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We study how the thermodynamic properties of the triangular plaquette model (TPM) are influenced by the
addition of extra interactions. The thermodynamics of the original TPM is trivial, while its dynamics is glassy, as
usual in kinetically constrained models. As soon as we generalize the model to include additional interactions, a
thermodynamic phase transition appears in the system. The additional interactions we consider are either short
ranged, forming a regular lattice in the plane, or long ranged of the small-world kind. In the case of long-range
interactions we call the new model the random-diluted TPM. We provide arguments that the model so modified
should undergo a thermodynamic phase transition, and that in the long-range case this is a glass transition of
the “random first-order” kind. Finally, we give support to our conjectures studying the finite-temperature phase
diagram of the random-diluted TPM in the Bethe approximation. This corresponds to the exact calculation on the
random regular graph, where free energy and configurational entropy can be computed by means of the cavity
equations.
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I. INTRODUCTION

There are two main points of view to understand the nature
of the glass phase. On one hand there is the idea of “dynamic
facilitation,” which emphasizes the role of frustration in
the dynamics: the motion of the microscopic constituents
of a glass-forming system becomes inhibited by their close
neighbors when the system is cooled. The consequence is
that the material remains stuck for an extremely long time in
a certain amorphous configuration. On the other hand there
is the landscape scenario, or “random first-order transition”
(RFOT) theory [1–4], according to which the formation of
a glass is the reflex of the existence of metastable states
whose multiplicity is strongly reduced as the temperature is
lowered. In the dynamic facilitation scenario thermodynamics
is deemphasized and the interaction only plays a role in
dynamics. This idea is at the basis of the description of glasses
provided by kinetically constrained models (KCMs) [5–10].
KCMs are lattice models where the variables do not have
energetic interactions, but are subject to dynamic constraints.
Both theories have reference models that reproduce important
aspects of glass phenomenology, and it is hard to decide which
scenario is the appropriate one to describe real systems. The
two descriptions are very similar at the mean-field level: recent
numerical simulations have shown that both at the level of
average behavior [11] and at the level of fluctuations [12]
KCM models on random graphs [13] follow a glass transition
pattern predicted by mode-coupling theory. In [14] it was
also shown that a typical RFOT model, the XOR-SAT on a
random graph, can be mapped in a KCM. The XOR-SAT
model combines salient features of both theories: it has a
trivial high-temperature thermodynamics as in KCM, but
with a finite-temperature entropy crisis glass transition as in
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RFOT. It is an interesting question whether this commonality
of mechanisms observed in the mean field extends to finite
dimensions.

To investigate this question, in the present work we analyze
the thermodynamic properties of a modified 2D triangular
plaquette model (TPM) [15–18]. The original TPM is an
example of a KCM: it is a spin model whose thermodynamics
is one of a trivial paramagnet while at the same time the model
displays dynamical glassy phenomena with a super-Arrhenius
relaxation time. Indeed, the TPM is nothing but a realization
of the XOR-SAT model in finite (two) dimensions [14]. Our
attention was brought to the TPM in particular by the results
of [19]. In [19], and more recently in [20], it has been shown
that the TPM, in the presence of external fields, supports
both dynamic and thermodynamic phase transitions to glassy
arrested phases. Emphasis is put in [19,20] on the fact that
as soon as such external fields are switched off ergodicity is
restored, so that the TPM is just marginally glassy. Looking at
the results of [19,20] from another perspective, they provide
evidence that the trivial thermodynamics of the TPM can be
dramatically altered by means of very small perturbations.
Following this line, our purpose here is it to show that the
triviality of the TPM thermodynamics is marginal and its
physics is close to one of the landscape scenario. We will
show that as soon as some new interactions are introduced in
the TPM, its thermodynamics cannot be trivial anymore and a
phase transition appears in the system. Our results support the
point of view that the dynamic facilitation and the landscape
scenario should be regarded as complementary rather than
alternative.

Specifically, the TPM is a lattice spin model where the
spins sit on a two-dimensional triangular lattice endowed
with “plaquette” interactions: each plaquette corresponds to
the product of the three spins placed at the corners of an
upward triangular cell of the lattice. The energy of the model
is H = −∑

〈ijk〉 σiσjσk , where each triplet 〈ijk〉 of indices is

2470-0045/2016/93(3)/032601(17) 032601-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.032601


SILVIO FRANZ, GIACOMO GRADENIGO, AND STEFANO SPIGLER PHYSICAL REVIEW E 93, 032601 (2016)

associated with a plaquette. The remarkable observation made
in [15] is that there is a one-to-one correspondence between
spins and plaquettes: a configuration of the system is well
defined either assigning the values of the spins {σi}i=1,...,N

or the values of the plaquette variables {τa}a=1,...,N , where
τa = σi(a)σj (a)σk(a). In terms of the plaquette variables the
Hamiltonian is equivalent to that of a system of noninteracting
spins in a field, for which the partition function can be trivially
calculated: Z = 2N [cosh(β)]N . The absence of thermody-
namic singularities, together with a critical slowing down
at low temperatures [15,16], τrel ∼ exp(A/T 2), are typical
features of KCMs. If one performs local Monte Carlo updates
acting upon the spins but then looks at the resulting dynamics
of the plaquette variables, the latter looks like a kinetically
constrained dynamics. It happens that the annihilation of a
“defect,” namely the flip of a plaquette a from τa = −1 to
τa = 1, is favored only when there is at least one other defect,
i.e., an excited plaquette, connected to a. Two plaquettes
are connected when they have a spin in common. Since the
dynamics acts upon spins, and in the TPM the update of
one spin always corresponds to the update of three plaquettes,
the Monte Carlo dynamics corresponds to the flipping of three
plaquettes per time. Due to the odd number of plaquettes
attached to a spin σi , in the TPM there is no spin flip
with �E = 0, since E = −∑

a∈∂i τa . For the same reason
one needs that at least two of the plaquettes attached to σi

are excited, namely they are both τa = −1, in order to have
�E < 0 by flipping σi . This explains why the annihilation
of a defect is favored only in the vicinity of another defect.
The transition rates for spin updates depend on temperature
through the standard Metropolis rule, namely each attempted
update is accepted with probability p = min(1,e−β�E). The
idea we want to test in this paper is that if we intro-
duce some new interactions between variables (or if we
remove some), an important parameter in the thermodynamics
is the ratio α = M/N between the number M of plaquettes in
the Hamiltonian and the number N of spins in the systems.
While such a scenario is well established for plaquette models
on random graphs [21], this has not been tested to our
knowledge in finite-dimensional geometries. Of course the
ratio α can be changed in many different ways. Here we
will focus on two classes of models with extra plaquettes:
in the first class we choose the triplets of spin in the new
interactions completely at random; in the second class the
new interactions are taken on a regular sublattice of the
triangular lattice, either a fraction of them chosen randomly or
all the interactions of the sublattice. With the first choice we
induce arbitrarily long-range interactions, so that the resulting
model is a kind of small-world network [22]. In order to be
general, in the model with long-range interactions we also
take into account a dilution of the plaquettes of the original
two-dimensional triangular lattice: that is why we call such a
model the “random-diluted triangular plaquette” model.

The paper is structured as follows. In the first part, Sec. II,
we present the two classes of modified TPMs just mentioned.
For each class we discuss the behavior of the high-temperature
expansion and present the results of numerical simulations. In
Sec. III we discuss how to use the leaf-removal algorithm [21],
which is a method borrowed from the study of constrained
optimization problems, to draw a tentative phase diagram at

T = 0 of the random-diluted TPM in the (αs,αL) plane: αL

is the concentration of long-range plaquettes while αs is the
concentration of short-range plaquettes in the two-dimensional
lattice. Finally, in Sec. IV of the paper we present the phase
diagram at finite temperature for the random-diluted TPM on
the random regular graph, which we will refer to often in
the paper also as the Bethe lattice geometry, where the glass
transition temperature can be exactly calculated by solving the
cavity equations.

