutoff of 0.53 is used for
τf (x) as the relaxation parameter cannot be less than 0.5 in
lattice Boltzmann simulations. When the two components are
assumed to have the same viscosity, the parameter τ

(1)
f is set to

zero, and the strain rate is a constant for an aligned system. The
average viscosity (μ̄), which is ratio of average shear stress and
average strain rate, would be equal to the bare fluid viscosity
[=2.5, from Eq. (B6) for the chosen values of parameters].
The relative change in viscosity (	μ/μ̄) in this case is 0.

For systems with viscosity contrast, the velocity profile is
not linear hence the strain rate depends upon the location.
Here, the average strain rate ( ¯̇γ ) is calculated by taking into
account the velocity variation across one layer. This could be
done as follows:

¯̇γ = 	ux

λ
,

= 1

λ

∫
λ

dyγ̇ ,

= 1

λ

∫
λ

dy
σ

μ′ , (B8)

where λ is the layer width and σ is the shear stress. The stress
here includes both Newtonian as well as the additional concen-
tration field dependant stress. During simulations of systems
with viscosity contrast, we have set the value of parameter r

to 1. This corresponds to a sinusoidal concentration profile at
equilibrium (see Fig. 28). Hence from Eqs. (B6) and (B7), μ′ =
ρ[τ (0)

f (1 + τ
(1)
f × sin ( 2πy

λ
)) − 0.5]c2

s . The average viscosity is
then calculated as

μ̄ = average stress

average strain
= 1

1
λ

∫
λ

dy

ρ

[
τ

(0)
f

(
1+τ

(1)
f ×sin

(
2πy

λ

))
−0.5

]
c2
s

.

(B9)

The stress terms cancel out because in absence of any external
body force, the stress would be constant. With |ψ |max = 1.2
(the observed value in simulations of initially disordered
lamellar phase systems), the relative change in viscosity
(	μ/μ̄), for τ

(1)
f = 0.3 and τ

(1)
f = 0.5, is 0.81 and 1.51

respectively. The average viscosity in these two cases is 2.37
and 2.11 respectively. The simulation results shown here are
for these two values of (	μ/μ̄).
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A similar D2Q9 lattice model has been used to solve
convection-diffusion equation [Eq. (A10)]. A distribution
function gi is defined so that∑

i

gi = ψ,

∑
i

gieiα = ψvα. (B10)

The distribution gi has a similar dynamical evolution equation,
i.e.,

gi(x + ei ,t + 1) − gi(x,t) = −gi − g
eq
i

τg

, (B11)

where τg is the relaxation time parameter for the concentration
(ψ) field. The equilibrium distribution function g

eq
i is assumed

to be of the following form:

g
eq
i (x,v) = ψ

[
Bi

1 + Bi
2(v · ei) + Bi

3(v · ei)
2 + Bi

4(v · v)
]
.

(B12)

The coefficients (Bi
1 − Bi

4) are determined subject to the
following constrains:∑

i

g
eq
i = ψ,

∑
i

g
eq
i eiα = ψvα,

∑
i

g
eq
i eiαeiβ = �	μδαβ + ψvαvβ,

∑
i

g
eq
i eiαeiβeiγ should be isotropic, (B13)

where 	μ is the chemical potential difference between the
two components and is given as 	μ = δF

δψ
. This choice of

moments guarantees that the dynamics would be governed by
the convection-diffusion equation at the continuum level [8,11]
with � = (τg − 0.5).

1. Boundary conditions

We have used the periodic boundary condition along
the flow direction and the system is sheared using either
the wall boundary condition or the Lees-Edwards boundary
condition.

a. Wall boundary condition

In lattice Boltzmann simulations, the bounce back (reflec-
tion) scheme is used to emulate a stationary surface such that

fi(x,t + 1) = f−i(x,t+), (B14)

where the “+” sign indicates the value of the distribution
function at (x,ei) after collision, and ei = −e−i . In the case
of wall driven flow, Eq. (B14) has an additional contribution
proportional to wall velocity (vw), which arises due to the
Galilean invariance requirement [27]. The equation then
reads [25]

fi(x,t + 1) = f−i(x,t+) + 2Ai
2ρvw · ei . (B15)

FIG. 30. Lees-Edwards boundary condition configuration. The
black dots in periodic images indicate locations of x′ when fr = 0
(no lattice mismatch).

b. Lees-Edwards boundary condition

In molecular dynamics simulations, the Lees-Edwards
boundary condition offers a convenient way to analyze the bulk
behavior of a system under uniform shear flow by reducing the
finite size effects [32]. It can be thought of as an extension of
periodic boundary condition in the cross-flow direction. For
2D systems, if a particle at (x,y) with velocity v leaves the
system, another particle, from one of the neighboring mirror
images of the system, appears in the system at location [x +
(	vxt mod Lx),(y mod Ly)] with velocity (v + 	v). The im-
plementation of the Lees-Edwards boundary condition for lat-
tice based simulation methods involves calculating incoming
distribution functions at the boundary nodes, via interpolation
of distribution function densities leaving the periodic image
moving with velocity (v ± 	v) above or below the simulation
box. Interpolation is required due to lattice mismatch between
the simulation box and the periodic image as each moves
with different velocity (see Fig. 30). Based on density and
velocity values over the course of the simulations, linear
interpolation was found to work fairly accurately. The interpo-
lation scheme, for the choice of lattice velocities (Fig. 29), is
given as

fi(x,y =0,t+1)= (1−fr )f
′
i (x ′−eix,y =L,t+)

+ frf
′
i (x ′−eix + eiy,y =L,t+), (B16)

where fr = [(|	vx |t) mod 1], and x ′ = x + (|	vx |t) − fr ,
the largest integer smaller than [x + (|	vx |t)]. The distribution
function f

′
i (x,t+) is the postcollisional density at (x,ei) in the

periodic image and is given as [27]

f
′
i (x,t+) = fi(x,t+) + f

eq
i (x,v + 	v) − f

eq
i (x,v). (B17)

The results obtained using the two boundary conditions are
plotted and compared in Fig. 31. While there are quantitative
differences in the results of the two boundary conditions,
these differences emerge only in the long time limit after a
few hundreds of strain units. The qualitative variation of both
the structural properties and the viscosity with the Schmidt
number (as shown in Fig. 31) as well as the other dimensionless
parameters do not depend on the type of boundary conditions
used.
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FIG. 31. Variation of the parameters f (a) and (μ − 1) (b) with time for a lamellar system with Er0 = 8 × 103, μr = 0, and r = 1 for wall
(dashed lines) and Lees Edwards periodic boundary conditions (solid lines), for Schmidt numbers 0.33 (red, ◦), 1 (blue, �), and 5 (brown, �).
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