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Dense bubble traffic in microfluidic loops: Selection rules and clogging
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We study the repartition of monodisperse bubbles at the inlet node of an asymmetric microfluidic loop for low
to high bubble densities. In large loops, we evidence a new regime. Contrary to the classical belief, we point
out that bubbles are directed not towards the arm having the higher total flow rate but towards the arm with the
higher water flow rate at low and moderate relative gas flow rates. At higher rates, they enter the longer arm when
they reach close packing in the shorter arm. In small loops, we evidence a clogging regime at high relative gas
flow rates. Collisions between bubbles coming from the two arms at the outlet clog the longer arm. We propose
a comprehensive analysis allowing us to explain these results.
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I. INTRODUCTION

Foams are mixtures of gas and liquids we encounter
everyday. In the last decades many applications dealing with
the use of foams in soils have emerged. Surfactant foam
technology has been suggested to achieve better mobility
control in porous media and to improve removal efficiencies
of several remediation processes. It has been investigated
for removal of hydrophobic organic compounds [1] and
heavy metals [2] from contaminated soils. This application
is very promising, as there are many expected advantages
of injecting a foam rather than a single-phase fluid in the
polluted soil. It allows a large reduction of the volume of
liquid needed for a given injection volume, while maintaining
a very good compatibility with the surfactants already used
for soil remediation. Foams may also be used as a substitute
for polymer drive in the alkaline/surfactant/polymer (ASP)
enhanced-oil-recovery (EOR) process [3]. In both EOR and
soil remediation a foam flows through a porous material with
a complex geometry. Understanding how water/gas systems
behave and perform in porous media is critical to the effective
application of foams. How foam flows in porous media is
not always directly linked to how foam behaves in bulk form
(e.g., when in a bottle). The effective viscosity of the foam
depends upon the interactions between the bubbles and the
porous media. An essential prerequisite for the applications
is the knowledge of bubble traffic in the network. This is
not an easy task, as flows of discrete objects such as bubbles
thus differ from the flow of a simple fluid. It may become
heterogeneous, involve the creation of preferential paths, and,
in some cases, be chaotic [4].

In the last decades, these issues have stimulated many works
[4–13]. These studies focus on a simple geometry: a simple
loop or a simple junction. They contribute to the global picture
of the flow, at least in the dilute dispersion situation and in
regimes where the viscous stresses are so small that bubbles
do not break. When a droplet or a bubble reaches the inlet of
a junction having two outlets, it flows into the arm having
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the higher flow rate. As a consequence, at high dilutions,
all the droplets or bubbles flow in the shorter arm of an
asymmetric loop. Since the presence of droplets or bubbles in a
channel induces some extra dissipation, it lowers the flow rates.
Thus, for more concentrated flows, a repartition of droplets or
bubbles is observed in the arms of the loop. The transition
between these two regimes occurs when the hydrodynamic
resistance of the shorter arm becomes comparable to that of the
longer arm. Then, if droplets alternatively go into the two arms,
the mean hydrodynamic resistances of the two arms remain
approximately equal in the limit of weak relative fluctuations
in the number of droplets. This leads to an equality rule for the
total flow rates [9,14–17].

In this work, we propose a rationalized experimental
approach, by considering a basic yet essential element, a single
loop, where the flow is separated into two streams. We perform
a comprehensive study as a function of the dilution and of the
size of the loop. We show that the size of the loop is an
important parameter. In the large-loop situation, i.e., when the
two arms are at least six times longer than the bubble size,
as shown in previous studies [4–13], we evidence a filtering
and a transition regime. Strikingly and contrary to previous
studies [9,14–17] in the repartition regime situation, we point
out that the hydrodynamic resistances or the total flow rates
are never equal in the two arms. We note that this point was
suggested by Engl [6] but not evidenced experimentally. In
this new regime where interactions between bubbles cannot be
neglected, we show that for low and moderate bubble densities,
the continuous phase flow rates are equal in the two arms.
When the distance between the bubbles in the shorter arm
becomes comparable to the size of the bubble, the selection
rule changes. Bubbles go into the longer arm and the bubbles
in the shorter arm do not deform.

In the small-loop situation, we show that the size of the loop
is an important parameter, and we evidence that a clogging
regime follows the repartition regime when the bubble density
is increased in the small-loop situation. To our knowledge, such
a clogging has not been reported yet in the literature. This paper
is presented as follows. In Sec. II, we describe the experimental
procedure in detail. Section III is devoted to the study of bubble
transport in a straight channel. Section IV deals with the study
of the repartition of bubbles in a large loop as a function of
the relative gas flow rate. We propose a simple model which
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FIG. 1. Images of the device. (a) Flow focusing geometry:
Bubbles are produced by a controlled water flow rate Qwu

and a
gas pressure Pg . They are then diluted (or concentrated) with an
additional (or removal) water flow rate Qwd

. (b) Loop geometry: The
bubble train then flows in a loop having two arms of different lengths,
L1 and L2. In this picture, L2 = 2L1. Channel widths are 100 μm in
both panels.

is validated by the experiments. In Sec. V, we move to the
small-loop situation and and study the clogging regime.