II. TRIANGULAR PLAQUETTE MODEL WITH
ADDITIONAL INTERACTIONS: HIGH-TEMPERATURE

EXPANSION AND NUMERICAL SIMULATIONS

The simplest choice of additional interactions for a modified
TPM with Hamiltonian H = HTPM + Hextra is represented by
new ferromagnetic plaquettes: Hextra = −∑

ijk σiσjσk . In the
Hamiltonian Hextra the only source of randomness is then
represented by the choice of which spins participate in each of
the new plaquettes, i.e., the choice of the triplets of indices ijk.
The ground state of the so modified TPMs is the configuration
where all spins attain the value σi = +1. The aim of this work
is to provide evidence that in some of these modified TPMs a
glass transition takes place before the system has the time to
relax to the ordered ground state. We already know from the
literature that this is the case for the TPM on a random graph
[23]. The idea of introducing new interactions is motivated
by the purpose of inducing an entropic crisis in the system,
which is the typical mechanism for the formation of a glass
phase within the RFOT theory scenario [24]. We have already
mentioned that in the TPM the partition function is simply
Z = 2N [cosh(β)]N . Let us assume the existence of a modified
TPM such that the number of plaquettes M is different from
the number of spins N , but the partition function is still the
trivial one: Z = 2N [cosh(β)]M . In this hypothetical TPM the
entropy of the system would be

s(β) = ln(2) + M

N
ln[cosh(β)] − M

N
β tanh(β), (1)

which in the limit of zero temperature yields

lim
β→∞

s(β) =
(

1 − M

N

)
ln(2). (2)

Equation (2) tells us that in the case when α = M/N > 1 the
entropy is negative at T = 0, so that an entropic crisis takes
place at T > 0. Clearly, since the TPM and any decoration
of it are models with discrete variables, any expression
yielding a negative entropy cannot be an exact one. The
only possibility is that, in a TPM with additional plaquettes
(M/N > 1), the expression of the entropy in Eq. (1) is an
approximated one; for instance it can be the one provided
by high-temperature expansion. This expansion usually well
describes the properties of the liquid phase: the finding of
a negative entropy by its prolongation to low temperatures
tells us that the description of the system as in the liquid
state becomes inconsistent and the glass comes into play
[24]. Our purpose here is to show that, in some modified
TPMs, the parameter which controls the entropy crisis in the
high-temperature phase is the ratio α = M/N between the
number of plaquettes and the number of spins. While it is
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well known for mean-field plaquette models that the glass
transition is controlled by such a ratio α = M/N [21], we
provide here some evidence that this should be the case also in
finite dimensions. All the TPMs with additional interactions
we discuss here are characterized by a Hamiltonian of the kind

H = HTPM + Hextra, (3)

where two different contributions are read off: Hextra =
−∑ML

r=1 σir σjr
σkr

, with the index r running over the new
additional plaquettes, and the standard Hamiltonian of the
TPM model, HTPM = −∑Ms

s=1 σis σjs
σks

, with the index s

running over the plaquettes of the two-dimensional triangular
lattice. The two parameters which characterize the model
are the concentrations of original TPM plaquettes and of
new additional plaquettes: respectively αs = Ms/N and αL =
ML/N .

The models with additional plaquettes connecting arbi-
trarily far apart spins and those with additional short-range
plaquettes will be presented respectively in Sec. II A and
Sec. II B. In Sec. II A and Sec. II B we study the high-
temperature expansion and present some numerical results for
the simplest case in which αL is arbitrary but αs is fixed to
αs = 1, that is, when there is no dilution of the plaquettes
in the original 2D triangular lattice. Since the analysis of
Sec. II A and Sec. II B shows that the best candidate to display
a low-temperature glass transition is the TPM model with
additional long-range plaquettes (“small-world” network), this
model will be studied in the rest of the paper (Sec. III and
Sec. IV), also taking into account values αs < 1. The model
in which both αs and αL take values in the interval [0,1] is the
random-diluted TPM.

A. Long-range additional plaquettes: The random-diluted TPM

A generalized TPM with additional plaquettes has the fol-
lowing high-temperature expansion for the partition function:

Z = 2N [cosh(β)]M
(

1 +
M∑

m=1

C(m,M)[tanh(β)]m
)

, (4)

where the sum on the right-hand side of Eq. (4) runs over
hyperloops [25] made of m plaquettes: C(m,M) represents the
number of hyperloops of m plaquettes that can be built in
a system with a total number M of plaquettes. A hyperloop
is defined [25] as a set of interactions such that each spin is
appearing an even number of times. The precise expression of
C(m,M) depends on the model. For instance, in the pure TPM,
one has C(m,M = N ) = 0 and the high-temperature series
yields exactly the partition function. Other situations will be
discussed in the following paragraphs. Let us focus here on the
behavior of the high-temperature expansion in the case when
the ML = αLN plaquettes of Hextra have spins drawn with
uniform probability from the lattice, with the only constraint
that spins in the same plaquette are different. Let us indicate
with R an instance of disorder, namely a particular choice
of the triplets of spins in the plaquettes of Hextra. It is also
convenient to introduce the average of a function f [σ ], with σ

denoting a configuration of the system σ = (σ1, . . . ,σN ), with

respect to the measure provided by the pure TPM:

〈f [σ ]〉TPM = 1

ZTPM

∑
σ

e−βHTPM[σ ]f [σ ]. (5)

The partition sum for a given R reads then

ZR =
∑

σ

e−βHTPM[σ ]+β
∑ML

r σir σjr σkr

= 2N [cosh(β)]N+ML

〈∏
r

[1 + σir σjr
σkr

tanh(β)]

〉
TPM

= 2N [cosh(β)]N+ML

[
1 +

ML∑
r∈R

〈τr〉TPM tanh(β)

+
ML∑

r �=p∈R
〈τrτp〉TPM [tanh(β)]2 + · · ·

]
, (6)

where, to lighten the notation, we used the plaquette variables
τr = σir σjr

σkr
and ML is the number of additional plaquettes in

Hextra. From Eq. (6) we see that the product of m “long-range”
plaquettes contributes a hyperloop in the high-temperature
expansion if and only if in the original TPM the corresponding
correlation function 〈σi1σj1σk1 . . . σimσjm

σkm
〉TPM is finite in the

thermodynamic limit.
Let us now notice that in our modified TPM with long-range

plaquettes the annealed and quenched averages are equivalent
at high temperature due to the fact that the partition function

is self-averaging, i.e., Z2 = Z2: the proof of self-averaging is
presented in Appendix A. This equivalence of annealed and
quenched averages in the high-temperature phase is typical
not only of the random energy model [26], the simplest model
with an entropy-driven glass transition like the one we expect
in our modified TPM, but also of all the p-spin models fully
connected or on a random (hyper)graph. In all these situations
the behavior of the thermodynamic potentials in the high-
temperature phase is obtained from the annealed free energy
f = −(βN ) ln(Z). We are therefore allowed to average over
disorder the partition function:

Z = 1

N (RM )

∑
RM

ZR

= 2N [cosh(β)]N+ML

[
1 +

(
ML

1

)
N (R1)

N (R1)∑
r=1

〈τr〉TPM tanh(β)

+
(
ML

2

)
N (R2)

N (R1)∑
r,p=1

〈τrτp〉TPM [tanh(β)]2 + · · ·
]
. (7)

In Eq. (7) the indices r,p run over the set of all possible choices
of random triplets of spins, whileN (Rk) is the number of ways
in which k random triplets can be chosen, which, in the limit
N 	 k 	 1, reads

N (Rk) =
(

N

3

)k

∼ O(N3k). (8)

In each sum on the right-hand side of Eq. (7) the number
of choices for the plaquettes not appearing in the brackets
〈 〉TPM has been canceled out with the corresponding factor in
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the normalization constant. The binomial coefficient in front
of each summation symbol in Eq. (7) represents the number
of ways to choose m plaquettes out of ML. Taking then into
account that the typical value 〈τrτpτq〉TPM does not depend on
the choice of the indices, the expression in Eq. (7) simplifies
to

Z = 2N [cosh(β)]N+ML

×
[

1 +
ML∑
m=1

(
ML

m

)
〈τ1 . . . τm〉TPM [tanh(β)]m

]
. (9)

It can be then proven, as shown in Appendix A, that

lim
N→∞

(
ML

m

)
〈τ1 . . . τm〉TPM = 0, (10)

so that the high-temperature expansion is trivial and we have

Z = 2N [cosh(β)]N+ML. (11)

The consequence of Eq. (11) is that, since α = (N + ML)/
N > 1, according to the expression in Eq. (2), at T = 0 the
entropy is negative, which in turn implies an entropic crisis at
T > 0. As already mentioned, the finding of negative entropy
is, for a model like ours with discrete variables, an artifact
of the high-temperature expansion: a phase transition usually
takes place preventing this from happening. Such a phase
transition is not necessarily a glass one: indeed we find from
the numerical simulations discussed below that a first-order
transition to an ordered state is taking place. As shown in [23]
for a TPM on a random graph, the presence of an ordered
ground state does not spoil the possibility of a glass transition.

