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Graphoepitaxy for translational and orientational ordering of monolayers of
rectangular nanoparticles
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The combinations of particle aspect ratio and enthalpic-barrier templates that lead to translational and
orientational ordering of monolayers of rectangular particles are determined using Monte Carlo simulations
and density functional theory. For sufficiently high enthalpic barriers, we find that only specific combinations
of particle sizes and template spacings lead to ordered arrays. The pattern multiplication factor provided by the
template extends to approximately ten times the smallest dimension of the particle.
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I. INTRODUCTION

Self-assembly processes where particles organize into
specific equilibrium structures dictated by their interparticle
interactions and the thermodynamic conditions have emerged
as a promising tool for the manufacture of novel functional ma-
terials [1–3]. Recent studies have demonstrated how the form
of the interparticle interactions and hence the symmetry of the
resulting assembled structures can be influenced via particle
shape [4–7], interaction anisotropy [8,9], particle polydisper-
sity [10], solvent quality and composition [11], and the attach-
ment of ligands to the particles [12,13]. Specific interactions
that favor targeted structures can be designed directly using
inverse methods of statistical mechanics [14–17]. The combi-
nation of interactions required for a specified structure is often
complex and not well understood. In turn the particles that
exhibit these interactions are generally not easily or inexpen-
sively fabricated, which limits the usefulness of self-assembly
for nanomanufacturing applications. The introduction of an
external field (e.g., a chemically or topographically patterned
substrate) that directs the assembly process obviates the need
to engineer the interparticle interactions required to achieve a
target structure. This so-called graphoepitaxial approach has
proven successful for guiding the assembly of block copoly-
mers [18–27], and recently it has been shown to be effective
for directing the two-dimensional (2D) assembly of spherical
particles on a surface [28]. The prospects for assembly of
nonspherical nanoparticles on surfaces by graphoepitaxy are
practically unexplored. In this paper we identify the combina-
tion of aspect ratios of rectangular particles and the dimensions
of rectangular templates, many times larger than the particles,
which guide them to form long-ranged ordered monolayers.
The range of parameters to achieve these ordered structures
are shown to be discrete regions in a large parameter space
that are efficiently discovered using theory or simulations.

Recent work [28] has shown that the entropically favored
2D hexagonal crystal favored by a monolayer of adsorbed
hard-sphere particles on a smooth substrate can be disrupted
in favor of a square lattice structure by parallel enthalpic
barriers separated from each other by up to ten particle
diameters. Here, we evaluate whether similar graphoepitaxial
barriers or templates can directly adsorb rectangular particles
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into translationally and orientationally ordered rectangular
monolayers. The choice of rectangular particles and the
geometry of the array are motivated by the desired structures
for bit-patterned magnetic media where rectangular particles
with aspect ratios around 2.3 have been shown to have the
highest areal density that achieve desired read and write
metrics [29].

Monolayers of hard-rectangular particles exhibit tetratic
order illustrated in Fig. 1(a) at an areal packing fraction of η >

0.7 [30,31] in the absence of an external field. In the extreme
limit placing a repulsive barrier around each particle would
perfectly template its position and orientation but negates any
benefits of pattern multiplication by the self-assembly process.
Here we study using grand canonical Monte Carlo (GCMC)
simulations and density functional theory (DFT) predictions
for nontrivial pattern multiplication effects, considering wall
separations of approximately Ly/R = n and Lx/R = an for
integer values of n > 1. These patterns are represented as
enthalpic barriers, separated by lengths Lx and Ly in the x and
y directions, respectively. The dimensions of the rectangular
particles are R and aR, where a > 1 is the particle aspect ratio.
Additionally, although the inclusion of particle anisotropy
introduces the importance of wall separation in two directions,
we focus here on practically interesting template boundaries
with aspect ratios near unity as illustrated, for example, in
Fig. 1(b).

II. SIMULATION METHODS

Due to the near close packed surface coverage of rectan-
gular particles realized at high chemical potentials (e.g., high
concentration due to evaporation of the solvent), we utilize
a growth-expanded ensemble for computational efficiency in
our GCMC simulations [32]. This allows particles to enter the
system at 20% of their true size, subsequently growing over the
course of the simulation. Monte Carlo steps include arbitrary
translation, rotation, insertion, deletion, or growth of a single
particle. Only microstates comprising fully grown particles
are considered in the equilibrium statistics. Periodic boundary
conditions are imposed, and simulations are conducted for
various initial conditions.