II. EXPERIMENTAL PROCEDURE

We use polydimethyl-siloxane (PDMS) devices, made
using standard microfabrication techniques. Bubbles are pro-
duced thanks to the flow-focusing geometry (see, for example,
Ref. [18]); they are then diluted or concentrated by an
additional water flow rate [see Fig. 1(a)]. The zone of study
is located downstream and consists of a straight channel or
of a loop having two arms of different lengths but of similar
cross sections [see Fig. 1(b)]. The sections of the channels are
square, of width 100 μm.

The air flow is imposed thanks to a pressure controller
(Fluigent) at between 0 and 1400 mb and syringe pumps
control the aqueous solution flow rate. The aqueous solution
contains 5%, by weight, of a commercial dishwashing solution
(Minimir), in order to avoid coalescence of the bubbles and
to ensure total wetting. The surface tension γ between the
surfactant solution and the air is equal to 28 mN/m. The gas
pressure and the water flow rate at the level of the junction Qwu

are independently controlled and adjusted in order to form
almost-monodisperse bubbles that are emitted at a constant
rate f0. The latter is systematically measured by performing
a Fourier transform of the light intensity just after the
constriction. Correlatively, the bubble volume � is determined
by image analysis. This allows us to know the gas flow rate Qg ,
given by Qg = f0�. We adapt the water flow rate Qwu

in order
to get a constant bubble volume, independently of the gas flow
rate. Despite this procedure, the bubble volume varies slightly
(up to 10%) from one experimental condition to another.

An additional injection or removal of water downstream
Qwd

dilutes or concentrates the system and increases or reduces
the distance λ between two successive bubbles while keeping
their volume unchanged (see Fig. 1). The channel is thus filled
with a periodic train of droplets moving at a constant velocity
Vb = λf at a water flow rate Qw = Qwu

+ Qwd
, which is

directed towards the loop or the straight channel. The relative
gas flow rate (foam quality) is defined as q = Qg/QT , where
the total flow rate QT is given by QT = Qw + Qg .

We record videos of the moving bubbles using a fast
video camera at a typical acquisition rate of 500 frames/s and
use image processing software (MATLAB) to determine the
bubble frequency and velocity. The frequency measurement
is achieved by determining the maximum of the temporal
Fourier transform of a single pixel and the velocity by spatial
correlations.

In order to characterize the pressure drop in a straight
channel, we incorporate in the device two small channels
that are directly connected to a pressure sensor. The pressure
sensor is a differential analogic captor (Honeywell Ref. No.
AXDXRR015PDAA3). It contains sensing elements that
consist of four piezoresistors buried in the face of a thin,
chemically etched silicon diaphragm. Our captor measures
pressure in the range 0–15 psi (i.e., 1.03421 b) with a precision
of ±2 mb. The frequency of acquisition is equal to 2 Hz.
The small dimensions of the pressure sensor channels prevent
bubbles from getting in. Pressure drop measurements were
first validated with pure water; the data agree well with the
Poiseuille law up to 10%.

III. BUBBLES IN STRAIGHT CHANNELS

We consider bubbles flowing in a square or in a rectangular
channel. We consider regimes where the viscous effects are
much smaller than the surface tension effects (low capillary
number) and where inertial effects are negligible compared to
viscous effects (low Reynolds number).

A. Bubble velocity

Let us first focus on bubble velocities. For confined bubbles
in square or rectangular geometries, this issue is not straight-
forward because the bubbles do not fill the entire section. The
carrier fluid can flow through the corners of the section, either
backward or forward in the reference frame of the bubbles.

Figure 2 displays the experimental bubble velocity as
a function of the total flow rate QT = Qw + Qa for two
straight geometries. These experiments correspond to a range
of capillary numbers Ca = ηQT /γ S (S being the area of the
cross section and η the aqueous phase viscosity) between 10−4

and 10−2 and to a relative gas flow rate q = Qg/QT between
0.1 and 0.8. We found that the bubble velocity Vb varies linearly
with the total flow rate, i.e., Vb = βQT /S. Interestingly, the
value of β does not depend on the bubble interdistance even in
the concentrated regime where the wavelength of the bubble
trains is of the order of the bubble size. β seems to depend on
the channel aspect ratio or on the bubble size, as β = 0.81
in a square channel of width w = 100 μm for bubbles of
length Lb = 1.4w and β = 0.93 in a rectangular channel of
cross section w × h = 250 × 300 μm for bubbles of length
Lb = 1.6w (see Fig. 2).
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FIG. 2. Droplet velocity as a function of the total flow rate in
a square channel of characteristic size w = 100 μm (top) and in a
rectangular channel of of width w = 250 μm and height h = 300 μm
(bottom). Open black circles correspond to the concentrated regime
(λ > 2Lb), and filled red squares to the dilute one (λ < 2Lb). The
relative size of the bubbles is equal to Lb/w = 1.4 (top) and Lb/w =
1.6 (bottom). The line corresponds to a linear fit associated with a β

value equal to 0.81 (top) and to 0.93 (bottom).