Numerical simulations. In order to test the behavior of
the TPM in the presence of extra plaquettes with randomly
chosen spins we realized numerical simulations of the model.
We studied a lattice with triangular cells and the shape of a
rhombus with L = 128 plaquettes per side, periodic boundary
conditions, and a concentration of extra random plaquettes
αL = 0.1. In order to speed up the equilibration dynamics
at low temperatures we used a rejection-free algorithm [27].
The behavior of the internal energy along a hysteresis cycle
is represented by the data in Fig. 1. The scenario is as
follows. By cooling down the system from high temperatures
one first finds a spinodal temperature Ts where an ordered
metastable state appears. By further cooling the systems a
melting temperature Tm where the ordered state becomes
stable is found. The melting temperature has been determined
from the free energy obtained numerically via thermodynamic
integration: f (β1) = β0β

−1
1 f (β0) + β−1

1

∫ β1

β0
dβe(β). In panel

(a) of Fig. 1 there are two data sets which correspond
respectively to the paramagnetic phase, at the higher energy
epara(β), and the ordered phase, at the lower energy eferro(β);
these two phases are stable respectively above and below the
melting temperature Tm. By independently performing the
thermodynamic integration over epara(β) and eferro(β) one gets
respectively f para(β) and f ferro(β); Tm is determined by the
crossing of f para(β) and f ferro(β). Since for T > 1 data are
well interpolated by the high-temperature expansion, we fix
the integration constant f (β0) to f (β0) = −β0 ln(2) − β0(1 +
αL) ln[cosh(β0)], with β−1

0 = 1.2. In the top panel of Fig. 1,
the melting temperature Tm is represented by a vertical dotted
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FIG. 1. Main: Energy hysteresis cycle for a TPM model with
additional long-range plaquettes. We simulated the model on a lattice
with the shape of a rhombus (see for instance the representation
of Fig. 2) with L = 128 plaquettes per side and a concentration of
additional plaquettes αL = 0.1. Red circles: Cooling (cooling rate
from 106 to 107 Monte Carlo steps per �T = 0.04). Green triangles:
Heating. Continuous black line: High-temperature expansion, e(T ) =
−(αL + 1) tanh(1/T ). The melting temperature Tm is indicated by
the dotted vertical line while the temperature T0 of the entropy crisis
of the high-temperature expansion is the filled black square. Inset:
Circles show relaxation time in the supercooled liquid phase as a
function of T , and lines are respectively the two-parameter fit with
a exp(b/T ) (continuous red line) and the three-parameter fit with
c exp[d/(T − TK )]. The critical temperature obtained from the fit is
TK = 0.374.

line; it is interesting to note that the system can be cooled to a
remarkable extent below Tm while remaining in the disordered
liquid phase. Bringing T down further, the relaxation time
becomes so large that the system falls out of equilibrium.
Our cooling protocol is represented by runs ranging from
106 to 107 Monte Carlo sweeps for each temperature, and
by temperature jumps of �T = 0.04. Using this protocol we
were not able to detect any tendency of the system to relax to
the ordered ground state. From simulations we learn therefore
that a first-order transition is present at Tm, but the systems
is highly stable in the supercooled liquid phase, namely at
temperatures T < Tm. This finding suggests that the system
avoids on the time scales we sampled the negative entropy
obtained by extrapolating the high-temperature expansion
just by forming a glass. Let us also note that the annealed
high-temperature expansion in Eq. (11) has a very good
agreement with simulations; in Fig. 1 it can be seen that within
the whole range of temperatures where we could equilibrate
the system no relevant departure of data from the annealed
energy e(β) = −(1 + αL) tanh(β) can be detected. In Fig. 1
we can also see that the temperature T0 of the entropy crisis,
as can be estimated from the high-temperature expansion of
the entropy in Eq. (1), lies below the temperature range where
we can equilibrate the system. With respect to the ideal glass
transition temperature TK , the temperature T0 can be regarded
as a lower bound for the possible values of TK . It is hard to
prove or disprove the existence of an ideal glass transition for
our modified TPM solely on the basis of numerical data; this
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is clear looking, for instance, at the inset of the top panel of
Fig. 1, where the equilibrium relaxation time τrel is shown as a
function of temperature. Good fits of the data (see the inset of
the top panel in Fig. 1) can be obtained either with a function
diverging at finite temperature, τrel ∼ exp[A/(T − TK )], or
with the super-Arrhenius law τrel ∼ exp(B/T 2) (where clearly
A �= B); this is an ambiguous situation that is well known for
these kinds of models [28] and in general for glasses. That is
why, in order to have better insight into the thermodynamics
of the TPM with random plaquettes, we propose in Sec. III a
different approach based on tools and ideas borrowed from the
study of constraint satisfaction problems.

B. Short-range additional plaquettes

In the previous section we studied the effect of long-range
random interactions on the high-temperature expansion of the
triangular plaquette model. It is then interesting to investigate
what happens in the presence of short-range interactions.
Our choice for the new kind of short-range interactions has
been guided by the purpose to reduce as much as possible
the corrections to the high-temperature expansion. Since
in the TPM the correlation of any group of three spins
placed at the corners of an equilateral triangle of side 3
is zero [15,16], we defined an additional sublattice formed
by equilateral triangular cells of that kind. The additional
plaquettes appearing in Hextra are then chosen as all the
plaquettes of this regular sublattice. In this case we know
that at least the first term of the high-temperature expansion
vanishes. A representation of this odd sublattice is given in
Fig. 2, where the additional plaquettes correspond to the spins
placed at the corners of equilateral triangles with side 3. Let
us then rewrite the partition function as a series in tanh(β):

Z = 2N [cosh(β)]N+ML

[
1 +

ML∑
r

〈τr〉TPM tanh(β)

+
ML∑
r �=p

〈τrτp〉TPM [tanh(β)]2 + · · ·
]
, (12)

FIG. 2. Triangular lattice for the generalized TPM with additional
short-range plaquettes on a regular sublattice made of equilateral
triangles of side 3. The original TPM plaquettes and additional
interactions are shown as light gray and dark gray triangles,
respectively.

where the sums in Eq. (12) run over all the plaquettes of the odd
sublattice. At this stage the expression in Eq. (12) is exact; it
is just a way of rewriting the partition function. The difference
between Eq. (12) above and Eq. (7) in the previous section is
that in Eq. (12) each term of the kind

ML∑
r1,...,rk

〈τr1 . . . τrk
〉TPM [tanh(β)]k (13)

accounts for the hyperloops made with all the possible choices
of k plaquettes from the additional sublattice, while in Eq. (7)
only the hyperloops coming from a given random choice of
the additional plaquettes, denoted with R, were taken into
account. Due to the regular structure of both the TPM lattice
and of the sublattice of additional interactions the existence
of finite hyperloops can be proved along the following lines.
Let us consider a lattice, TPM plus regular sublattice, of
finite size, with open boundary conditions. Think for instance
that our system is the portion of the lattice in Fig. 2 which
includes the 4 additional plaquettes there represented and the
36 corresponding plaquettes of the TPM, for a total number
of M = 40 plaquettes. With open boundary conditions, the
number of spins in this system is N = 49. In this case nothing
forbids the partition function to be exactlyZ = 2N [cosh(β)]M ,
since at zero temperature the corresponding entropy is positive:
s(T = 0) = 1 − 40/49 > 0. In this case there is no constraint
implying the presence of hyperloops: it might be that for a
lattice of this size there is no finite hyperloop. If we think in
general to a lattice with the shape of a rhombus, with the same
number L of TPM plaquettes on the horizontal and oblique
side (consider Fig. 2 to have an idea), and with open boundary
conditions, its partition function in absence of hyperloops is

