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Pressure of a gas of underdamped active dumbbells
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The pressure exerted on a wall by a gas at equilibrium does not depend on the shape of the confining potential
defining the walls. In contrast, it has been shown recently [A. P. Solon et al., Nat. Phys. 11, 673 (2015)] that a gas
of overdamped active particles exerts on a wall a force that depends on the confining potential, resulting in a net
force on an asymmetric wall between two chambers at equal densities. Here, considering a model of underdamped
self-propelled dumbbells in two dimensions, we study how the behavior of the pressure depends on the damping
coefficient of the dumbbells, thus exploring inertial effects. We find in particular that the force exerted on a
moving wall between two chambers at equal density continuously vanishes at low damping coefficient, and
exhibits a complex dependence on the damping coefficient at low density, when collisions are scarce. We further
show that this behavior of the pressure can to a significant extent be understood in terms of the trajectories of
individual particles close to and in contact with the wall.
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I. INTRODUCTION

The pressure of fluids at thermodynamic equilibrium is a
well-defined quantity, which can be estimated either from the
mean force per unit area exerted by the constituent particles on
confining walls or from the trace of the bulk stress tensor and
satisfies an equation of state involving only bulk properties
of the fluid, like temperature and density. Importantly, the
existence of an equation of state implies that the value of
the pressure does not depend on the microscopic detail of
the interaction between the particles and the walls, be this
interaction soft or hard, and torque-free or not. This is no longer
the case for fluids far from equilibrium like active fluids, whose
constituent particles are capable of autonomous dissipative
motion like self-propulsion [1], and for which pressure [2–17],
as well as stress [18] and other thermodynamic parameters
like chemical potential [19], lose some of their standard
thermodynamic properties. It has indeed been shown recently
[8,9,16] that the pressure of active fluids is generally not a state
function and that the average force exerted on confining walls
by the fluid does depend on the detail of the interaction between
the walls and the particles. It was furthermore shown that even
for peculiar active fluids, like active Brownian spheres, which
in two dimensions obey an equation of state when confined
between torque-free walls [7], the introduction of a torque
exerted by the wall is sufficient to prevent the existence of an
equation of state since the pressure then depends on the wall
potential [8].

Most of the results reported above were obtained in the limit
of (explicitly [3,4,6–16] or effectively [2]) overdamped dy-
namics, that is, for self-propelled particles traveling essentially
at fixed given speed, up to some positional noise. It turns out
that the case of inertial particles characterized by a finite mass
and a self-propulsion force and moving in a medium with finite
but relatively small damping coefficient γ has received little
attention, although such underdamped systems may have a
behavior closer to that of equilibrium systems and could thus be
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of conceptual interest for the development of thermodynamic
theory of active systems. The purpose of the present work is to
propose an underdamped model describing how the unusual
properties of pressure reported in [8] emerge progressively
from the characteristics of individual trajectories upon increase
of the damping coefficient γ . In particular, it will be shown that,
for low enough particle density, the evolution with increasing γ

is not monotonous and that the difference between the pressure
exerted by the active particles on a wall with a large repulsion
coefficient and the pressure exerted by the same particles on
a wall with a weaker repulsion coefficient may change sign
several times upon increase of γ . Analysis of the dynamics
of the model further suggests that this pressure difference is
governed for small values of γ by trajectories with a large spin
momentum, which hit the wall several times over short time
intervals, and for larger values of γ by the penetration depth
of the active particle inside the mobile wall and the related
duration of the interaction between the particle and the wall.
Finally, it will be show that the influence of trajectories with a
large spin momentum is progressively destroyed upon increase
of the particle density, while the effect of the duration of the
interaction between the particle and the wall is a more robust
mechanism. This ultimately leads, for large enough particle
density, to a monotonous onset of the effects reported in [8]
upon increase of γ .

The remainder of this paper is organized as follows. The
model is described in Sec. II and the results of simulations
performed therewith are presented in Sec. III. These results
are next interpreted in Sec. IV thanks to the analysis of the
dynamics of single active particles. We finally discuss these
results and conclude in Sec. V.

II. DESCRIPTION OF THE MODEL

The model is schematized in Fig. 1. It consists of N
identical self-propelled dumbbells [5,20–26] moving in a
two-dimensional space and enclosed between fixed walls,
which confine their motion inside an area with gross size
2Lx × 2Ly . A mobile wall of thickness 2e separates this
area into two noncommunicating chambers. The mobile wall
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FIG. 1. (a) Schematic diagram of a dumbbell, showing the two
particles located at positions R2j−1 (tail) and R2j (head), the string
connecting them, and the active force applied to each particle and
directed from the tail to the head of the dumbbell. (b) Schematic
diagram of the confinement chambers. Fixed walls are shown as
black solid lines and the mobile wall as red dotted lines. xw denotes
the abscissa of the median line of the mobile wall. Also shown is the
position Rk of a particle that has penetrated inside a fixed wall and
its projection p(Rk) on the surface of the wall. The repelling force
exerted by the wall on this particle is proportional to ‖Rk − p(Rk)‖.
The force constants associated with the repulsion potential on the left
side of the mobile wall (hL) and the right side of the mobile wall (hR)
are different.

can move along the x axis while remaining parallel to the
y axis, the position of its median line being characterized
by its abscissa xw. Corners between any two walls, whether
fixed or mobile, have the shape of a quarter of a circle of
radius r , in order to avoid the accumulation of particles that
occurs in square corners [6,27]. An equal number N/2 of
dumbbells are enclosed in each chamber, each dumbbell j be-
ing composed of two particles with respective positions R2j−1

and R2j (j = 1,2, . . . ,N ) connected by a harmonic spring and
separated at equilibrium by a distance a. The main feature
of the model is that each particle experiences an active force
directed from the tail of the dumbbell (the particle at position
R2j−1) towards its head (the particle at position R2j ). Besides
this active force, each particle also interacts with the fixed
and mobile walls through interaction potentials that vanish
outside the wall and increase quadratically inside the wall,
thus confining the particles inside each chamber. Finally, two
neighboring particles that do not belong to the same dumbbell
repel each other through a soft-core potential, which vanishes
for separations larger than 2a and increases quadratically for
smaller ones. Note that no orientational noise was introduced

in the model, in contrast with the active Brownian spheres and
run-and-tumble particles models [28–35], in order to avoid
having to deal with (and discuss the results as a function of)
the additional time scale related with the reorientation velocity.
Since the particles interact with each other, they nonetheless
experience collision-induced reorientations, which become
very frequent at large dumbbell density.