B. Drop in pressure

The presence of a bubble in a channel strongly modifies
the velocity profile of the carrier fluid around it and thus the
pressure gradient. It has been proposed [19] that the pressure
drop along a channel of length L and of width w, containing a
density of n bubbles per unit of length, could be modeled as

�P = Lγ

w2
[a(1 − nLb)Ca + bnLbCa + cnwCa2/3], (1)

where Lb is the bubble length, and a, b, and c are numerical
parameters of geometrical constraints. The first term, linear
with respect to the velocity, represents the contribution of
the carrier fluid flow between the bubbles. The parameter a

depends only on the channel aspect ratio and equals 28.5 for
square channels. The second term is proportional to the number
of bubbles and is due to the liquid flow through the gutters [19]

but can also incorporate the consequence of the perturbation of
Poiseuille flow upstream and downstream a droplet. The third
is also proportional to the number of bubbles and corresponds
to the drop in pressure induced by the viscous dissipation in the
transitional region between the hemispherical end caps of the
bubbles and the thin films. It was first calculated by Bretherton
for circular tubes [20] and then by Wong et al. for rectangular
channels [21]. It is worth noting that in the presence of a layer
of surfactant with a high interfacial dilatational modulus, the
value of c differs from the stress-free interface case and an extra
pressure drop scaling, as Ca1/3 has to be considered [22]. Let
us emphasize that, at least in the presence of surfactants, the
parameters b and c need to be experimentally characterized.

We take advantage of the knowledge of the first term
in Eq. (1) in order to experimentally determine the extra
pressure drop due to a single bubble �Pbubble, defined as
�Pbubble = �P/nL − γ (1 − nLB)/nw2. Figure 3 displays
the results obtained from direct pressure drop measurement

FIG. 3. Pressure drop due to a single bubble �Pbubble (see text),
normalized by 2γ /w, plotted as a function of the capillary number for
various relative gas flow rates. The line represents the best fit to the
data using a power law of exponent 2/3. It corresponds to the model
(see text) with a = 28, b = 0, and c = 25 (top) or c = 34 (bottom).
Experiments were performed in a square channel of 100 μm (top)
and in a rectangular channel of 250 × 300 μm (bottom). The relative
bubble size is Lb/w = 1.4 (top) and Lb/w = 1.6 (bottom). Open
black circles correspond to the concentrated regime (λ > 2Lb), and
filled red squares to the dilute one (λ < 2Lb).
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in two channels. In both cases, the data exhibit a clear scaling
in Ca2/3. This implies that, in the range of Ca studied and
for the rather small bubbles investigated, the second term in
Eq. (1) could be neglected, similarly to the work by Parthiban
and Khan [14,23]. The best fits to the data lead to c � 28 for
the square channels and c � 34 for the rectangular one (see
Fig. 3). These values differ from the theoretical predictions of
Wang et al. and from those determined experimentally [14,19].
This is not surprising, as this parameter depends upon the
channel aspect ratio and on the nature and concentration of the
surfactant [19].

Importantly for the following and as highlighted in Fig. 3,
the extra pressure drop per bubble remains the same for
concentrated bubble trains. This observation might be related
to the fact that the main contribution to the pressure drop
is the Bertherton-like term [third term in Eq. (1)]. In the
following section where we consider only channels of square
cross section, we thus use Eq. (3) to model the pressure drop,
with a = 28.5, b = 0, and c = 25.

C. Discussion

Let us now come back to the observation that the bubble
velocity Vb is linear with respect to the total flow rate and
slightly less than unity. This is, at first sight, surprising since
the pressure drop due to a bubble scales as Ca2/3, and one
may thus expect some kind of nonlinear dependency of the
relative velocity. Due to the small thickness of the wetting
films, the flow of the carrier fluid in the vicinity of the
bubble occurs principally through the gutters that exist in
square or rectangular geometries. This flow rate Qgutter could
be estimated from the pressure drop acting on the bubble
�Pbubble and the hydrodynamic resistance in the gutters, so
that Qgutter � �Pbubblew

2/α′ηw(Lb − w), where the numeric
constant α′ has been computed using COMSOL [24] and
equals approximately 1.8 × 104 [26].