As a supplement to the grand canonical Monte Carlo
simulations, we have also included analysis using a class
of density functional theory known as fundamental measure
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FIG. 1. Rectangular particle monolayer assemblies (a) exhibiting
tetratic order with no template pattern and (b) ordered into the desired
rectangular lattice by thin topographical barriers.

theory (FMT), originally developed by Rosenfeld [33], to
investigate free-energy minimizing structures in the presence
of rectangular templates. Although no FMT has been devel-
oped for freely rotating rectangular particles, it is possible
to approximate this system through a bidisperse mixture
of vertically and horizontally aligned particles [34]. This
simplified but instructive model adopts the typical Helmholtz
free-energy functional F [ρi] decomposition expressed as the
sum of the ideal Fid[ρi] and excess Fex[ρi] components. The
ideal free energy assumes the usual functional βFid [ρi] =∑

i

∫
A

dr ρi(r){ln[ρi(r)λ3
i ] − 1}, where β = 1/kBT and λi is

the thermal wavelength. As with all FMT models, the excess
component is expressed as βFex[ρi] = ∫

A
d r �(r) where

� = −n0(r) ln[1 − n2(r)] + n1x (r)n1y (r)
1−n2(r) is a local free-energy

density composed of weighted density functions, nα(r). These
weighted density functions are convolution integrals of the
local density with geometric weighting functions ω

(α)
i (r),

which represent geometric measures of the particles. For
rectangles, the following weighting functions correspond to
corners, edge lengths, and surface area,
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where δ is the Dirac delta, � is the Heaviside step function,
and σ i

x and σ i
y are the rectangle’s length in the x and y

directions, respectively. These expressions can be combined
in a grand canonical free-energy equation �[ρi] = F [ρi] −∑

i

∫
A

dr ρi(r)[μi − V i
ext(r)] which can be minimized using

a matrix-free Newton method [35]. The resulting energy
minimization will provide two density profiles, ρhorizontal and
ρvertical, which can subsequently be evaluated for order.

III. RESULTS AND DISCUSSION

The system we consider models a slowly evaporating
suspension of quasi-2D hard rectangular particles (of neg-
ligible thickness) on a templated substrate. The suspension
is in contact with a flat 2D surface decorated with chemical

FIG. 2. GCMC snapshots and FMT density profiles of rectangular
particles of (a) and (c) a = 2.0 and (b) and (d) a = 2.2 exposed
to enthalpic barriers at the edge of each displayed area. For all
plots Ly/R = 6.1 whereas Lx/R is (a) and (c) 6.1 and (b) and
(d) 6.9. Whereas a = 2.0 particles are free to orient vertically or
horizontally without energetic penalty, the rotational asymmetry of
a = 2.2 particles can be utilized to generate orientational order.
Density profiles are in agreement, showing clearly distinguishable
peaks in rectangular lattice coordinates for the a = 2.2 aspect ratio.

or topographical patterns. The barriers impose an energetic
penalty on particles that intersect with the centerlines of the
template features, which is a step function equal to βVext if
a particle overlaps (where β = 1/kBT ), and zero otherwise.
The particles are free to adsorb and desorb from the substrate
in accordance with the chemical potential of the suspension,
and so we model the system in the grand canonical ensemble.
Furthermore, high chemical potentials require a barrier height
sufficiently large to prevent particles from overlapping the
template boundary. Thus, all presented simulations set βVext =
50. Similar to the results presented in Ref. [28], we found that
this system is not sensitive to small changes in βVext.