More explicitly, the potential energy V of the system (not
including the active force) is written as the sum of three terms

V = Vs + Vev + Vw, (2.1)

where Vs describes the internal (stretching) energy of the
dumbbells, Vev the soft-core repulsion between neighboring
particles that do not belong to the same dumbbell, and Vw the
confining potential exerted by the walls on particles that tend
to escape from the chambers. These three terms are expressed
in the form

Vs = h

2

N∑
j=1

(‖R2j−1 − R2j‖ − a)2,

Vev = h

2

2N−2∑
k=1

2N∑
m=

{
k + 1 (k even)
k + 2 (k odd)

H (2a − ‖Rk − Rm‖)

× (2a − ‖Rk − Rm‖)2,

Vw = hL

2

∑
k∈SL

‖Rk − p(Rk)‖2 + hR

2

∑
k∈SR

‖Rk − p(Rk)‖2

+ h

2

∑
k∈SF

‖Rk − p(Rk)‖2, (2.2)

where H (r) is the Heaviside step function, which insures that
particles that do not belong to the same dumbbell do not repel
each other as long as their separation remains larger than 2a. In
the expression of Vw, p(Rk) denotes the orthogonal projection
of the vector coordinate Rk of a particle that has penetrated
inside a wall on the surface of this wall (see Fig. 1), so that
‖Rk − p(Rk)‖ represents the penetration depth of this particle
inside the wall. SL, SR , and SF furthermore denote the sets of
particles that at the considered time t have penetrated inside
the mobile wall coming from its left (L) and right (R) sides,
and the set of particles that have penetrated inside fixed (F)
walls, respectively. Note that, for the sake of simplicity, the
dumbbell harmonic spring, soft-core repulsive potential, and
fixed wall repulsive potential share the same force constant h.

The kinetic energy T of the system is

T = mw

2

(
dxw

dt

)2

+ m

2

2N∑
k=1

∥∥∥∥dRk

dt

∥∥∥∥
2

, (2.3)

where m denotes the mass of each particle and mw the mass
of the mobile wall.

Finally, the equations of motion of the system are written
in the form

m
d2Rk

dt2
= Fk + mγ

(
v0nj (k) − dRk

dt

)
,

(2.4)

mw

d2xw

dt2
= Fw − mwγ

dxw

dt
,
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(k = 1,2, . . . ,2N ), where Fk is the force felt by particle k

resulting from the potential function V, γ is the damping co-
efficient of the medium, nj = (R2j − R2j−1)/‖R2j − R2j−1‖
the unit vector pointing from the tail to the head of dumbbell j ,
and j (k) denotes the integer part of (k + 1)/2. As anticipated
above, Eq. (2.4) implies that, in addition to the force resulting
from the potential function V, each particle k is subject at any
time to an intrinsic force mγ v0 nj (k), which is oriented from
the tail to the head of the dumbbell it belongs to. Note that,
for isolated particles (i.e., Fk = 0 at any time), the stationary
solution of Eq. (2.4) consists of rectilinear trajectories traveled
at constant velocity v0. Moreover, in the absence of collisions,
the characteristic time for the alignment of the velocity
vector of a particle along the tail-to-head axis of the dumbbell
is 1/γ .

The main motivation for considering dumbbells instead
of simple pointlike or spherical particles is that dumbbells
naturally contain an axis, which is useful to define the self-
propulsion force, and they also naturally give rise to a torque
exerted by the walls, without adding any extra interactions
on top of the potentials. These useful properties somehow
reduce the number of arbitrary functions or parameters in the
model.

Two points may be worth emphasizing. First, Eq. (2.4)
does not conserve momentum, nor does it include any explicit
coupling to a momentum-conserving medium, as is also the
case for the active Brownian spheres and run-and-tumble
particles models [28–35]. Consequently, it is best suited to
describe particles moving on a surface that acts as a momentum
sink, like crawling cells [36] or colloidal rollers [37] and
sliders [38]. Note, however, that such systems often have a
large damping coefficient, while we allow in our model the
damping coefficient to be small. Moreover, Eq. (2.4) implies
that the medium surrounding the dumbbells contributes to
the damping of the motion of the mobile wall and of the
dumbbells but does not directly contribute to pressure forces
(its contribution to pressure is only indirect, through its action
on dumbbell dynamics). The wall is therefore assumed to be
permeable to this medium and the pressure exerted by active
dumbbells must be considered as an osmotic pressure [5,7].
Note also that some of the numerical simulations reported in
[5] were done with inertial dumbbells, but comparisons with
the present model are not straightforward because the model
of [5] used a Nosé-Hoover thermostat, instead of a simple
viscous friction term to dissipate the energy injected by the
self-propulsion force.

For the purpose of numerical integration, the derivatives in
Eq. (2.4) were discretized according to standard Verlet-type
formulas and the equations of evolution subsequently recast
into the form

R(n+1)
k = 4

2 + γ�t
R(n)

k − 2 − γ�t

2 + γ�t
R(n−1)

k

+ 2(�t)2

m(2 + γ�t)
F(n)

k + 2v0(�t)2

2 + γ�t
γ n(n)

j (k),

x(n+1)
w = 4

2+γ�t
x(n)

w −2 − γ�t

2 + γ�t
x(n−1)

w + 2(�t)2

mw(2 + γ�t)
F (n)

w ,

(2.5)

where superscripts (n − 1), (n), and (n + 1) indicate the
time steps at which the quantity is evaluated, and �t is the
integration time step.