The total flow QT rate could be expressed in the mid cross
section of a bubble and is given by QT = (S − Sgutter)Vb +
Qgutter, where Sgutter = w2(1/4 − π/16) is the total area of the
gutters. By combining the expression of the pressure drop,
�Pbubble = cCa2/3γ /w, with the previous equation, we obtain
the following expression for the coefficient β = SVb/QT :

β = 1

1 − Sgutter/S + ACa−1/3 , (2)

where the constant A is given by A = cw/α′(Lb − w). This
analysis leads to a value of β that should increase with
increasing capillary number, with typical values of 0.98
for Ca = 10−4 and 1.02 for Ca = 10−3. Given the rather
small range of velocities tested experimentally, it is thus not
surprising to observe a roughly linear variation of the bubble
velocity versus the total flow rate. We note, however, that the
experimental values of β are smaller than the prediction. This
might indicate that in the above analysis, the flow through
the gutters is a bit underestimated. Additional experiments at
lower capillary numbers would be useful to gain some insight
into this issue. In the following, we use the experimental and
constant value of β to model the flow in loops.

The most important conclusion of this section is the fact that
for both the relative velocity of the bubbles and the pressure

drop expression, the measured relations in the dilute regime
are still valid in the concentrated one. Even for closely packed
bubble trains, the pressure drop is still given by expression (1)
and the bubble velocity by Vb = βQT /S.

IV. BUBBLES IN LARGE LOOPS

We consider a loop with two arms of different lengths L1 <

L2 but of the same cross section (see Fig. 1). We first study
large loops, diameter 6.4 mm, of square channels of width
w = 100 μm. The bubble size is Lb � 1.4w, so that for these
large loops Li � Lb.

As reported in the literature, we evidence two regimes: a
filter regime at low relative gas flow rates and a repartition
regime at higher rates (see Fig. 4). The transition between
these two regimes strongly depends on the asymmetry between
the two arms; it occurs at lower relative gas flow rates for

 = L2/L1 = 5 than for 
 = 2.

In order to describe the bubble traffic quantitatively,
we extract from the videos the bubble velocities Vbi

and
frequencies fi in each of the two arms (i = 1 and 2 for the short
and long arms, respectively). It is straightforward to deduce
the gas flow rates as Qgi

= fi� from these measurements. As
the bubble velocity is proportional to the total flow rate (see
previous section), the flow rates in each arm are computed
according to QTi

= Vbi
S/β. Let us note that as the two

channels are the same size, bubbles will flow at the same
velocity if the total flow rate is the same in the two arms. The
knowledge of the β value is thus not required to estimate the
ratio between the two total flow rates. Figure 5 displays the
evolution of the normalized total flow rate in each arm for
two aspect radii, 
 = L2/L1 = 2 and 
 = 5, as a function of
the relative gas flow rate q = Qg/QT . The flow rate in the
short arm decreases with increasing relative gas flow rate in
the filtration regime, reaches a minimum at the transition, and
then increases (Fig. 6).

FIG. 4. Pictures of bubble traffic in the large loop. Top left:
Filter regime in a loop where 
 = L2/L1 = 2. Top right: Repartition
regime at a high relative gas flow rate in the same loop. Bottom left:
Repartition regime in a loop where 
 = 5. Bottom right: Repartition
regime in a loop where 
 = 5. Arrows indicate the flow direction.
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FIG. 5. Relative total flow rate QTi
/QT for bubbles in the short

and in the long arm as a function of the relative gas flow rate in large
loops 
 = 2. Values >0.5 are for the short arm, and lower ones for
the long arm. Different symbols correspond to various gas flow rates,
which are made nondimensional by defining Ca∗ = ηQg/γ S. Black
squares and black lines represent Ca∗ = 10−3; red circles and red
lines, Ca∗ = 2 × 10−3; blue leftward triangle and blue lines,Ca∗ =
3 × 10−3; and green rightward triangles and green lines, Ca∗ = 6 ×
10−3. Solid lines correspond to the model. From top to bottom the
capillary number decreases and is, respectively, equal to 6 × 10−3,
3 × 10−3, 2 × 10−3, and 10−3. Note that contrary to the work of Engl
et al. [25], the model does not correspond to a single curve in the
parameter-plane relative total flow rate or relative gas flow rate. This
is due to the nonlinearity of the pressure drop with respect to the
capillary number.