Z = 2(L+1)2
[cosh(β)]L

2+(L/3)2
. (14)

Due to the open boundary conditions, if the number of pla-
quettes on each row is L the number of spins on the same row
is L + 1. On the other hand there are L/3 rows of additional
plaquettes, each with L/3 plaquettes. This explains why the
total number of spins is (L + 1)2 and why the total number
of plaquettes is L2 + (L/3)2. For simplicity, let us consider
just the case when L = 3m, where the integer number m in-
dicates therefore the number of plaquettes from the additional
sublattice in a row: the zero-temperature entropy per degree of
freedom corresponding to the free energy in Eq. (14) is

s(T = 0) = 1 − 10m2

(3m + 1)2
. (15)

From Eq. (15) we find the maximum value of the parameter
m for which is possible to not have hyperloops in the partition
function: m∗ = 6. For m > m∗ the expression of s(T = 0) in
equation Eq. (15) is negative; this actually proves (the system
has discrete variables) that for any lattice of size m > m∗ there
must be hyperloops in the system. This way of reasoning allows
one to prove not only that finite hyperloops are present, but also
to fix an upper bound for the size of the smallest hyperloop.
Since in a lattice with m∗ + 1 = 7 there is necessarily a
hyperloop, then the smallest hyperloop cannot have more than
(m∗ + 1)2 = 49 plaquettes taken from the additional sublat-
tice. Let us now explain why in this case there are nontrivial
contributions to the high-temperature expansion. In order to
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be general, we assume the smallest hyperloops are made of k

additional plaquettes of the sublattice and by m plaquettes of
the original TPM lattice. For every correlation function of k′
plaquettes such that k′ is a multiple of k, and the plaquettes are
all taken from the sublattice of additional ones, one must take
into account disconnected hyperloops. The leading contribu-
tion of this kind of term to the high-temperature expansion is

Z = 2N [cosh(β)]N+ML
[
1 + ML[tanh(β)]k+m

+ML(ML − k)[tanh(β)]2k+2m

+ML(ML − k)(ML − 2k)[tanh(β)]3k+3m . . .
]
, (16)

where ML = αLN . An explicit expression for the
combinatorial prefactor C(m,M) appearing in Eq. (4)
can be provided for the terms appearing in Eq. (16). Let us
indicate with C(mTPM + mextra,M) the combinatorial factor
which accounts for the multiplicity of a hyperloop with mTPM

plaquettes from the original TPM model and mextra additional
plaquettes. Then, according to the expression in Eq. (16) and
taking n a positive integer we can write

C(kn + mTPM,M) ∼ Mn. (17)

The series in Eq. (16) can be summed leading to

Z ∼ 2N [cosh(β)]N+MLeαLN[tanh(β)]k+m

, (18)

which represents the contribution to the high-temperature
expansion provided by k plaquettes connected hyperloops.
We can conclude that in the TPM the addition of short-range
additional plaquettes always introduces corrections to the
high-temperature series; it is then hard to say whether or
not this expansion, which well reproduces the properties
of the system in the liquid phase, has positive entropy at
all temperatures. What numerical data (see below) show
is that even short-range additional interactions induce a
first-order transition with a rather robust supercooled liquid
phase surviving below the melting temperature. In order to
characterize the hyperloop corrections to the liquids phase,
we looked to the smallest hyperloop for the model defined
at the beginning of this section. In order to do this we used a
simulated annealing method, explained in detail in Appendix
A 2. According to simulated annealing, the smallest hyperloop
of the high-temperature series is the one shown in Fig. 3,
which is made of 54 plaquettes from HTPM and 10 plaquettes
from Hextra. Even if such hyperloop is “big,” in the sense that
it provides a correction of the order [tanh(β)]64 to the high-
temperature expansion of the free energy, it contains a number
of plaquettes from the additional sublattice (10 plaquettes)
well below the threshold of (m∗ + 1)2 = 49 plaquettes (from
the additional sublattice) discussed above in this paragraph.

The next question can then be, what about if we add to the
TPM Hamiltonian not all the plaquettes of the sublattice but
just a fraction of them randomly chosen? That is, what about
if the sums in Eq. (12) run over the plaquettes of a special
instance of the disorder, which corresponds to have in Hextra

just a fraction c of the plaquette of the regular sublattice? The
answer is that hyperloops will still be there, just in a smaller
amount compared to having all the plaquettes of the regular
sublattice. Let us consider for instance the hyperloop of Fig. 3,
made of 10 close-by plaquettes of the regular sublattice and 54

FIG. 3. Smallest hyperloop of the high-temperature expansion
for the modified TPM with extra short-range plaquettes discussed
in Sec. II B. In the figure can be counted 54 small plaquettes of the
original TPM lattice (thick red triangles) and 10 plaquettes of the
auxiliary sublattice (thin black triangles), which has as elementary
cells equilateral triangles of side 3.

plaquettes of the TPM. For a random choice of the additional
plaquettes such that a fraction c of the total number present
in the sublattice is taken, in a high-temperature expansion like
the one in Eq. (16) a contribution as ML[tanh(β)]64 is replaced
by cML[tanh(β)]64, and correspondingly the correction to the
partition function becomes exp{cαLN [tanh(β)]64}.

The difference between adding randomly chosen long-
range and short-range plaquettes is at this point clear: while
in the former case it can be proved that the high-temperature
expansion is trivial and there is an entropic crisis, in the latter
case there are corrections coming from finite hyperloops, and
these corrections are most likely preventing any entropic crisis.
For this case we present the numerical evidence that, even
with no clue on the presence of an entropic crisis, the idea
to add interactions to the TPM is a good strategy to induce a
nontrivial thermodynamics characterized by the presence of a
supercooled liquid phase.

Numerical simulations. In order to provide the numerical
evidence that even short-range interactions produce a non-
trivial thermodynamics we considered the case of a random
choice of the plaquettes on the regular sublattice and we
found it convenient also to put weaker interactions on these
additional plaquettes. Actually we considered the Hamiltonian
Hextra = −J1

∑ML

a=1 σiaσja
σka

, with J1 = 1/5 and with the sum
running on a finite fraction of the sublattice plaquettes. On one
hand the random choice of a subset of the plaquettes on the
regular sublattice decreases the number of finite hyperloops in
the high-temperature expansion; on the other hand a reduced
strength of interactions on these plaquettes decreases the
weight of these hyperloops. Monte Carlo simulations done
with J1 = 1 showed that also with short-range plaquettes there
is a melting temperature Tm, but differently from the case of
long-range plaquettes (with a random choice of the spins) the
system decays to the ordered ground state as soon as T < Tm.
Data are not reported here, but we found that with the same
annealing protocol used for long-range plaquettes, namely

032601-6



RANDOM-DILUTED TRIANGULAR PLAQUETTE MODEL: . . . PHYSICAL REVIEW E 93, 032601 (2016)

temperature jumps of �T = 0.04 each 106 or 107 Monte
Carlo steps (depending on the temperature), the system reaches
the equilibrium ground states for all temperatures T < Tm

with ML = 0.1N additional short-range plaquettes. Before
commenting on the numerical data obtained with J1 = 1/5,
let us notice that when the additional plaquettes are taken from
a regular sublattice, even for T > Tm the high-temperature
expansion yields a small but finite magnetization. This can be
clearly seen looking at the high-temperature expansion of the
magnetization:

1

N

〈
N∑

i=1

σi

〉

= 1

NZ

N∑
i=1

∑
σ

σie
−β(HTPM[σ ]+Hextra[σ ])

= [cosh(β)]ML

NZ

[
N∑

i=1

ML∑
r=1

〈σiσri
σrj

σrk
〉TPM tanh(J1β) + · · ·

]