Particles with aspect ratio a = 2.0 were deposited for
a template spacing of Lx/R = Ly/R = 6.1. As shown in
Fig. 2(a), these particles are unable to form the desired
rectangular array with the equilibrium structure lacking both
translational and orientational orders. The snapshot of a typical
configuration from a GCMC simulation illustrates tetratic
order similar to that of the bulk system in the absence of any
template barrier. This occurs due to the rotational symmetry
of two-particle clusters. For a = 2.0, two particles can align
to form 2R × 2R squares, which can orient either vertically
or horizontally without enthalpic penalty or influence from
the template. These pairs can manifest in a number of
different ways, leading to a far higher probability of finding
a tetratic microstate than a horizontally ordered structure. If
the horizontal orientation is desired, one must choose the
dimensions of the particles and template that penalize states
with vertically aligned particles.
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FIG. 3. GCMC snapshots of a = 2.2 rectangular particles in the
presence of walls of increasing separation. Target lattices are (a)
4 × 8, (b) 5 × 10, (c) 6 × 12, and (d) 7 × 14. Template spacings are
as follows: Lx/R = (a) 9.2, (b) 11.6, (c) 13.9, and (d) 16.2 and
Ly/R = (a) 8.1, (b) 10.1, (c) 12.1, and (d) 14.1. Beyond a wall
separation of Ly/R∼10, rectangular order is no longer observed.

This can be accomplished by using fractional particle aspect
ratios and adjusting the template spacing in each direction. For
example for a = 2.2, particle pairs lose the rotational symme-
try found for particles with a = 2.0. Furthermore, Ly is fixed
at 6.1R which is commensurate with horizontal ordering of the
particles and penalizes vertically aligned particles. In Fig. 2(b)
we have targeted horizontal particle alignment with Ly = 6.1R

while expanding Lx to 6.9R, which is the proportional increase
in particle size in order to accommodate the higher aspect ratio.
This adjustment of the particle and template sizes generates

the desired translational and orientational order. GCMC results
in Figs. 2(a) and 2(b) are supplemented by a FMT model
in a DFT prediction of nonoverlapping rectangular particles
that treats the assembled system as a bidisperse mixture of
vertically and horizontally aligned particles. Simulation results
suggest that this approximation is valid as it is rare to find
particle orientations deviating from 0◦ or 90◦ at high surface
coverage. Density profiles of a = 2.0 and a = 2.2 particles are
shown in Figs. 2(c) and 2(d), respectively. The FMT model
predicts a structured 3 × 6 lattice for a = 2.2 particles in a
commensurate template but no discernible order for a particle
aspect ratio of a = 2.0. These results demonstrate excellent
agreement between the simulation and the FMT model.

The separation of the template is next increased for a = 2.2
particles to determine the limits of pattern multiplication
on this system. As shown in Fig. 3, the system exhibits
horizontal order for the 4 × 8(Lx/R = 9.2, Ly/R = 8.1) and
5 × 10(Lx/R = 11.6,Ly/R = 10.1) targeted structures but
reverts to tetratic order for larger wall separation. Note that
this maximum wall separation of ∼10R is very similar to the
limitation on pattern multiplication seen in the hard-sphere
system [28]. Although this may be indicative of a physical
limitation of graphoepitaxial assembly, it can also be explained
from the perspective of packing energies. A line of five
vertically aligned a = 2.2 particles requires the same amount
of vertical space as 11 horizontally aligned particles. Thus,
it becomes impossible to impose a penalty on misaligned
particles at larger template spacings since the particles can
arrange themselves in two separate configurations with the
same energy.

A more complete picture of the phase behavior of a = 2.2
and a = 2.7 particles from GCMC simulations and FMT is
shown in Fig. 4. The solid color regions represent the values of
Lx/R and Ly/R which yield horizontally ordered structures
according to GCMC simulations. Systems are defined to be
ordered if the standard deviations in translational position
are smaller than 5% of the lattice constant and the standard
deviation in the particle orientation is within 5% of de-
sired horizontal alignment. Furthermore, these boundaries are

FIG. 4. A phase diagram of (a) a = 2.2 and (e) a = 2.7 particles as a function of wall separation in the x and y directions as computed
from GCMC simulations. Shaded areas denote rectangular ordered phases with representative GCMC snapshots to illustrate achievable lattices.
FMT results for the 4 × 8 lattice are illustrated on (a) as green data points for successful templates and red for unsuccessful templates, showing
quantitative agreement with the simulations. Representative density profiles are shown for (a) Lx/R = 9.2,Ly/R = 8.2, resulting in Q = 0.62;
(b) Lx/R = 9.6,Ly/R = 8.05, resulting in Q = 0.53; and (c) Lx/R = 9.7,Ly/R = 9.05, resulting in Q = 0.08. All color bars show a density
range from 0 to 3.5.
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FIG. 5. Phase behavior of rectangular particles as a function of a and Ly/R. Blue regions are ordered phases, whereas white represent
disordered structures. For each simulation, Lx = 1.05aN , where N is the result of rounding Ly/2 up to the nearest integer. The most promising
results appear for a = 2.2 particles, which forms a rectangular lattice for a maximum wall separation of Ly = 10.1R.