To model the flow in the loop, we need to predict the
evolution of four quantities: the wavelengths λ1 and λ2 and the
total flow rates QT1 and QT2 . Conservation equations for each
phase together with the pressure drop balance �P1 = �P2

provide three equations. To complete the set of equations,
one thus needs an additional equation which accounts for the
selection rule at the inlet junction. Path selection at the junction
is governed by viscous forces. Since these are proportional to
the carrier fluid velocity, one could expect that the bubble
will move towards the arms where the total flow rate is the
highest. Many works [9,14–17] have indeed argued that this
selection rule applies. In the repartition regime, it implies that
the flow rate difference between the arms fluctuates around
0. Averaging over time, both flow rates should be about the
same. However, the data displayed in Fig. 7 disagree with
this picture, as the fractional flow rate in the shorter arm is
significantly higher than 0.5 over the whole range of relative
gas flow rates studied.

We thus proceed by analyzing the experimental features of
the flow. As shown in Fig. 8, we found that the water flow rates
Qwi

= QTi
− Qgi

are roughly equal for low and moderate
relative gas flow rates (q � 0.5). This observation has been
reported by Engl et al. [25]. However, it seems hard to provide
a comprehensive interpretation. Careful examination of the
videos reveals several features that might explain why the flow

q
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FIG. 6. Relative total flow rate QTi
/QT for bubbles in the short

and in the long arm as a function of the relative gas flow rate in large
loops 
 = 5. Same symbols as in Fig. 5.

rates in both arms are not equal on average. Let us first stress
that in these situations the bubbles do not touch but are quite
close to each other. The wavelength at the transition between
the filter and the repartition regime is between 2 and 3 Lb (see
Fig. 9). These numbers are greater than unity but are not very
large. They suggest that in the observed regime bubbles may
interact. Bubbles remain at the inlet junction for a significant
fraction of the temporal period between bubbles before moving
to one of the arms. This creates some collisions between
bubbles that may contribute to the path selection [11]. We
also note that the total flow rate exhibits some fluctuations in
time, associated with the bubble production. In the following,

FIG. 7. Flow rate in the arms of the loop QTi
, normalized by the

total flow rate QT , for two geometries as a function of the relative gas
flow rate. Black squares correspond to a loop with 
 = L2/L1 = 2;
red circles, to a loop with 
 = 5. Open symbols correspond to data
collected in the long arm. The two total flow rates are never equal.
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FIG. 8. Ratio of water flow rate in the short arm Qw1 to that in the
long arm Qw2 , as a function of the relative gas flow rate q. Water flow
rates are deduced from the mean bubble velocity Vbi

and frequency
fi measurements, assuming that Qwi

= SVbi
/β − �fi . For q < 0.5

the water flow rates are equal in the two arms. Red (gray) symbols
correspond to 
 = 2; black symbols, to 
 = 5.

we use, in the repartition regime, the empiric selection rule at
the inlet junction, that is, Qw1 = Qw2 .

For q > 0.6, we observe that neither the total flow rates
nor the water flow rates are equal in the two arms. Looking
in more detail at the features of the flow, we note that these
situations correspond to experiments where the spatial period
in the shorter arm is approximately equal to the length of the
bubble. This is highlighted in Fig. 9. In other words, at high
relative gas flow rates, close packing is reached in the shorter
arm, and bubbles go into the longer one even if the water flow
rate is lower in the longer arm. In this concentrated regime,
bubble collisions at the inlet are responsible for entering the
longer arm, as the density in the shorter arm is too high. We note
that this mechanism differs from the one proposed by Belloul
et al. [11]. In their approach, limited to dilute trains of droplets,
the authors also claim that collisions at the junction impact the
selection rule at the junction, based on the observation that two
colliding droplets are always directed towards different arms.
In the present study, the role of collisions is slightly different,
as they promote bubble traffic in the longer arm due to close
packing in the shorter.

Knowing the selection rule at the junction, modeling the
bubble traffic is straightforward. In all the regimes, mass and
momentum conservation allows us to write

�P1 = �P2, (3a)

QT = QT1 + QT2 , (3b)

Qg = Qg1 + Qg2 . (3c)

This set of equations has to be complemented by a regime-
dependent selection rule. In the filtering regime occurring at
low relative gas flow rates,

Qg2 = 0. (4)

FIG. 9. Mean distance λi between bubbles in the two arms (red
squares, long arm; black squares, short arm) as a function of the
relative gas flow rate q in a loop where 
 = 2 (top) or where 
 = 5
(bottom). For high values of q, the mean distance between bubbles
in the short arm is equal to the length of the bubble. In the filtering
regime, the distance between bubbles is arbitrarily set to 0 in the long
arm.