Most simulations were performed with the following set of
geometrical parameters: a = 1, Lx = Ly = 100, e = 8, and
r = 20, but some simulations were performed with Lx =
Ly = 300, in order to check the importance of finite-size
effects (see below). Masses were set to m = 0.5 and mw = 2,
the mass of the mobile wall being thus of the same order of
magnitude as the mass of dumbbells. Force constants were
given the values h = hL = 4 and hR = 0.4 to introduce a
strong dissymmetry between the left and right sides of the
mobile wall, while v0 was set to 2 in all the simulations
discussed below. Moreover, γ was varied between 0.02 and
1 for most simulations, but some simulations were also
performed with values of γ as small as 0.0005 to investigate
the Hamiltonian limit of the model at small particle number.
Note that for γ ≈ 0.01 the characteristic time for the alignment
of the velocity vector of a particle along the tail-to-head axis of
the dumbbell is of the same order of magnitude as the time it
takes for the particle to cross the empty chamber at velocity v0,
while velocity alignment is about one hundred times faster than
crossing for γ = 1. Finally, most simulations were performed
with N = 50, 500, or 5000 dumbbells. Assuming that each
particle effectively consists of a disk of radius a, the surface
coverage corresponding to each value of N can be estimated
from the following formula for the system with no internal
excitation (V = 0):

σ = Na2
(

4π
3 +

√
3

2

)
4Ly(Lx − e) − 2(4 − π )r2

. (2.6)

For Lx = Ly = 100, this formula leads to σ = 0.7%, 7.0%,
and 70.0% for N = 50, 500, and 5000, respectively. All
simulations were performed with a time step �t = 0.001,
which was checked to be small enough even for N = 5000.

Movies showing the evolution of the system over time
windows of 400 time units are provided in the Supplemental
Material [39]. They help visualize the effect of increas-
ing dumbbell density on the collision and diffusion rates
(Movies S1–S3), as well as the effect of increasing the damping
coefficient γ on the general characteristics of individual
trajectories (Movies S4–S6).

III. EVOLUTION OF PRESSURE WITH γ AND N

This section is devoted to the presentation of the main
results obtained with the model described above. To start with,
let us first illustrate with a figure the crucial fact that the
pressure exerted by an active fluid on a surface does depend on
the microscopic details of the interactions between constituent
particles and the surface, while this is not the case for fluids
at thermodynamic equilibrium. Equilibrium may be recovered
by considering a fluid of Brownian particles. We therefore
start by comparing the case of active dumbbells with that of
equilibrium, Brownian dumbbells. To this end, let us note that,
while Eqs. (2.4) and (2.5) describe an active fluid, it actually
suffices to replace the active force by random noise to let the
equations describe a usual Brownian fluid. More explicitly, the
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following equations,

R(n+1)
k = 4

2 + γ�t
R(n)

k −2 − γ�t

2 + γ�t
R(n−1)

k + 2(�t)2

m(2 + γ�t)
F(n)

k

+ 2v0(�t)2

2 + γ�t

√
γ

�t
ξ

(n)
k ,

x(n+1)
w = 4

2 + γ�t
x(n)

w −2 − γ�t

2 + γ�t
x(n−1)

w + 2(�t)2

mw(2 + γ�t)
F (n)

w ,

(3.1)

where the ξ
(n)
k are random vectors with components extracted

from a Gaussian distribution with zero mean and unit variance,
describe a set of Brownian particles with mean-squared
velocity v2

0 placed in the confinement device shown in Fig. 1
and subject to the internal potential V. If an equal number
of dumbbells is placed in each confinement chamber and the
equations of motion are integrated according to (3.1), one
consequently expects that the position of the mobile wall will
oscillate around an average zero abscissa, corresponding to
equal areas for both chambers, whatever the values of the
force constants hL and hR that characterize the interactions
of the dumbbells with the left and right sides of the mobile
wall. It can be checked in Fig. 2 that this is indeed the case
for a simulation performed with a total number N = 50 of
dumbbells, damping coefficient γ = 1, and force constants in
a 1:10 ratio between the two sides of the mobile wall (hR = 0.4
against hL = 4). Also plotted on the same figure is the time
evolution of the mobile wall position for the same system,
except that the 50 dumbbells are now assumed to be active
ones obeying Eq. (2.5) instead of Eq. (3.1). It is seen that,

0 1 2 3 4
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Langevin dynamics

active particles

hL = 4.0

hR = 0.4

γ = 1.0

FIG. 2. Time evolution of the relative position of the mobile wall
for N = 50 active dumbbells [Eq. (2.5), lower green trace] and N =
50 Brownian dumbbells [Eq. (3.1), upper red trace]. The ordinate
represents the abscissa of the wall xw averaged over time windows
of length 104 and divided by Lx = 100. Each trace corresponds to a
single simulation performed with force constants hL = 4 and hR =
0.4 and damping coefficient γ = 1.

in this latter case, the mobile wall oscillates around a position
that is displaced by more than Lx/2 towards negative abscissas
and that the average area of the right confinement chamber is
consequently more than three times larger than that of the
left chamber. This reflects the fact that, for a given dumbbell
density, the dumbbells exert a larger average force on the right
side of the mobile wall than on its left side, so that the wall
moves towards the left until the decrease in density in the
right chamber and the increase in density in the left chamber
compensate for the more efficient particle-wall interactions on
the right side. The observation of such displacement of the
mobile wall separating the two chambers filled with an equal
number of dumbbells will be the essential tool of this study
aimed at understanding the effect of the number of dumbbells
N and the damping coefficient γ on the properties of the active
fluid.