supplemented by FMT simulations, indicated by green (suc-
cessfully ordered) and red (unsuccessfully ordered) data
points. This approach approximates the rectangular particle
system through a bidisperse mixture of vertically and horizon-
tally aligned particles, resulting in two free-energetically min-
imized density profiles ρhorizontal and ρvertical. To evaluate order,
we utilize an order parameter defined as Q = ρ̄h−ρ̄v

ρ̄h+ρ̄v
, where ρ̄

represents the density profile integrated over the template area.
Positive Q values denote systems predominantly composed
of horizontally aligned particles (practically, Q > 0.5 repre-
sents a strong indication of horizontally ordered structures),
whereas negative values represent vertical alignment. Q = 0 is
indicative of tetratic order. As shown, the FMT results indicate
excellent agreement with Monte Carlo simulations.

It is important to note that each ordered region in Fig. 4
spans a far shorter range of template separations in the
y direction than in the x direction. This suggests that the
direction which imposes the penalty on misaligned particles
has a tighter restriction on its allowable separation and is the
more significant parameter in template design. However, each
ordered region for a = 2.7 particles spans a wider range of
Ly/R values than we observed for the a = 2.2 particles. This
is because the comparatively longer particles require a greater
fractional increase in the separation of the template wall in
the y direction before a vertically misaligned particle can fit
without energetic penalty. It is also important to note that this
particular result is only due to our targeting the horizontal
alignment. If vertical alignment was desired, the x-direction
separation would be the limiting factor.

Since the x-direction separation exhibits a much wider
allowable range, we are able to represent it as a function of
the y-direction separation and particle aspect ratio. Using the
formula Lx = 1.05 aN , where N is the result of rounding Ly/2
up to the nearest integer, Fig. 5 illustrates which values of Ly

and a are able to induce horizontal order. As can be seen,
the extent of accessible pattern multiplication varies greatly
for different values of a with a = 2.2 yielding translational
and orientational orders at a wall separation up to 10R.

Additionally, many of these values differ from the prediction
provided from the ideal packing argument. For example, a =
2.4 particles would require five particles in a row to occupy an
integer spacing (12R), yet these particles do not demonstrate
order beyond a wall separation of 5R. Furthermore, Fig. 5
illustrates that some aspect ratios are incapable of achieving the
desired structure beyond unfavorably short wall separations.
An aspect ratio of a = 2.0, for example, would require a wall
separation Ly/R < 2.0 to generate orientational order, which
is a trivial graphoepitaxial template. Figures 4 and 5 show
that there are limited islands in the parameter space where
orientational and translational orders are achievable. Despite
utilization of commensurate template geometries that mimic
the rotational asymmetry of these particles, degenerative
orientational states limit the extent of pattern replication
attainable in the hard rectangle system.

IV. CONCLUSION

It has been demonstrated through GCMC simulations and
FMT calculations that rectangular particles can be ordered
using graphoepitaxy provided the right combinations of the
size ratio of the particle and the size of the template are chosen.
The ranges of these combinations that lead to translational
and orientational orders have been mapped and shown to be
islands determined to penalize alignment in one direction
relative to the other. These islands are large enough that
the graphoepitaxial process is robust to practical variations
that may occur in particle size distribution and template
spacing. Considering only particle shape and template spacing,
a maximum pattern multiplication of about ten times the
smaller dimension of the rectangular particle is achievable.
The inclusion of soft repulsions to the interparticle interactions
and nonrectangular patterns for the template could increase
the maximum allowable wall separation and resulting pattern
multiplication.