In the moderate repartition regime, we use the empiric
condition that the liquid flow rates are the same in the two
arms, i.e., Qw1 = Qw2 or, equivalently,

QT1 − Qg1 = QT2 − Qg2 . (5)

In the concentrated repartition regime, we state that the
wavelength in the shorter arm is equal to the bubble size, λ1 =
Lb. Given the proportionality between the bubble velocity and
the total flow rate, Vb = βQT /S, the above condition could be
expressed as

Qg1 = QT1/α1, (6)

where α1 = SLb/β�.
Using Eq. (1) with b = 0 to model the pressure drops, these

equations can be written using two dimensionless variables,
the fraction of flow rate in the shorter arm v1 = QT1/QT and

032607-6



DENSE BUBBLE TRAFFIC IN MICROFLUIDIC LOOPS: . . . PHYSICAL REVIEW E 93, 032607 (2016)

FIG. 10. Pictures of the flow in a small loop, in the repartition
regime. Qw = 1000 μl/h, Qg = 360 μl/h. Successive pictures are
separated by 2 ms.

the normalized gas flow rate in the shorter arm q1 = Qg1/QT .
We obtain the following equation, which holds for all three
regimes:

v1 − α1q1 + α2q1(v1Ca)−1/3

1 − v1 − α1(q − q1) + α2(q − q1)[(1 − v1)Ca]−
1
3

= 
,

(7)

where the two parameters α1 = SLb/β� and α2 = Swc/β�a

are determined experimentally (see previous section) and are
α1 = 1.65, α2 = 0.735. The above equation is completed by
a selection rule, which depends on the regime. In the filtering
regime, q1 = q; in the moderate repartition regime, liquid flow
rate equality implies that q1 = v1 + q/2 − 1/2; and in the
concentrated repartition regime, q1 = v1/α.

Equation (7) is easily solved numerically, allowing us to
predict v1 as a function of q and Ca, together with the
boundaries of the regimes. Due to the nonlinear term in Ca−1/3,
it is not possible to provide analytical expressions for these.
The results are shown in Fig. 5, together with the experimental
data, for the three fixed Ca∗ = qCa tested experimentally.

Despite the scatter in the data (which might come from
uncertainties and variations of the bubble size), the model
captures semiquantitatively the measured flow rates, over
the whole range of relative gas flow rates and for the two
loops investigated. Let us recall that there is no adjustable
parameter since the two parameters involved were determined
independently. We could thus conclude that in large loops,
mean-field arguments are sufficient to account for bubble
traffic.

V. BUBBLES IN SMALL LOOPS

Let us now consider small loops, i.e., loops where the length
of the short arm is a few times the bubble length. We have
investigated loops of diameter 720 μm with an aspect ratio
of 
 = 2 of 
 = 5 and loops of diameter 2100 μm with an
aspect ratio of 
 = 2.

A. Experimental data for the loop of diameter
720 μm, with an aspect ratio of � = 2

Strikingly, for this small loop, the features of the flow totally
differ from those for the large loops described in the previous
section. At low and moderate relative gas flow rates, the filter
and repartition regimes remains qualitatively similar. Figure 10
shows an example of the repartition regime. We note that due
to the small lengths of the arms, there is no more well-defined
steady-state repartition, but a periodic one. Upon increasing

FIG. 11. Pictures of the flow in a small loop, in the clogging
regime. Bubbles in the long arm are trapped. Qw = 250 μl/h, Qg =
100 μl/h. Successive pictures are separated by 0.4 ms.

the relative gas flow rate further, we evidence a new regime,
referred to hereafter as the clogging regime, in which some
bubbles are trapped in the long arm. This is shown in Figs. 11
and 12. This clogging is permanent: bubbles remain in the long
arm for minutes, and the only possibility of remobilizing them
is to increase the flow rate significantly (see Supplementary
Material). Bubbles in the longer arm bear the action of bubbles
exiting the shorter arm when arriving at the outlet junction.
These collisions prevent them from exiting the loop. Due to
these collisions, trapped bubbles move back and forth in the
longer arm over distances which are of the order of a small
fraction (typically a tenth) of the bubble length.

Let us note that the number of trapped bubbles may be
one, two, or three (see Figs. 11 and 12). The empty space is
filled with water. We note that clogging occurs for bubbles of
length 184 μm as well as for bubbles of length 165 μm (see
Figs. 12 and 13). Thus, the exact size of the bubbles is not a
crucial parameter, and the clogging phenomenon may not be
attributed to the fact that the arm length would be a multiple
of the bubble length.

When the flow rate is high enough, for Ca greater than
4 × 10−3, we observe that this clogging regime switches to

FIG. 12. Pictures of the flow in a small loop, in the clogging
regime. Bubbles in the long arm are trapped. Note that only two
bubbles are trapped and that the other part of the arm is filled with
water. Qw = 100 μl/h, Qg = 60 μl/h. In this experiment, the bubble
length is equal to 165 μm. Successive pictures are separated by 0.6
ms.
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FIG. 13. Pictures of the flow in a small loop, in the clogging
regime. Bubbles in the long arm are trapped. Qw = 100 μl/h, Qg =
60 μl/h. In this experiment, the bubble length is 184 μm. Successive
pictures are separated by 0.6 ms.

a repartition regime, which is qualitatively different from the
one at low and moderate relative gas flow rates: the collisions
associated with the clogging regime remain but the bubbles
deform to go through the outlet instead of moving back. This
is illustrated in Fig. 14, which shows that two bubbles exit the
loop at the same time.