= ML

N
tanh6(β) tanh(J1β) + · · · , (19)

which, as can be seen in Fig. 4, nicely compares with the results
of numerical simulations. As is clear from Eq. (19), the first
effect of taking J1 < 1 is to reduce the high-temperature mag-
netization in the vicinity of Tm making the supercooled liquid
phase more stable. Let us briefly explain how the equalities
in Eq. (19) are obtained. From the first to the second line of
Eq. (19) we just wrote down explicitly the high-temperature
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FIG. 4. Main: Energy hysteresis cycle for a TPM model with
additional short-range plaquettes. We simulated the model on a lattice
with the shape of a rhombus (see for instance the representation
of Fig. 2) with L = 128 plaquettes per side and a concentration
of additional plaquettes αL = 0.1: the coupling coefficient of the
additional plaquettes is J1 = 1/5. Red circles: Cooling (cooling
rate from 106 to 107 Monte Carlo steps per �T = 0.04). Green
triangles: Heating. Continuous black line: High-temperature expan-
sion, e(T ) = −[αL tanh(J1/T ) + tanh(1/T )]. Inset: Magnetization
hysteresis cycle for the same model with the same cooling/heating
protocol. Red circles: Cooling. Green triangles: Heating. Contin-
uous line: m(T ) from the high-temperature expansion: m(T ) =
αL[tanh(1/T )]6 tanh(J1/T ), with αL = 0.1 and J1 = 1/5.

expansion. The last identity of Eq. (19) is clear if one recalls
that each plaquette of Hextra is represented by a triplets of
spins σri

σrj
σrk

at the vertices of an equilateral triangle of side
3. It can be easily realized that those spins form a hyperfield
[25] when multiplied with the plaquettes of HTPM which are
enclosed within the perimeter of the same triangle. Borrowing
the terminology of [25] we call a hyperfield a set of interactions
such that all spins but one, σi , appear an even number of
times. Since the plaquettes of Hextra are all represented by
triplets of spins placed at the corners of equilateral triangles
of side 3, each of them contributes a hyperfield σi in the
high-temperature expansion, and this hyperfield becomes a
hyperloop of weight [tanh(β)]6 tanh(J1β) when multiplied for
the corresponding spin σi appearing in the definition of the
magnetization. Then, by taking also the approximation Z ∼
2N [cosh(β)]N+ML (which is exact in the case of long-range
plaquettes; see Sec. II A), we have the result of the last line in
Eq. (19).

Our numerical study showed that for the smaller value
of the coupling constant J1 = 1/5, a number ML = 0.1N

of additional plaquettes, and the same annealing protocol
already mentioned above in this section, at all the temperatures
studied the system does not decay to the ordered ground state;
see Fig. 4. In the inset of Fig. 4 is shown the behavior of
the magnetization, which in the paramagnetic phase is well
reproduced by the high-temperature expansion. The model
with randomly chosen plaquettes on a regular sublattice seems
therefore a good one to reproduce the standard scenario of
realistic glass formers: a first-order phase transition to an
ordered ground state plus a long-lived supercooled liquid
phase. A system where a similar behavior is found is the
coupled two-level system (CTLS) model [29,30]. The CTLS
is a nondisordered plaquette model which presents, as our
TPM with additional plaquettes, a first-order transition to
an ordered ground state and a metastable supercooled liquid
phase. To summarize, we can say that even when is not
possible to argue about the existence of a thermodynamic glass
transition, the addition of short-range plaquettes to the TPM
induces a first-order phase transition and the formation of a
robust supercooled liquid phase. We can therefore argue that
even with short-range interactions the presence of a nontrivial
thermodynamics is controlled by the ratio α = M/N between
the number of plaquettes and the number of spins. In plaquette
models with short-range interactions the glass-forming ability
is then a matter of competition between two time scales:
the time scale to nucleate the the crystal and the relaxation
time of the supercooled liquid. For a detailed discussion on
how a stable supercooled liquid phase can be obtained by
appropriately tuning the cooling rate procedure let us refer the
reader to [24,29,30].

III. RANDOM-DILUTED TPM: PHASE DIAGRAM AT T = 0

The analysis of the present section is based on the deep
connection between the thermodynamics of plaquette models
and the properties of solutions of the XOR-SAT problem. The
latter is a constraint satisfaction problem which has been very
successfully described within the landscape scenario of the
ideal glass transition [21]. The relation between the TPM and
the XOR-SAT comes from the fact that the ground states of
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a TPM can be obtained as the solutions of a XOR-SAT. By
assuming the change of variables σi = (−1)ni , a ground state
of the TPM can be always written as the solution of the system
of linear equations:⎛

⎝∑
i∈∂p

ni

⎞
⎠

mod2

= 0, ∀p, (20)

where with the notation i ∈ ∂p we indicate the spins in the
plaquette p. The ground states of the TPM are represented by
all the solutions of the system in Eq. (20), which is made
of M linear equations, the plaquettes, in N variables, the
spins. The topology of the interaction network is specified
by the equations of the linear system. For instance, in the
triangular 2D lattice of the TPM each spin ni appears in
three equations and in each equation it is coupled to the
two other spins belonging to the same plaquette. When the
network formed by spins and plaquettes corresponds to a
random hyper-graph [which is a locally treelike network with
loops of order ln(N )] it is known that the properties of
the solutions of the XOR-SAT are fully determined by the
parameter α = M/N [21]. For a TPM on the random graph,
even with nondisordered interactions [23], two transitions are
found varying α, respectively at αd and αunsat. When α < αd

the system of equations in Eq. (20) is solvable and it happens
that a few spins flips are sufficient to go from one solution
to another; the set of solutions forms a unique cluster. On
the contrary, when αd < α < αunsat the set of solutions splits
in clusters separated by extensive barriers; it is necessary to
flip an extensive number of spins to pass from one cluster to
the other. Finally, when α > αunsat the system in Eq. (20) is
no longer solvable: at αunsat the SAT/UNSAT transition takes
place. With respect to any random update algorithm designed
to move across the phase space of variables {ni}i=1,...,N , the
SAT/UNSAT transition represents an ideal glass transition.
The nonsatisfiable phase of the XOR-SAT coincides with
the glass phase of the related TPM: as a consequence, when
α > αunsat the TPM (on random graph) is in the glass phase
at T = 0, which means that it has an ideal glass transition at
T > 0.

A. Leaf-removal algorithm and T = 0 phase diagram

The “leaf-removal” algorithm is a decimation scheme used
to study the satisfiability of the XOR-SAT model on random
regular graphs [21]. We discuss here how this algorithm can be
used to investigate the properties of our random-diluted TPM.
A “leaf” is every spin which appears in only one plaquette (i.e.,
every variable appearing in a single equation of the XOR-SAT
problem); “leaf removal” is a prescription to remove iteratively
from the graph all the spins which are (or become) leaves.
The procedure is iterative because after the removal of each
leaf new leaves may appear in the system. When α < αd

leaf removal is able to remove all the spins from the graph,
while for α > αd the algorithm stops leaving the so called
“core,” i.e., a set of spins among which no one is a leaf. The
clustering of solutions of the XOR-SAT at αd corresponds to
the formation of the core. The SAT/UNSAT transition takes
place when the number of equations (plaquettes) in the core,
Mc, becomes larger than the number of variables left on it,

Nc. The critical value αunsat can be determined by studying the
ratio Mc/Nc = αc in the core, and corresponds to αc = 1. On a
random regular graph the dependence of Mc and Nc on α can be
determined analytically in the thermodynamic limit [21]. The
leaf-removal algorithm can be used to study the formation of
the core and the behavior of αc on the core for a XOR-SAT on
every kind of topology. Nevertheless, only for random graphs
is it proven that the formation of the core corresponds to the
clustering transition and the value αc = 1 to the SAT/UNSAT
transition [21]. On finite-dimensional topologies a proof of
this correspondence is still lacking. This notwithstanding, we
studied numerically the action of the leaf removal on our
random-diluted TPM, proposing a “tentative” phase diagram.
We compare this numerical phase diagram with that obtained
by analytically solving leaf removal for the representation of
our random-diluted TPM on the random graph; in this case
the leaf-removal analysis yields exactly the thermodynamic
properties of the system [21]. Let us stress that by running
the leaf-removal algorithm in a finite-dimensional geometry,
we may find both a critical value α∗ for the formation of the
core and a critical value α∗∗ where Mc/Nc = 1, but there is
no proof that they correspond respectively to the clustering
and UNSAT transition. This is the reason why the phase
diagram of Fig. 5 is just tentative. The conjecture that even
in finite dimensions at α∗∗ the UNSAT transition really takes
place, namely α∗∗ = αunsat, is supported within our analysis
just by the agreement that we find between the numerical
finite-dimensional and exact mean-field predictions on the
phase diagram.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α L