Results shown in Fig. 2 were obtained for a damping
coefficient γ = 1, that is, in the case where the alignment
of the velocity vector of each particle along the axis of the
dumbbell occurs on a time scale much shorter than the time it
takes for the dumbbell to cross the chamber at velocity v0 and
also much shorter than the characteristic time interval between
two successive collisions (provided that the dumbbell density
is low enough). This regime is actually qualitatively similar
to the overdamped regime investigated in previous studies
[2–16] and one may wonder what happens beyond this regime,
that is, when the characteristic alignment time increases and
eventually becomes as large as the crossing time. The answer to
this question is provided in Fig. 3, which shows the evolution
with γ of the average relative position of the mobile wall,

0.0 0.2 0.4 0.6 0.8 1.0
γ

-0.7
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-0.5

-0.4

-0.3

-0.2

-0.1
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0.2

0.3

<
x w

>
 / 

L x

N = 50
N = 500
N = 5000

0.00 0.05 0.10 0.15

-0.10

-0.05

0.00

0.05

FIG. 3. Evolution, as a function of the damping coefficient γ ,
of the average relative position 〈xw〉/Lx of the mobile wall for
N = 50 (red solid line), N = 500 (blue circles), and N = 5000
(green squares) active dumbbells obeying Eq. (2.5). Lx = Ly = 100
for all simulations. Each point was obtained by averaging xw/Lx

over eight simulations and sufficiently long time windows to warrant
uncertainties smaller than 0.01. The insert provides a zoom on the
curve for N = 50 dumbbells at low values of γ .
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〈xw〉/Lx , for N = 50, 500, and 5000 dumbbells. This figure
is actually the central result of this paper. Most striking are, of
course, the oscillations that are clearly observed at low γ for
N = 50 dumbbells. These oscillations indicate that the detail
of the interactions between the particles and the wall and the
average force exerted on each side of the wall vary significantly
over small variations of γ . Increasing the number of dumbbells
appears to decrease the amplitude of these oscillations, but the
largest peak towards positive values of the wall abscissa around
γ = 0.2 is still observed for N = 500 dumbbells, resulting
in a somewhat unexpected nonmonotonous evolution of the
mobile wall average position. Finally, these oscillations are
totally damped for N = 5000 dumbbells and the wall simply
moves progressively towards the left with increasing values
of γ . Understanding and rationalizing these observations will
be the purpose of the following section of this paper. In the
remainder of the present section, we will establish a couple of
additional important results.

First, the average force per length unit (i.e., the pressure)
averaged over both sides of the mobile wall fluctuating around
its average position is roughly proportional to the density of
dumbbells ρ and the damping coefficient γ , as may be checked
in Fig. 4. Here ρ is taken as the density averaged over the two
chambers, that is,

ρ = N

4Ly(Lx − e) − 2(4 − π )r2
. (3.2)

It is indeed seen in Fig. 4 that the points for N = 500
and N = 5000 nearly superpose and that 〈F 〉/(ρLy) increases
almost linearly in the range 0 � γ � 1 for these two values

0.0 0.2 0.4 0.6 0.8 1.0
γ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
F

>
 / 

(ρ
L y 

)

N = 50
N = 500
N = 5000

FIG. 4. Evolution of 〈F 〉/(ρLy) as a function of the damping
coefficient γ for N = 50 (red solid line), N = 500 (blue circles), and
N = 5000 (green squares) active dumbbells obeying Eq. (2.5). 〈F 〉
is the average magnitude of the force exerted by the dumbbells on
both sides of the mobile wall fluctuating around its average position.
〈F 〉 was estimated from the same trajectories and time windows as
〈xw〉/Lx in Fig. 3.
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FIG. 5. Evolution of 〈v2〉/v2
0 as a function of the damping

coefficient γ for N = 50 (red solid line), N = 500 (blue circles),
and N = 5000 (green squares) active dumbbells obeying Eq. (2.5).
〈v2〉 is the average squared velocity of dumbbells estimated from the
same trajectories and time windows as 〈xw〉/Lx in Fig. 3. The inset
shows a rescaling of the curves in the main figure, where 〈v2〉/v2

0 is
plotted as a function of γ /

√
N instead of γ .

of N, while the plot for very low dumbbell density (N = 50)
undulates more widely around the linear evolution as a function
of γ .

In contrast, no such simple dependence on N emerges
from the plots of the evolution of the particles mean-squared
velocity shown in Fig. 5. In this figure, 〈v2〉 denotes the squared
modulus of the velocity of the particles, ‖dRk/dt‖2, averaged
over particles, time, and trajectories. Head-on collisions with
walls and other particles reduce the instantaneous velocity
of a particle, which subsequently increases again with a
characteristic time constant 1/γ . If γ is too small or N too large,
then particles are not able to achieve the limit velocity v0 before
the next collision occurs. This is the reason why 〈v2〉/v2

0 is
clearly an increasing function of γ and a decreasing function of
N. One can try to quantify this trade-off between acceleration
and collision forces by rescaling the curves corresponding to
different densities onto a single master curve. As shown in
the inset of Fig. 5, an approximate rescaling of the data can
be achieved by plotting them as a function of the damping
coefficient γ divided by the square root of N, or equivalently
by the square root of the density, which is nothing but the
typical distance between particles.