032606-4



GRAPHOEPITAXY FOR TRANSLATIONAL AND . . . PHYSICAL REVIEW E 93, 032606 (2016)

ACKNOWLEDGMENTS

Funding for this project was provided by the National
Aeronautics and Space Administration through NASA Space
Technology Research Fellowship No. NNX11AN80H and
through the Welch Foundation through Grant No. F-1696.

This work also made use of NASCENT Engineering Research
Center Shared Facilities supported by the National Science
Foundation under Cooperative Agreement No. EEC-1160494.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect those of NASA or the National Science
Foundation.

[1] G. M. Whitesides and B. Grzbowski, Science 295, 2418
(2002).

[2] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán,
ACS Nano 4, 3591 (2010).

[3] A. Haji-Akbari, M. Engel, and S. C. Glotzer, J. Chem. Phys.
135, 194101 (2011).

[4] P. F. Damasceno, M. Engel, and S. C. Glotzer, Science 337, 453
(2012).

[5] S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine,
Nature (London) 464, 575 (2010).

[6] U. Agarwal and F. A. Escobedo, Nat. Mater. 10, 230 (2011).
[7] M. R. Khadilkar, U. Agarwal, and F. A. Escobedo, Soft Matter

9, 11557 (2013).
[8] Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469, 381

(2011).
[9] A. Reinhardt, F. Romano, and J. P. K. Doye, Phys. Rev. Lett.

110, 255503 (2013).
[10] L. Filion, M. Hermes, R. Ni, E. C. M. Vermolen, A. Kuijk, C.

G. Christova, J. C. P. Stiefelhagen, T. Vissers, A. van Blaaderen,
and M. Dijkstra, Phys. Rev. Lett. 107, 168302 (2011).

[11] W. Mamdouh, H. Uji-i, J. S. Ladislaw, A. E. Dulcey, V. Percec,
F. C. De Schryver, and S. De Feyter, J. Am. Chem. Soc. 128,
317 (2008).

[12] C. Knorowski, S. Burleigh, and A. Travesset, Phys. Rev. Lett.
106, 215501 (2011).

[13] Y. Zhang, F. Lu, K. G. Yager, D. van der Lelie, and O. Gang,
Nat. Nanotechnol. 8, 865 (2013).

[14] M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev.
Lett. 95, 228301 (2005).

[15] S. Torquato, Soft Matter 5, 1157 (2009).
[16] A. V. Tkachenko, Phys. Rev. Lett. 106, 255501 (2011).
[17] A. Jain, J. R. Errington, and T. M. Truskett, Soft Matter 9, 3866

(2013).

[18] R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Mater.
13, 1152 (2001).

[19] R. A. Segalman, A. Hexemer, and E. J. Kramer, Macromolecules
36, 6831 (2003).

[20] I. Bita, J. K. W. Yang, Y. S. Jung, C. A. Ross, E. L. Thomas, and
K. K. Berggren, Science 321, 939 (2008).

[21] J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, and W. D.
Hinsberg, Adv. Mater. 20, 3155 (2008).

[22] E. Han, H. Kang, C.-C. Liu, P. F. Nealey, and P. Gopalan, Adv.
Mater. 22, 4325 (2010).

[23] Q. Tang and Y. Ma, Soft Matter 6, 4460 (2010).
[24] J. K. W. Yang, Y. S. Jung, J.-B. Chang, R. A. Mickiewicz,

A. Alexander-Katz, C. A. Ross, and K. K. Berggren, Nat.
Nanotechnol. 5, 256 (2010).

[25] K. C. Daoulas, A. Cavallo, R. Shenhar, and M. Muller, Phys.
Rev. Lett. 105, 108301 (2010).

[26] X. Man, D. Andelman, and H. Orland, Phys. Rev. E 86, 010801
(2012).

[27] J. Qin, G. S. Khaira, Y. Su, G. P. Garner, M. Miskin, H. M.
Jaeger, and J. J. de Pablo, Soft Matter 9, 11467 (2013).

[28] M. E. Ferraro, R. T. Bonnecaze, and T. M. Truskett, Phys. Rev.
Lett. 113, 085503 (2014).

[29] T. R. Albrecht et al., IEEE Trans. Magn. 49, 773 (2013).
[30] A. Donev, J. Burton, F. H. Stillinger, and S. Torquato, Phys.