αs

(a)

SAT

UNSAT

TPM

10-3

10-2

10-3 10-2

α L

1-αs

(c)

10-3

10-2

10-3 10-2

α L
(N

)

1/N1/2

(b)

FIG. 5. Panel (a): T = 0 phase diagram of the random-diluted
TPM [see Eq. (23)]. Symbols represent numerical data obtained
running the leaf-removal algorithm on finite-dimensional geometries,
lines the results of analytical calculation on the Bethe lattice. Circles
(blue) and the dotted line represent the critical line for the formation of
the core, squares (red) and the continuous line are the critical line for
the SAT/UNSAT transition. Panel (b): Diamonds, numerical estimate
in finite dimensions of the critical value αL for the SAT/UNSAT
transition as function of

√
N , with N the size of the system, at

fixed αs = 1; dotted line, linear fit of data. Panel (c): Zoom of
the SAT/UNSAT transition line close to the point (αs = 1,αL = 0).
Triangles, analytic result on the random graph; squares, numerical
data for a system with N = 106 spins; dotted line, linear fit of analytic
prediction.
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Until now we have discussed a single parameter α, but for
the random-diluted TPM and its representation on the random
graph we need two: αs , which represents the concentrations
of plaquettes in the 2D lattice, and αL, which represents the
concentration of long-range plaquettes. The random-diluted
TPM corresponds in practice to a random-graph structure,
parametrized by αL, built on the top of a diluted two-
dimensional network, characterized by a dilution parameter
αs . The probability that a spin is attached to � short-range
plaquettes depends on αs and is

ρ�(αs) =
(

3

�

)
α�

s (1 − αs)
3−�, (21)

while the probability that a spin is attached to � long-range
plaquettes depends on αL and reads

p�(αL) = e−3αL
(3αL)�

�!
. (22)

The probability that a spin is attached to overall � plaquettes
is

n� = N−1
�0∑

r=0

ρr (αs)p�−r (αL), (23)

with

N =
∞∑

�=0

�0∑
r=0

ρr (αs)p�−r (αL)

= 1 −
3∑

r=0

3∑
k=r

ρr (αs)pk−r (αL) +
3∑

k=0

k∑
r=0

ρr (αs)pk−r (αL),

(24)

where �0 = min{�,3}. When the random-diluted TPM is repre-
sented on the random graph the small-world topology, i.e., the
two-dimensional lattice plus a few long-range connections,
is lost. The only ingredient of the original model which
is kept is the presence of two kinds of plaquettes, each
characterized by a different probability for the connectivity
with the spins. For the representation on the random graph
the adjectives “short-range” and “long-range” are therefore
only conventional: the former denotes the plaquettes attached
to spins with the probability of Eq. (21), the latter plaquettes
attached to spins with the probability of Eq. (22).

Figure 5 shows the phase diagram of the random-diluted
TPM obtained by running the leaf-removal algorithm in finite
dimensions and that obtained by solving the corresponding
equations (see Appendix B) in the mean-field (random-graph)
approximation. In both cases we determine a “critical” line
(αcore

s ,αcore
L ) for the formation of the core (clustering transition

on the random graph) and a critical line (αunsat
s ,αunsat

L ) from the
condition Mc/Nc = 1 (UNSAT transition on random graph).
First of all, let us note the agreement between numerical and
analytical predictions on the location of the line (αunsat

s ,αunsat
L )

in Fig. 5. Since with αs = 0 the random-diluted TPM is
perfectly equivalent to the XOR-SAT [21], for αs = 0 we
recover the random-graph result αunsat

L = 0.918 [21]. By
looking at the left part of the phase diagram in Fig. 5 we are
indeed not surprised that for αL ∼ 1 and αs � 1 the analytic
predictions on the random graph are in agreement with the

numerical analysis in finite dimensions: the random-diluted
TPM is almost a random graph for these values of the
parameters. What is more surprising is to find an agreement
between the numerical and the analytical estimate of
(αunsat

s ,αunsat
L ) in the bottom right part of the phase diagram in

Fig. 5, where αL � 1 and αs ∼ 1. In this region the random-
diluted TPM is almost a two-dimensional model, while the
analytical predictions are given for a random-graph geometry.
It really appears that as soon as a few long-range interactions
are added to the TPM its physics becomes immediately well
represented by the random graph. If the true thermodynamics
of the random-diluted TPM could be predicted on the basis of
the analytic results of Fig. 5, we would say that as soon as any
finite concentration αL of random plaquettes is added to the
TPM the model develops a finite-temperature glass transition.
We do not still have a proof of that; therefore by now this
is just a conjecture supported by the agreement between
numerics and analytics on the location of the (αunsat

s ,αunsat
L )

line. The small panels of Fig. 5 illustrate the finite-size scaling
analysis needed to assess the agreement of analytical and
numerical predictions on the behavior of the (αunsat

s ,αunsat
L )

transition line close to the point (αs = 1,αL = 0).
Concerning the analytical and numerical data on the

location of the (αcore
s ,αcore

L ) line in the bottom right part of
the phase diagram of Fig. 5 we find a certain disagreement:
two main comments on this are in order. First, it is well
known that the clustering transition which takes place at αd

on the random graph, and which corresponds to dynamical
ergodicity breaking, is a purely mean-field phenomenon which
turns into a crossover in finite dimensions. From this point
of view we are not concerned about the disagreement found
between the analytical (mean-field) and numerical (finite-
dimensional) results on the position of the line (αcore

s ,αcore
L ).

On the other hand, the numerical results on the location of the
line (αcore

s ,αcore
L ) are per se interesting and represent a useful

source of information on the model, as will be discussed in the
next section, Sec. III B.

B. Leaf removal and exact calculation of Z
The numerical estimate of the position of the line

(αcore
s ,αcore

L ) in the phase diagram of Fig. 5 is quite interesting
even in the case of a finite-dimensional geometry. In this
case the line (αcore

s ,αcore
L ) is the upper boundary of the region

where the partition function of the random-diluted TPM can
be exactly calculated and has the expression

Z = 2N [cosh(β)]Ms+ML = (2[cosh(β)]αs+αL )N. (25)

The exact explanation of why leaf removal allows us to
check whether or not the partition function can be exactly
summed, yielding the expression in Eq. (25), can be found in
Appendix C. The behavior of the (αcore

s ,αcore
L ) line (numerical

data) close to the point (αs = 1,αL = 0) in the phase diagram
of Fig. 5, which correspond also to the data in the main
panel of Fig. 6, shows that, among all the two-dimensional
models belonging to the line (αs,0), the only one such that any
concentration αL > 0 of long-range plaquettes is “critical” is
the original TPM. As “critical” we mean that the possibility
to exactly compute Z according to the expression in Eq. (25)
is spoiled as soon as any finite concentration of long-range
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FIG. 6. Panel (a): Circles are the critical values (αs,αL) for the
formation of the core extrapolated in the thermodynamic limit from
numerical data at finite N . The continuous line represents a quadratic
fit of data y = ax2, with prefactor a = 0.877; see also Eq. (26) in
Sec. III B. Panel (b): Critical values αL(N ) for core formation as a
function of the size N of the system for different values of αs (different
symbols), from top to bottom: αs = 0.93,0.95,0.97,0.98,0.99. Panel
(c): Concentration of spins in the core as a function of αL for a fixed
value of αs = 0.8, with N = 10242.

plaquettes, αL > 0, is introduced. In order to make ourselves
really sure about that we need to know the behavior of the
system in the thermodynamic limit. In the top right panel of
Fig. 6 is presented the study of finite-size effects, while in
the main panel of Fig. 6 appears the resulting estimate for
some points of the line (αcore

s ,αcore
L ). These point can be well

interpolated with a parabola:

αcore
L + O(N−1/2) ∼ (

1 − αcore
s

)2
. (26)

The parabolic fit of the data in the main panel of Fig. 6
represents the main evidence that the only model on the
line (αs,αL = 0) such that the addition of extra plaquettes
is critical is the TPM model. To conclude this section let
us notice that also in an almost finite-dimensional geometry,
αs = 0.8 and αL ∼ 1, we find that the formation of the core is
a discontinuous process, see panel (c) of Fig. 6, as is usually
found for random geometries. This result supports the view
that the physical properties of the random-diluted TPM can be
well represented even on a random graph. Our finding that the
formation of the core happens discontinuously upon changing
αL also in finite dimensions is intriguing: it is not the first
time that a similar discontinuous transition has been observed
in finite dimensions [32–36]. The spiral model of [33,34],
which is a KCM, is the example of a finite-dimensional system
where a dynamical transition really takes place and is due to
the formation in the system of an infinite compact cluster of
“frozen” (i.e., not allowed to move due to the kinetic constraint)
spins. A cluster of spins which cannot flip due to a kinetic
constraint is not exactly reducible to the leaf-removal “core”
of our random-diluted TPM. Yet, if the mean-field scenario
is predictive also for the behavior in finite dimensions, the
formation of the core should take place when, in order to move
in phase space, we need to flip an extensive number of spins,
which we may very roughly think about as a “frozen cluster.”