The fact that in our model particles have a low speed
at low values of the damping coefficient γ is actually not
trivial. Considering only the translational motion of isolated
particles, one finds from Eq. (2.4) that the particles’ speed
should stabilize to the value v0 characterizing self-propulsion.
According to this simple reasoning, the particle speed should
thus be independent of the damping coefficient. However, one
has to take into account the rotational and vibrational degrees
of freedom of the dumbbells, as rotation and vibration of
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particles is triggered by collisions with the walls and with
other particles. Dumbbell rotation and vibration generates
more energy dissipation, because the rotation and vibration
speeds may be large even if the translational velocity is small,
and because the damping force acts on each particle composing
the dumbbell (thus not only on its center of mass). Moreover,
rotation makes the energy injection by the self-propulsion
force much less efficient, since the direction of the force is
continuously rotating. Hence for small damping γ , rotational
motion is persistent and the self-propulsion force roughly
behaves as a random force, since its orientation changes
very fast. The amplitude of the self-propulsion force is γ v0.
Considering it as a random noise, the variance of this noise
would be proportional to (γ v0)2. From standard Langevin
equations, it is known that temperature is proportional to the
ratio of noise variance to damping coefficient, and thus to γ , in
the present case. The linear dependence of 〈v2〉 in the small γ

regime observed in Fig. 5 can be qualitatively understood from
this simple argument. The fact that it additionally depends
on density probably results from the density dependence
of collision rates. More frequent collisions, occurring for
larger densities, lead to a stronger energy transfer to the
rotational and vibrational degrees of freedom, which are purely
dissipative (no external energy injection occurs on rotational
and vibrational degrees of freedom). As a result, dissipation
is enhanced at high density, yielding a lower average kinetic
energy, in agreement with the data shown in Fig. 5.

To conclude this section, let us finally mention that the
results presented in Figs. 3–5 depend little on the exact
geometry of the system, and particularly its finite size, even for
a surface coverage as low as 7% (corresponding to N = 500
in Figs. 3–5). This can be checked in Fig. 6, which shows
the evolution of the average position of the mobile wall as
a function of the damping coefficient γ for the system with
N = 500 and Lx = Ly = 100 (same plot as in Fig. 3) and for
the system with N = 4912 and Lx = Ly = 300, which share
almost equal values of the density of dumbbells. It is seen in
this figure that the two plots are indeed very close. In contrast, a
stronger dependence of the average position of the wall on the
geometry of the system (in particular the size of the container)
may eventually occur for very low density of dumbbells (as,
for example, N = 50 in Figs. 3–5) when γ is close to 0.5.
For smaller values of γ , the oscillations of the average wall
position as a function of γ are quite robust, and can be related
to properties of individual dumbbells, as discussed below.

IV. CONTRIBUTION OF INDIVIDUAL DUMBBELL
TRAJECTORIES TO THE PRESSURE

The most striking feature of Fig. 3 is the nonmonotonous
evolution of the average position of the mobile wall for
increasing values of γ , which is particularly marked for very
low dumbbell density, leading to several oscillations in the plot
of 〈xw〉/Lx for N = 50, and is still clearly noticeable at larger
density, resulting, for example, in a large incursion towards
positive values of xw at γ ≈ 0.2 for N = 500. Since the
nonmonotonous behavior is best observed for a small number
of dumbbells, one may expect its origin to be understood by
analyzing the properties of individual trajectories, that is, of
a single dumbbell moving in a single confinement chamber.

0.0 0.2 0.4 0.6 0.8 1.0
γ

-0.4

-0.3

-0.2

-0.1

0.0

0.1

<
x w

>
 / 

L x

Lx=Ly=100, N=500
Lx=Ly=300, N=4912

FIG. 6. Evolution, as a function of the damping coefficient γ , of
the average relative position 〈xw〉/Lx of the mobile wall for the system
with N = 500 active dumbbells and Lx = Ly = 100 (blue circles,
same plot as in Fig. 3) and for the system with N = 4192 active
dumbbells and Lx = Ly = 300 (brown lozenges). Each point was
obtained by averaging xw/Lx over eight simulations and sufficiently
long time windows to warrant uncertainties smaller than 0.01.

To this end, we modified the system by keeping only one
confinement chamber (say, the left chamber) and placing only
one active dumbbell therein. We furthermore assumed that
the interactions between the dumbbell and the four walls still
obey Eq. (2.4) but that collisions of the dumbbell against the
right wall cause the confinement chamber to move as a whole
towards the right, while preserving its shape and dimensions.
In contrast, the three other walls of the chamber experience no
recoil force during collisions with the dumbbell. We studied the
properties of the modified system for increasing values of the
damping coefficient γ and different values of the force constant
governing the repulsive interaction between the dumbbell and
the right wall (which we call hw for the modified system, in
order to avoid any confusion with the full system with two
confinement chambers).

Figure 7 shows the evolution of �xw, the average dis-
placement of the confinement chamber per time unit, with
increasing values of the damping coefficient γ , for hw = 0.4
(i.e., the value of hR for the complete system) and hw = 4.0
(i.e., the value of hL for the complete system). �xw is a
globally decreasing function of the damping coefficient γ

for both values of hw, but broad fluctuations and narrow
peaks are clearly superposed to this overall decrease. One
such broad fluctuation is observed for hw = 0.4 between
γ = 0.10 and γ = 0.15, while another fluctuation is observed
for hw = 4.0 between γ = 0.15 and γ = 0.30. Due to these
fluctuations, �xw is substantially larger for hw = 0.4 than
for hw = 4.0 in the range 0.10 � γ � 0.15, while it is
substantially larger for hw = 4.0 than for hw = 0.4 in the range
0.15 � γ � 0.30. This observation correlates perfectly with
the previous observation that, for the complete system with
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FIG. 7. Evolution of �xw as a function of the damping coefficient
γ for hw = 0.4 (solid red line) and hw = 4.0 (dashed blue line) for
the modified model with a single confinement chamber and a single
active dumbbell enclosed therein. �xw is the average displacement
towards the right of the confinement chamber per time unit. This
plot was obtained by integrating the equations of motion for 2 × 1012

time steps and increasing γ by 5 × 10−13 at each time step. �xw was
subsequently computed over intervals of γ of width 10−3.