Figure 15 summarizes these observations. The bubble
frequency in the long arm is 0 at low relative gas flow rates,
i.e., in the filtering regimes. It then increases upon entering
the repartition regime before vanishing again in the clogging
regime (except for the highest value of Ca∗ = Ca/q tested,
i.e., 6 × 10−3). The data indicate that the transition from the
repartition regime to the clogging one occurs for q between
0.5 and 0.7 and seems to increase.

B. Experimental data for the loop of diameter 720 μm, with an
aspect ratio of � = 5

Let us now discuss the role of the aspect ratio 
. Figure 16
displays the observations. In this situation, we do not observe
a repartition regime. For a given capillary number, at low
relative gas flow rates, we first observe a filtering regime. The
frequency f of the bubbles in the long arm is equal to 1. At
higher relative gas flow rates, some bubbles enter the long
arm but remain trapped and we again observe the clogging
mechanism. As for 
 = 2, this clogging regime switches to a
repartition regime where the bubbles deform to go through the

FIG. 14. Pictures of the flow in a small loop, in the repartition
regime following the clogging regime. Bubbles deform to exit the
loop. Successive pictures are separated by 0.5 ms. Qw = 125 μl/h,
Qg = 600 μl/h.
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FIG. 15. Bubble rate in the long arm divided by the initial bubble
frequency 
 = 2. Circles correspond to the filtering regime; squares,
to the repartition regime; and diamonds, to the clogging regime. Each
color corresponds to a given gas flow rate, made nondimensional
according to Ca∗ = ηQg/γ S. Red symbols correspond to Ca∗ =
10−3; blue symbols, to Ca∗ = 2 × 10−3; green symbols, to Ca∗ = 3 ×
10−3; and black symbols, to Ca∗ = 6 × 10−3. Note that the clogging
regime disappears for high values of Ca∗.
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FIG. 16. Bubble rate in the long arm divided by the initial
bubble frequency for 
 = 5. Circles correspond to the filtering
regime; squares, to the repartition regime; and diamonds, to the
clogging regime. Each color corresponds to a given gas flow rate,
made nondimensional according to Ca∗ = ηQg/γ S. Red symbols
correspond to Ca∗ = 10−3; blue symbols, to Ca∗ = 2 × 10−3; green
symbols, to Ca∗ = 3 × 10−3; and black symbols, to Ca∗ = 6 × 10−3.
Note that the clogging regime disappears for high values of Ca∗.
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FIG. 17. Pictures of the flow in an intermediate loop, in the
repartition regime. Bubbles in the long arm are dynamically blocked
before leaving the loop. Successive pictures are separated by 0.5 ms.
Qw = 200 μl/h, Qg = 600 μl/h. Arrows indicate the same bubble.

outlet. The behavior is thus the same, but the clogging regime
occurs for a higher foam quality when the flow rate is set.

C. Experimental data for the loop of diameter
2100 μm, with an aspect ratio of � = 2

To obtain a better description of the mechanism in charge
of the flow, we decided to conduct experiments on a loop
with an intermediate diameter, d = 2100 μm. In this situation,
we observe qualitatively the same behavior as in large loops.
Clogging no longer occurs. However, as in the small-loop
situation, there is no more well-defined steady-state repartition
but, rather, a periodic one. The description of the flow does not
follow the previous modeling and is beyond the scope of this
paper. Figure 17 shows some pictures of the flow. We note that
dynamic congestions occur at the outlet, leading to clogging
and declogging of the long arm.

To conclude this experimental section, let us summarize the
main results. These experiments point out a new regime in the
repartition of bubbles at the junction: a clogging regime. This
clogging regime occurs when the size of the long arm is close
to the size of the bubbles.

D. A crude model to explain clogging

The clogging regime is rather puzzling. Examination of the
videos indicates that it is related to congestion of the outlet of
the loop and to bubble collisions. However, it is very specific
to small loops, as we never observed it in large loops despite
careful investigations at very high relative gas flow rates. In
the following, we discuss the possible mechanism associated
with this regime.