IV. RANDOM-DILUTED TPM ON RANDOM GRAPH:
PHASE DIAGRAM AT T > 0

In this section we present results on the finite-temperature
phase diagram of the random-diluted TPM model on the
random regular graph (Bethe lattice), where the temperature
TK of the ideal glass transition can be computed exactly.

According to the presence of both long- and short-range
plaquettes in the random-diluted TPM, the cavity equations
(Appendix D) for its representation on the random graph
are written by means of two different cavity fields, as is
usually done for small-world networks [31]. The field uα→i

determines the probability distribution p(σi) ∼ euα→i σi when
all the plaquettes attached to σi but α are removed, and
α is a long-range plaquette. The field vα→i determines the
probability distribution p(σi) ∼ evα→i σi when all the plaquettes
attached to σi but α are removed, and α is a short-range
plaquette. The cavity equations, written and discussed in
Appendix D, allow us to find the equilibrium values of the
fields u and v, from which all the thermodynamic potentials
can be calculated (formulas are in Appendix D). For fixed
values of αs and αL, the glass transition temperature TK is
obtained as the temperature where the configurational entropy

 vanishes. In Fig. 7 is represented the phase diagram of the
random-diluted TPM in the plane (αL,T ) for two values of the
short-range plaquette concentration: αs = 1 and αs = 0.96.
While for αs = 1 the glass transition temperature vanishes
when also the concentration αL of long-range plaquettes
vanishes, when αs = 0.96 we find that TK vanishes at a
finite value of the additional plaquette concentration, αmin

L > 0;
when αL belongs to the interval [0,αmin

L ] the system is liquid
at all the temperatures. By definition, the finite-temperature
phase diagram of the random-diluted TPM on the Bethe lattice
must agree with the analytical solution of the leaf-removal
algorithm, which is also obtained on the random graph. From
the leaf-removal analysis of Sec. III we already know that for
all the concentrations of short-range plaquettes αs < 1 there
is always a value αmin

L > 0 such that for concentrations of
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FIG. 7. Phase diagram of the random-diluted TPM model on the
Bethe lattice in the (αL,T ) plane for two different values of dilution
αs : circles (red), αs = 1; squares (blue), αs = 0.96; continuous lines,
fits of the data with the function αL(T ) = C1 exp(−C2/T ) + αL(0),
where C1 and C2 are fit parameters.
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long-range plaquettes αL < αmin
L the system is liquid at all

temperatures. This happens because, as we discussed in Sec. III
(see also Fig. 5), the only value of αs such that the related
XOR-SAT problem becomes UNSAT (glass phase) for every
αL > 0 is just αs = 1. Let us note that the phase diagram of our
model in the plane (αL,T ), i.e., for a fixed concentration αs of
short-range plaquettes (see Fig. 7), has a remarkable similarity
to the phase diagram in the plane (ε,T ) of [19], where ε is an
external field coupling different replicas of a TPM. According
to [19] the critical line TK (ε) approaches the origin with infinite
slope [19], TK ∼ [ln(ε)]−1; we are going to show that the same
happens in our case to TK (αL), when the concentration αL of
long-range plaquettes is sent to zero. We want to emphasize
that αL plays a role analogous to ε. The argument for the behav-
ior of TK (αL) in our system is rather simple and is exact on the
random graph. From [21] we know that in the UNSAT phase
the ground states of a TPM on a random graph have extensive
energy. The energy of the system is by definition the sum over
plaquette energies, so that when a ground state has extensive
energy it means that there is an extensive amount of excited
plaquettes in it. To have ground states with extensive energy
is equivalent to having a minimum value, εmin, for the energy
per plaquette. In the TPM the concentration of defects at low
temperatures behaves as c ∼ e−2β and we can assume that in
the presence of a small number of extra plaquettes this depen-
dence is roughly the same, say c ∼ e−a2β with a ∼ 1. Since the
existence of a minimum value εmin is equivalent to a minimum
concentration of excited plaquettes, also a minimum cmin is
fixed. From the constraint of a minimum allowed concentration
of excited plaquettes we can define a critical temperature TK as
cmin = e−a2/TK . Clearly the minimum value of the energy per
plaquette and the minimum concentration of excited plaquettes
must be proportional cmin ∼ εmin. By looking at the behavior
of the energy in the ground states as a function of α presented
in [21], it is reasonable to assume also for our random-diluted
TPM on random graph that we have εmin ∼ αb

L, with b ∼ 1.
Putting together all the information collected above we can
conclude that αb

L = e−a2/TK , which in turn implies

TK = −a

b

2

ln(αL)
. (27)

Equation (27) allows us a good fit of the data in Fig. 7 and
accounts for the infinite slope of the curve TK (αL) approaching
αL = 0. This infinite slope is signaling that around αL = 0
the random-diluted TPM is sensitive to arbitrarily small
perturbations, which induce the formation of the glass phase.
The same happens for the original two-dimensional triangular
plaquette model in the presence of an external field ε coupling
replicas [19].

V. CONCLUSIONS

In this paper we studied the thermodynamic properties of
the triangular plaquette model in the presence of additional pla-
quettes; namely we looked to what happens when α = M/N >

1, where M is the number of plaquettes and N the number
of spins. We have demonstrated that in the small-world lattice
obtained by adding long-range plaquettes to the TPM the high-
temperature expansion of the free energy, which can be com-
puted in the annealed approximation, has an entropic crisis. In

the same model we find the numerical evidence of a first-order
transition to a an ordered phase at Tm, with a remarkably stable
supercooled liquid phase at lower temperatures. The same
phenomenology is found also when the additional interactions
are short range, although in this case there are corrections to
the high-temperature expansion which very likely prevent the
entropy crisis. Since the presence of an ideal glass transition
is more likely when the entropy crisis takes place, we studied
in more detail in the rest of the paper the model with long-
range additional plaquettes, i.e., the random-diluted TPM. Our
deepest investigation of the thermodynamic properties of the
random-diluted TPM was carried on by means of the leaf-
removal algorithm, usually applied to constraint satisfaction
problems [21]. The advantage of leaf removal is that it allows
us to infer the thermodynamic properties of the model just an-
alyzing the interaction network. The drawback is that the cor-
respondence between the properties of the interaction network
and the thermodynamics is exact only for random geometries.
By means of the leaf-removal algorithm we obtained a tentative
phase diagram in the space of parameters (αs,αL), where αs

is the concentration of plaquettes in the 2D triangular lattice
while αL is the concentration of “long-range” plaquettes. Such
a phase diagram suggests that among the 2D plaquette models
with different dilutions αs the original TPM [15] (αs = 1) is the
only one where the addition of any concentration of long-range
plaquettes makes the thermodynamic nontrivial. That is why
we say that the TPM is stochastically unstable: arbitrarily
small perturbations of the Hamiltonian have dramatic effects
on the thermodynamic properties of the model. Moreover, our
results suggest that even in finite dimensions the parameter that
controls this stochastic instability is the ratio α between the
number of plaquettes and the number of spins. These consider-
ations are also compatible with the results of [19,20]. In [19,20]
is shown how the TPM supports both dynamic and thermody-
namic phase transition under the influence of arbitrarily small
external fields. We find remarkable the similarity between the
behavior of the glass transition temperature TK as function of
αL in our random-diluted TPM (on the random graph) and as
function of ε in [19]: in both situations an infinitesimal amount
of perturbation lifts the critical temperature TK to finite values.
We can conclude by saying that further investigations on the
stochastic stability of the TPM are mandatory.
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APPENDIX A: HIGH-TEMPERATURE EXPANSION
WITH ADDITIONAL PLAQUETTES