N = 50 dumbbells, the average position of the mobile wall,
〈xw〉, is negative in the range 0.10 � γ � 0.15 and positive
in the range 0.15 � γ � 0.30 (see Fig. 3). Such correlations
between the properties of the modified system with a single
dumbbell and the complete system with N = 50 dumbbells are
less clear above γ = 0.30 for reasons that will be explained
below.

The origin of the relative increase in �xw in certain
ranges of γ may be grabbed by examining more carefully
the narrow peaks that are also observed in Fig. 7. When
launching simulations with the corresponding values of the
damping coefficient γ , dumbbells get very rapidly trapped
along pseudoperiodic trajectories, which act as attractors. Such
a pseudoperiodic trajectory is shown in Fig. 8 and Movie S7
[39] for hw = 0.4 and γ = 0.153. When colliding with the
right wall, the dumbbell acquires a spin momentum, which
lets it come back rapidly against the wall and hit it again and
again, resulting in a dramatic increase in �xw for this particular
value of γ . This result suggests that the broad fluctuations
that surround these narrow peaks in Fig. 7 and correspond
to relative increases in �xw may be due to trajectories that
share some resemblance with the pseudoperiodic trajectories
(in the sense that the dumbbell acquires a large spin momentum
during the collision with the right wall, which lets it come back
and hit the wall several times over short time intervals) but are
not strictly pseudoperiodic. If this hypothesis is correct, then
the frequency of collisions between the dumbbell and the right
wall should be comparatively larger in the corresponding range
of values of γ than outside this range. It can be checked in
Figs. 9 and 10 that this is indeed the case. In these two figures,

FIG. 8. Representation of a pseudoperiodic trajectory of the
active dumbbell for the modified model with a single confinement
chamber and hw = 0.4 and γ = 0.153. The confinement chamber
moves towards the right by equal increments each time it is hit by
the dumbbell. Represented in this figure is only its “final” position
corresponding to the “final” position of the dumbbell. See Movie S7
[39] for a movie of the same trajectory.

�xw, the mean displacement of the confinement chamber per
time unit, is decomposed into the collision frequency, f , and
the mean displacement of the chamber per collision, �xw/f .
More precisely, Figs. 9 and 10 show the evolution with γ

of f/
√

〈v2〉 and �xw〈v2〉/f , respectively, where 〈v2〉 is the
average squared velocity of the dumbbell (see Fig. S1 [39]

0.0 0.2 0.4 0.6 0.8 1.0
γ
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f /
 <

v2
>

1/
2

hw = 0.4
hw = 4.0

FIG. 9. Evolution of f/
√

〈v2〉 as a function of the damping
coefficient γ for hw = 0.4 (solid red line) and hw = 4.0 (dashed blue
line) for the modified model with a single confinement chamber and a
single active dumbbell enclosed therein. f is the number of times the
dumbbell hits the right wall per time unit and 〈v2〉 the average squared
velocity of the dumbbell. The horizontal green dot-dashed line is just
a guideline for the eyes. See the caption of Fig. 7 for computational
detail.
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FIG. 10. Evolution of �xw〈v2〉/f as a function of the damping
coefficient γ for hw = 0.4 (solid red line) and hw = 4.0 (dashed blue
line) for the modified model with a single confinement chamber and
a single active dumbbell enclosed therein. �xw/f is the average
displacement towards the right of the confinement chamber per
collision with the dumbbell, and 〈v2〉 the average squared velocity of
the dumbbell. The green and brown dot-dashed lines are guidelines
for the eyes aimed at emphasizing the overall exponential decrease
of �xw〈v2〉/f with γ . See the caption of Fig. 7 for computational
detail.

for the plot of 〈v2〉 as a function of γ for both values of
hw). The collision frequency is expected to be a linearly
increasing function of the average velocity of the particle
and it is consequently quite natural to plot f/

√
〈v2〉 as a

function of γ to unravel subtler details. On the other hand,
we found somewhat empirically that �xw〈v2〉/f evolves as an
exponential function of γ for both values of hw. While it may
perhaps be possible to find a rationale for this observation, we
did not investigate this point further. The important point is
that, besides the trivial effect associated with the velocity of
the dumbbell, the frequency of the collisions between the right
wall and the active dumbbell is indeed significantly larger
in the range 0.0 � γ � 0.2 for hw = 0.4 and in the range
0.0 � γ � 0.4 for hw = 4.0 (see Fig. 9), thus confirming
the importance of spin-induced multiple successive collisions
between the active dumbbell and the right wall. Collisions
between the right wall and the dumbbell are on average more
efficient in pushing the confinement chamber towards the
right for hw = 0.4 than for hw = 4.0 for values of γ up to
about 0.6 (see Fig. 10). As a result, increases in wall collision
frequency due to spin momentum are likely to contribute to
the oscillations that are observed in the average position of the
mobile wall at low values of γ (see Fig. 3).

Several remarks are in order here. First, the presence of
narrow peaks above γ = 0.4 in Figs. 7, 9, and 10 indicates
that attractive pseudoperiodic trajectories still exist at larger
values of γ . However, the larger the value of γ , the faster
the alignment of the velocity vector of the dumbbell along

FIG. 11. Same as Fig. 8, but for hw = 4.0 and γ = 0.575. See
Movie S8 [39] for a movie of the same trajectory.

its tail-to-head axis, and the faster the damping of the spin
momentum. As a consequence, pseudoperiodic trajectories
become more and more rectilinear, dumbbells cross the
confinement chamber several times during one pseudoperiod,
and pseudoperiods become larger and larger. This can be
checked in Fig. 11 and Movie S8 [39], which show such a
pseudoperiodic trajectory for hw = 4.0 and γ = 0.575. Larger
pseudoperiods imply in turn that the increase in the wall
collision frequency (with respect to a random trajectory) is
smaller compared to lower values of γ , which is reflected in the
globally decreasing height of the narrow peaks with increasing
γ in Fig. 9. Spin momentum is of course also rapidly damped
for all other trajectories in the same range of values of γ , which
accounts for the decrease in the amplitude of broad fluctuations
surrounding narrow peaks with increasing γ in Fig. 9.