Let us analyze the pressure field in the loop. One could
assume as a first approximation that the pressure gradient
in the shorter arm should still be given by Eq. (1), as the
flow remains unperturbed. Neglecting the first term since the
clogging regimes occurs at high bubble densities, �P1 �
cnL1Ca2/3γ /w. In the longer arm of the loop, the flow

vanishes, on average, the clogging regimes. We have checked,
by seeding the water with small tracer particles, that the
water velocity between bubbles in this arm remains negligible
compared to that in the shorter arm. Therefore, except in the
vicinity of the last bubble, the pressure gradient in the longer
arm is negligible. Thus, �P1 is balanced by a pressure drop
localized on the last bubble of the longer arm, �Pclogging. This
drop in pressure comes from the collision at the junction: the
bubble suddenly moves back, which creates a counter-flow of
water through the gutters along the bubble. This is the only
possibility for �Pclogging to balance �P1.

The pressure drop associated with the counter-flow
through the gutters can be estimated as �Pclogging =
α(Lb − w)ηwQgutter/w

4, where Qgutter is the flow rate in the
gutters and α is a numeric constant. The value of α has been
calculated using COMSOL and is about 1.1 × 105 [24]. The
water flow rate Qg might be estimated as the frequency of
the collision f1 (i.e., the bubble rate in the shorter arm) times
the displaced volume, which we assume to be a fraction δ of
the bubble volume �. Thus Qgutter � δf1� = δQg . Note that
δ might be slightly dependent on the capillary number, as we
observe that the amplitude of the back-and-forth movement
decreases with increasing Ca.

The above analysis provides a criterion for the appearance
of the clogging regime. It occurs when �Pclogging � �P1.
Since the bubble density in the shorter arm is about that of close
packing, �P1 � cL1/LbCa2/3γ /w and the above condition
reads

L1

Lb

� α

c

Lb − w

w
q2/3(Ca∗)1/3δ. (8)

With δ ∼ 0.05 estimated from the amplitude of the back-
and-forth movement, and for the experimental conditions
investigated, the above criterion was evaluated and reads
L1/Lb � 6. From this analysis, one sees that the loop must
be as small as a few bubbles in order to lead to the clogging
regime. This is in agreement with the observation that it occurs
in the small loop but not in the large one.

This crude approach does not allow us to predict quanti-
tatively the evolution of the regime as a function of Ca∗, as
the receding amplitude δ is a priori dependent on the capillary
number. It is noteworthy that it experimentally decreases with
Ca∗, since the droplets deform to go through the junction for
Ca∗ above 6 × 10−3. A detailed modeling of bubble collisions
seems necessary to go beyond this crude analysis.

VI. CONCLUSION

In this work, we have performed a comprehensive study
of bubble traffic in microfluidic channels, varying the bubble
density from dilute regimes to close packing. We have shown
that the bubble transport properties in straight channels are
remarkably independent of the density up to close packing,
when considering either the bubble relative velocity or the
pressure drop due to a single bubble. On the contrary, in
the loop geometries investigated, the relative gas flow rate
has a strong influence on the bubble traffic. We report
striking differences between large and small loops. For loops
much longer that the bubble size, several regimes occurs
with increasing relative gas flow rate. Similarly to previous
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work, we report and account for a filtering regime at low
bubble densities, followed by a repartition regime. Our data
unambiguously show that the selection rule at the inlet junction
is nontrivial and that the common assumptions that bubbles
simply follow the main stream is not valid. We have been able
to account quantitatively for the repartition by considering an
empiric selection rule at moderate relative gas flow rates and
by considering the maximal bubble density at higher rates. In
the small-loop situation, we have evidenced a new regime at
high gas densities where bubbles are trapped in the long arm of
the loop. This situation, similarly to traffic congestion, is due
to bubble collisions at the outlet of the loop. These collisions
create a back-and-forth displacement of the bubbles that is
accompanied by a nontrivial fluid carrier flow in the vicinity of
the last bubble, and by a specific drop in pressure that ensures
the pressure balance between the two arms. In the large loop,
this extra pressure drop is too low compared to the pressure
drop between the inlet and the outlet of the loop, explaining

why this regime is specific to short loops. We have identified
the parameters that are important to tune, i.e., the foam quality,
the gas flow rate, and the loop length, to modify droplet traffic
behavior significantly. The clogging mechanism that we have
evidenced may play an important role in porous media, where
the pore structure might be modeled as a succession of small
loops. Our experiments suggest that some gas bubbles could
be trapped in porous media even in channels of homogeneous
size, leading to the formation of preferential paths.

As all the mechanisms do not involve specific issues
associated with gas, they are likely to hold with minor
modifications for particles whose size is comparable to the
channel size. We recall that the criteria for observing clogging
is that the pressure induced by the counter-flow balances the
drop in pressure of the short arm. We thus believe that the same
behavior may be displayed by droplets of immiscible liquids
in microchannels or in porous media, for polymer beads or
macromolecules in nanochannels.
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