Rev. B 73, 054109 (2006).
[31] Y. Martinez-Raton, E. Velasco, and L. Mederos, J. Chem. Phys.

125, 014501 (2006).
[32] F. A. Escobedo and J. J. de Pablo, J. Chem. Phys. 105, 4391

(1996).
[33] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[34] M. Gonzalez-Pinto, Y. Martinez-Raton, and E. Velasco, Phys.

Rev. E 88, 032506 (2013).
[35] M. P. Sears and L. J. D. Frink, J. Comput. Phys. 190, 184 (2003).

032606-5

http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1126/science.1070821
http://dx.doi.org/10.1021/nn100869j
http://dx.doi.org/10.1021/nn100869j
http://dx.doi.org/10.1021/nn100869j
http://dx.doi.org/10.1021/nn100869j
http://dx.doi.org/10.1063/1.3651370
http://dx.doi.org/10.1063/1.3651370
http://dx.doi.org/10.1063/1.3651370
http://dx.doi.org/10.1063/1.3651370
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/nature08906
http://dx.doi.org/10.1038/nmat2959
http://dx.doi.org/10.1038/nmat2959
http://dx.doi.org/10.1038/nmat2959
http://dx.doi.org/10.1038/nmat2959
http://dx.doi.org/10.1039/c3sm51822a
http://dx.doi.org/10.1039/c3sm51822a
http://dx.doi.org/10.1039/c3sm51822a
http://dx.doi.org/10.1039/c3sm51822a
http://dx.doi.org/10.1038/nature09713
http://dx.doi.org/10.1038/nature09713
http://dx.doi.org/10.1038/nature09713
http://dx.doi.org/10.1038/nature09713
http://dx.doi.org/10.1103/PhysRevLett.110.255503
http://dx.doi.org/10.1103/PhysRevLett.110.255503
http://dx.doi.org/10.1103/PhysRevLett.110.255503
http://dx.doi.org/10.1103/PhysRevLett.110.255503
http://dx.doi.org/10.1103/PhysRevLett.107.168302
http://dx.doi.org/10.1103/PhysRevLett.107.168302
http://dx.doi.org/10.1103/PhysRevLett.107.168302
http://dx.doi.org/10.1103/PhysRevLett.107.168302
http://dx.doi.org/10.1021/ja056175w
http://dx.doi.org/10.1021/ja056175w
http://dx.doi.org/10.1021/ja056175w
http://dx.doi.org/10.1021/ja056175w
http://dx.doi.org/10.1103/PhysRevLett.106.215501
http://dx.doi.org/10.1103/PhysRevLett.106.215501
http://dx.doi.org/10.1103/PhysRevLett.106.215501
http://dx.doi.org/10.1103/PhysRevLett.106.215501
http://dx.doi.org/10.1038/nnano.2013.209
http://dx.doi.org/10.1038/nnano.2013.209
http://dx.doi.org/10.1038/nnano.2013.209
http://dx.doi.org/10.1038/nnano.2013.209
http://dx.doi.org/10.1103/PhysRevLett.95.228301
http://dx.doi.org/10.1103/PhysRevLett.95.228301
http://dx.doi.org/10.1103/PhysRevLett.95.228301
http://dx.doi.org/10.1103/PhysRevLett.95.228301
http://dx.doi.org/10.1039/b814211b
http://dx.doi.org/10.1039/b814211b
http://dx.doi.org/10.1039/b814211b
http://dx.doi.org/10.1039/b814211b
http://dx.doi.org/10.1103/PhysRevLett.106.255501
http://dx.doi.org/10.1103/PhysRevLett.106.255501
http://dx.doi.org/10.1103/PhysRevLett.106.255501
http://dx.doi.org/10.1103/PhysRevLett.106.255501
http://dx.doi.org/10.1039/c3sm27785b
http://dx.doi.org/10.1039/c3sm27785b
http://dx.doi.org/10.1039/c3sm27785b
http://dx.doi.org/10.1039/c3sm27785b
http://dx.doi.org/10.1002/1521-4095(200108)13:15%3C1152::AID-ADMA1152%3E3.0.CO;2-5