A second noteworthy remark is that, not only narrow peaks,
but also narrow dips are observed in Figs. 7, 9, and 10. These
narrow dips correspond to attractive periodic orbits, which
may involve collisions with all the walls except for the right
one and therefore do not contribute to the displacement of
the confinement chamber. Like the pseudoperiodic trajectories
hitting the right wall, these periodic orbits display large spin
momenta at low γ and become more and more rectilinear
with increasing γ (see, for example, Figs. S2 and S3 [39]).
It may, however, be noted that the depth of these dips is
generally smaller than the height of the narrow peaks and
that they are usually not surrounded by broader fluctuations
(relative decreases) of �xw or f even at low γ . This probably
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indicates that such periodic orbits are less stable and/or
less efficient in attracting neighboring trajectories than the
pseudoperiodic trajectories discussed above, but more work
would be needed to ascertain if indeed—and why—this is the
case.

Last, but not least, the third remark deals with the robustness
of the results and conclusions obtained so far for the modified
model with a single active dumbbell placed in a single
confinement chamber and their transferability to the complete
model with N active dumbbells placed in two confinement
chambers separated by a mobile wall. As seen clearly in
Movies S1–S3 [39], the mean free path decreases rapidly
from N = 50 to N = 500 and N = 5000. Indeed, dumbbells
may cross the confinement chamber without colliding with
another one for N = 50, while they always experience several
collisions during the crossing over for N = 500, and their
motion looks totally erratic due to very many collisions
for N = 5000. Since for N = 50 the mean free path is
substantially larger than the characteristic length of the
trajectories responsible for the increase in wall collision
frequency, it comes as no surprise that the subtleties of the
dynamics of the modified model with a single dumbbell
transfer well to the dynamics of the complete model with two
chambers and N = 50 dumbbells, as already stated above.
For N = 500, the mean free path is instead approximately
equal to—or even somewhat shorter than—the characteristic
length of trajectories looping back towards the mobile wall
after a first collision with it, so that it may be expected
that collisions between dumbbells interfere with the spin
momentum mechanism. One accordingly observes in Fig. 3
that the amplitude of the displacement towards positive values
of 〈xw〉 around γ = 0.2 is divided by a factor of about 3
upon increase of N from 50 to 500, while this displacement is
replaced by a shift towards slightly negative values of 〈xw〉 for
N = 5000. Moreover, the weaker oscillations observed below
γ = 0.2 for N = 50 are no longer observed for N = 500 and
N = 5000. As a result, for N = 5000 the evolution of the
mean position of the wall with increasing γ just consists of
a progressive displacement towards negative values of 〈xw〉,
such as is also observed for N = 50 and N = 500 for values of
γ larger than 0.3. Since this motion towards negative values of
〈xw〉 is not totally damped with increasing N, in contrast with
the fluctuations arising from the spin momentum, it is likely
due to a different mechanism, which will be described in the
remainder of this section.

A first indication concerning this second mechanism is
provided by the observation that the exponential decrease
of the mean displacement of the confinement chamber per
collision with the active dumbbell, �xw〈v2〉/f , which appears
to be the rule for hw = 4.0 in the range 0 � γ � 1 and
for hw = 0.4 in the range 0 � γ � 0.6, is replaced by an
exponential increase for hw = 0.4 and γ � 0.7 (see Fig. 10).
Simultaneously to this change in the sign of the slope of
�xw〈v2〉/f , the mean duration of collisions between the right
wall and the active dumbbell, denoted τ , increases sharply with
γ , as can be checked in Fig. 12. These two observations can be
understood by realizing that the repulsive force and the torque
exerted by the mobile wall on the active dumbbell depend on
hw but not on the damping coefficient, while the active force
increases linearly with γ . As a consequence, the penetration
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FIG. 12. Evolution of τ , the mean duration of collisions between
the right wall and the active dumbbell, as a function of the damping
coefficient γ for hw = 0.4 (solid red line) and hw = 4.0 (dashed blue
line) for the modified model with a single confinement chamber and
a single active dumbbell enclosed therein. See the caption of Fig. 7
for computational detail.

depth of the active dumbbell inside the mobile wall increases
with γ and it takes more and more time for the mobile wall to
let the incoming dumbbell rotate and expel it out from the wall,
this phenomenon being all the more marked for lower values of
the wall repulsive force constant hw. Figure 10 shows that the
net result is a strong increase of the mobile wall displacement
per collision for lower values of hw compared to larger ones.

It may furthermore be expected that this mechanism be quite
robust against an increase in the number of active dumbbells.
Indeed, with increasing particle density, particles accumulate
into the soft side of the wall (with a low repulsive force constant
hR = 0.4) due to the repulsion exerted by other particles in the
system (see Movie S3 [39]), thereby increasing the duration
of the interaction time between active particles and the mobile
wall even further, while they are not able to accumulate in the
hard side of the wall, which is characterized by a repulsive
force constant hL = 4.0 equal to that of overlapping particles.

Finally, the steady increase of the duration τ of the
collisions over the whole 0 � γ � 1 range (see Fig. 12)
indicates that, while the associated effect on pressure dif-
ference becomes particularly efficient above γ = 0.7, such
trend already exists for smaller values of γ . For small values
of γ , the increase in wall collision frequency induced by
the spin momentum is, however, predominant and masks
the effect of collision duration for low dumbbell density. As
discussed above, the spin momentum mechanism is, however,
much less robust than the collision duration effect against the
increase in the number of dumbbells, so that for large dumbbell
density the latter mechanism prevails even for low values of
γ . This is the reason why 〈xw〉/Lx is a simple monotonous
function of γ for N = 5000 (see Fig. 3).
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V. DISCUSSION AND CONCLUSION

In this paper, we have studied numerically the behavior of
the pressure in a gas of underdamped self-propelled dumbbells,
considering mostly such a gas enclosed in a two-dimensional
container with two chambers separated by a mobile asym-
metric wall. Working with dumbbells has the advantage that
any wall naturally exerts a torque on the dumbbells, leading
to the situation studied in [8], apart from the fact that we
are no longer considering the large damping limit. We have
found that the displacement of the asymmetric wall, resulting
from the unequal pressures exerted on both sides, varies
continuously with the damping coefficient of the dumbbells,
and goes to zero in the limit of zero damping coefficient. More
strikingly, we also observed that in the low-density regime,
when collisions are scarce, the displacement of the wall (and
thus the net force exerted on the wall at its initial position, when
densities were equal on both sides) exhibits oscillations as a
function of the damping coefficient. We have traced the origin
of this nonmonotonous behavior back to trajectories, which
acquire a large spin momentum when colliding with the wall.
The main effect of these specific trajectories is to enhance the
collision frequency with the wall, since particles tend to be
confined close to the wall. Moreover, the average interaction
time between the active particles and the soft side of the mobile
wall increases steadily with increasing values of the damping
coefficient γ , which leads to a stronger average pressure being
exerted on this side of the mobile wall for sufficiently large γ ,
whatever the density of active particles.

It is important to comment at this stage on the low damping
limit of the present model, especially in view of the fact
that the mean-square velocity goes to zero when the damping
coefficient γ goes to zero. One might thus think that this low
damping limit is a trivial limit in which nothing moves. Let
us first emphasize that we are not working at zero damping,
but with small finite values of the damping coefficient γ .
Hence, particles do move, although at a slow pace. Averages
of physical observables are accordingly computed over larger
and larger time windows as γ is decreased. Yet one might think
that the fact that the force exerted by particles on the mobile
wall becomes small when γ is small (see Fig. 4) is the reason
why the displacement of the wall becomes small in this limit.
However, it should be outlined that the mobile wall moves
freely (in the sense that it is not confined by any potential except
that of the container) and that its damping coefficient is equal
to that of the particles. Hence although particles exert small
forces, these forces still generate significant displacements.
This is seen in Fig. 7 (in the case of a single particle in a
moving chamber), where the displacement per unit time of
the mobile wall is shown as a function of γ . One sees that
small values of γ lead to larger displacements of the wall
per unit time (while the number of collisions per unit time
becomes lower). The mean-square velocity of the particle in
this modified geometry is shown in Fig. S1 [39], and it behaves
in a similar way as in the original system with N particles. The
reason for the large displacement of the wall is that a collision
even with a small force generates a large displacement due to
low damping of wall motion. Hence the fact that the moving
wall remains close to the central position xw = 0 is not due
to the small amplitude of the force (or small speeds), but to

the fact that the momentum transferred to the wall during a
particle-wall collision does not depend on the shape of the
repulsive potential in this limit.

In addition, the fact that the speed of particles plays no
important role can be confirmed in an independent way. In the
overdamped limit, the displacement of the wall can indeed be
computed explicitly from Eq. (5) of Ref. [8] in the case of
elliptic particles confined by an asymmetric mobile wall with
harmonic confining potentials (a situation very close to ours for
large γ ). The position of the wall is found to be independent of
particles’ speed and thus remains the same in the limit where
the particle speed is very small.

We also emphasize that the oscillations observed at low
density for the position of the wall as a function of the damping
coefficient γ indicate that the low-γ , inertial dynamics is far
from trivial. Such oscillations would require further theoretical
explanation. Among possible reasons that may account for
these oscillations, we have pointed out the potential role
played by individual trajectories with large spin momentum
that generate frequent recollisions of a given particle with the
wall.

Let us finally comment on the physical origin of the
pressure, especially when damping is not too small. An
important observation is that the instantaneous force exerted
on the wall by a dumbbell depends only on the position of
its center of mass (as soon as both particles composing the
dumbbell are within the soft wall), and not on its orientation,
because the wall potentials are harmonic. So the pressure
depends essentially on the penetration depth of dumbbells
in the wall, and on the duration of the interaction with
the wall. For the simple and usual case of noninteracting
active Brownian particles, the duration of the interaction is
determined by the time needed for the orientation of the
particle coming into the wall to turn back due to the sole effect
of angular diffusion, in the absence of any torque exerted by
the wall. Hence in this situation, one may think of the pressure
as resulting from particles pointing perpendicular to the wall.
In our model, at large damping and large enough densities,
particles accumulate into the soft wall due to the repulsive
interaction of other particles in the system. In a sense, particles
are “pushed into the wall” (see Movie S3 [39]). Yet, when into
the wall, particles are subjected to a torque that quickly aligns
them with the wall. Hence we end up (again at large γ ) with
an accumulation into the wall of particles mostly aligned with
the wall, but that nevertheless exert a pressure on the wall due
to the repulsive wall potential.

Among several possible extensions of the present study,
future work could focus on the effect of including noise in
the dumbbell dynamics. In this case, the equilibrium situation
does not correspond to a vanishing value of the damping
coefficient, but rather to a finite value given by the fluctuation
dissipation relation, in the case of white noise (for colored
noise, equilibrium requires the introduction of a memory
kernel in the damping term [40]). Hence regimes where the
damping is smaller than at equilibrium could also be studied in
this framework. Additional research directions could include
the study of the effect of a low damping on transport of [41]
or trapping by [42] mobile wedges, or on the sorting effect
of particles in ratchet geometry [43]. All these effects, which
are hallmarks of active particle dynamics, are expected to be
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weakened in the presence of a low friction. Comparison to
driven dimers, that have been studied in the context of granular

matter [44–46], could also be of interest to clarify the relations
between self-propelled particles and driven granular systems.
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