http://dx.doi.org/10.1002/1521-4095(200108)13:15%3C1152::AID-ADMA1152%3E3.0.CO;2-5
http://dx.doi.org/10.1002/1521-4095(200108)13:15%3C1152::AID-ADMA1152%3E3.0.CO;2-5
http://dx.doi.org/10.1002/1521-4095(200108)13:15%3C1152::AID-ADMA1152%3E3.0.CO;2-5
http://dx.doi.org/10.1021/ma0257696
http://dx.doi.org/10.1021/ma0257696
http://dx.doi.org/10.1021/ma0257696
http://dx.doi.org/10.1021/ma0257696
http://dx.doi.org/10.1126/science.1159352
http://dx.doi.org/10.1126/science.1159352
http://dx.doi.org/10.1126/science.1159352
http://dx.doi.org/10.1126/science.1159352
http://dx.doi.org/10.1002/adma.200800826
http://dx.doi.org/10.1002/adma.200800826
http://dx.doi.org/10.1002/adma.200800826
http://dx.doi.org/10.1002/adma.200800826
http://dx.doi.org/10.1002/adma.201001669
http://dx.doi.org/10.1002/adma.201001669
http://dx.doi.org/10.1002/adma.201001669
http://dx.doi.org/10.1002/adma.201001669
http://dx.doi.org/10.1039/c0sm00238k
http://dx.doi.org/10.1039/c0sm00238k
http://dx.doi.org/10.1039/c0sm00238k
http://dx.doi.org/10.1039/c0sm00238k
http://dx.doi.org/10.1038/nnano.2010.30
http://dx.doi.org/10.1038/nnano.2010.30
http://dx.doi.org/10.1038/nnano.2010.30
http://dx.doi.org/10.1038/nnano.2010.30
http://dx.doi.org/10.1103/PhysRevLett.105.108301
http://dx.doi.org/10.1103/PhysRevLett.105.108301
http://dx.doi.org/10.1103/PhysRevLett.105.108301
http://dx.doi.org/10.1103/PhysRevLett.105.108301
http://dx.doi.org/10.1103/PhysRevE.86.010801
http://dx.doi.org/10.1103/PhysRevE.86.010801
http://dx.doi.org/10.1103/PhysRevE.86.010801
http://dx.doi.org/10.1103/PhysRevE.86.010801
http://dx.doi.org/10.1039/c3sm51971f
http://dx.doi.org/10.1039/c3sm51971f
http://dx.doi.org/10.1039/c3sm51971f
http://dx.doi.org/10.1039/c3sm51971f
http://dx.doi.org/10.1103/PhysRevLett.113.085503
http://dx.doi.org/10.1103/PhysRevLett.113.085503
http://dx.doi.org/10.1103/PhysRevLett.113.085503
http://dx.doi.org/10.1103/PhysRevLett.113.085503
http://dx.doi.org/10.1109/TMAG.2012.2227303
http://dx.doi.org/10.1109/TMAG.2012.2227303
http://dx.doi.org/10.1109/TMAG.2012.2227303
http://dx.doi.org/10.1109/TMAG.2012.2227303
http://dx.doi.org/10.1103/PhysRevB.73.054109
http://dx.doi.org/10.1103/PhysRevB.73.054109
http://dx.doi.org/10.1103/PhysRevB.73.054109
http://dx.doi.org/10.1103/PhysRevB.73.054109
http://dx.doi.org/10.1063/1.2209000
http://dx.doi.org/10.1063/1.2209000
http://dx.doi.org/10.1063/1.2209000
http://dx.doi.org/10.1063/1.2209000
http://dx.doi.org/10.1063/1.472257
http://dx.doi.org/10.1063/1.472257
http://dx.doi.org/10.1063/1.472257
http://dx.doi.org/10.1063/1.472257
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1103/PhysRevE.88.032506
http://dx.doi.org/10.1103/PhysRevE.88.032506
http://dx.doi.org/10.1103/PhysRevE.88.032506
http://dx.doi.org/10.1103/PhysRevE.88.032506
http://dx.doi.org/10.1016/S0021-9991(03)00270-5
http://dx.doi.org/10.1016/S0021-9991(03)00270-5
http://dx.doi.org/10.1016/S0021-9991(03)00270-5
http://dx.doi.org/10.1016/S0021-9991(03)00270-5