1. Random choice of spins in the new plaquettes:
Random-diluted TPM

(a) Triviality of the high-temperature expansion

In order to say that the high-temperature expansion of
Eq. (6) in Sec. II A is trivial we need to show that

lim
N→∞

(
ML

m

)
〈τ1 . . . τm〉TPM = 0, ∀m. (A1)
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Let us recall that the correlation function in Eq. (A1) is the
multispin correlation function 〈σ1 . . . σ3m〉TPM , where the 3m

spins are randomly chosen with uniform probability on the
2D lattice. The multispin correlation function 〈σ1 . . . σ3m〉TPM

is different from zero only when it is possible to find plaquettes
in the TPM such that a set of one or more hyperloops can be
formed which include all the 3m spins. Since in the TPM
we know that both the magnetization 〈σi〉TPM = 0 and the
two-spin correlation function 〈σiσj 〉TPM = 0 are zero, each of
the hyperloops contains necessarily at least three spins. At
the same time, since the 3m spins are chosen with uniform
probability on the lattice, the typical distance between any
two of them is O(

√
N ). This in turn means that the typical

distance between any two spins which belong to the same
hyperloop is also O(

√
N ). Then, due to the fact that we

consider the thermodynamic limit at fixed m, any hyperloop
which contains the 3m spins of the the additional plaquettes
contains also an infinite number of plaquettes of the TPM
model. More precisely, since the hyperloop connects spins at
a distance O(

√
N ), the number of plaquettes of the TPM in

the hyperloop is O(NdH/2), where dH is the fractal dimension
of the Sierpinski gasket in D = 2. One then has that the value
of the correlation function between 3m spins chosen with
uniform probability on the lattice is dominated at large N

by the weight of the hyperloop which connects all the spins:
〈τ1 . . . τm〉TPM ∼ [tanh(β)]N

dH/2
. We can therefore conclude by

noticing that for every m one has

lim
N→∞

(
ML

m

)
〈τ1 . . . τm〉TPM ∼ Nm[tanh(β)]N

dH/2 = 0. (A2)

(b) Estimate of Z2

Making use of the argument discussed in Appendix A 1 a, we
show here that the partition function of the modified TPM of

Sec. II A is self-averaging, namely that we have Z2 = Z2. Let
us first write the expression of the high-temperature series of
Z2 in a convenient way and then take the average over the
disorder. We have that, for a given instance of the disorder, Z2

reads as

Z2 =
∑
σ ,s

e−βHTPM[σ ]−βHTPM[s]+β
∑ML

r=1 σi(r)σj (r)σk(r)+si(r)sj (r)sk(r)

= 22N [cosh(β)]2ML+2N

〈∏
r

{1 + tanh(β)[σi(r)σj (r)σk(r)

+si(r)sj (r)sk(r)] + tanh(β)2

× [σi(r)σj (r)σk(r)si(r)sj (r)sk(r)]}
〉

σ ,s

(A3)

where we have introduced the average:

〈 〉σ ,s = Z−2
TPM

∑
σ ,s

e−β(HTPM[σ ]+HTPM[s]). (A4)

It is then useful for what follows to define also

〈 〉σ = Z−1
TPM

∑
σ

e−βHTPM[σ ],

〈 〉s = Z−1
TPM

∑
s

e−βHTPM[s]. (A5)

Now, in order to lighten the notation, it is worthwhile to use the
plaquette variables τr = σi(r)σj (r)σk(r) and tr = si(r)sj (r)sk(r)

and use the symbol gr to represent the polynomial expression
in Eq. (A3) corresponding to the plaquette r ,

gr = tanh(β)[τr + tr ] + tanh(β)2τrσr , (A6)

so that we can write the high-temperature series of Z2 as

22N [cosh(β)]2ML+2N

(
1 +

∑
r

〈gr〉+
∑
r,p

〈grgp〉+ · · ·
)

. (A7)

The average of the expression in Eq. (A7) over the disorder,
which is represented by all the possible ways to choose the
spins in each of the random plaquettes, is particularly simple
and yields

Z2 = 22N [cosh(β)]2ML

[
1 +

ML∑
m=1

(
ML

m

)
〈g1 . . . gm〉σ ,s

]
(A8)

so that, since in the limit N → ∞ at fixed m we can write
(ML

m ) ∼ Mm
L = (αLN )m, we have

22N [cosh(β)]2ML � lim
N→∞

Z2 � 22N [cosh(β)]2ML

×
(

1 +
αLN∑
m=1

(αN )m〈g1 . . . gm〉σ ,s

)
. (A9)

The multiplaquette correlations in Eq. (A9) read in turn

〈g1 . . . gm〉=
m∑

k=0

(
m

k

)〈m−k∏
i=1

[τi +ti]
m∏

j=m−k+1

tj τj

〉
σ ,s

. (A10)

In Eq. (A10) the lowest degree correlations are those obtained
taking the index k = 0; namely they are of the kind 〈τ1 . . . τm〉σ
or 〈τ1 . . . τm−k〉σ 〈tm−k+1 . . . tm〉s. The terms on the right-hand
side of Eq. (A10) where a single correlation function appears
are vanishing in the thermodynamic limit due to the same
argument of Appendix A 1 a. With the same kind of arguments
one can show that even the terms 〈τ1 . . . τm〉σ 〈t1 . . . tm〉s decay
to zero in the thermodynamic limit fast enough to compensate
the combinatorial prefactors, yielding finally the desired result

lim
N→∞

(αN )m〈g1 . . . gm〉σ ,s = 0. (A11)

From Eq. (A9) and Eq. (A11) follows finally

Z2 = Z2 = 22N [cosh(β)]2ML+2N. (A12)

2. Additional plaquettes on a regular sublattice:
Smallest hyperloop via simulated annealing

In Sec. II B of the paper we mentioned a simulated
annealing method to find the smallest hyperloop in the high-
temperature expansion of Eq. (4). In order to discuss this
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method let us first rewrite the partition function as

Z =
∑
{σ }

exp

[
β
∑

p

σipσjp
σkp

]

= [cosh(β)]N
∑

σ1,...,σN

∏
p

[
1 + tanh(β)σipσjp

σkp

]

= [cosh(β)]N
∑

σ1,...,σN

∏
p

∑
np=0,1

[
tanh(β)σipσjp

σkp

]np
,

(A13)

where the index p runs over all the plaquettes of the system,
both the plaquettes of the original TPM and the additional
plaquettes of the auxiliary sublattice introduced in Sec. II B.
In the last line of Eq. (A13) it is convenient to explicitly write
the product over the spins:

Z = [cosh(β)]N
∑

σ1,...,σN

∑
{n}

{∏
p

[tanh(β)]np

×
∏

i

σ
(
∑

p∈∂i np)mod2

i

}

= [cosh(β)]N
∑
{n}

{∏
p

[tanh(β)]np

×
∏

i

[
1 + (−1)(

∑
p∈∂i np)mod2

]}
, (A14)

where now the index p labels the plaquettes around a given
spin, p ∈ ∂i. The sum over variables {ni}i=1,...,M appearing in
the last lines of Eq. (A14) represents the sum over all possible
collections of plaquettes, either forming or not a hyperloop.
Within a certain collection of plaquettes the one labeled with
p is present when np = 1 and absent when np = 0. Let us
stress that each collection of plaquettes which does not form
a hyperloop, i.e., an assignment of the variables np such
that, at least for one i, we have (

∑
p∈∂i np)mod2 = 1, does

not contribute to the sum in Eq. (A14). That is why, in order
to seek nontrivial terms of Z , we need to find hyperloops. A
hyperloop correspond therefore to a choice of {np} such that
for each spin we have⎛

⎝∑
p∈∂i

np

⎞
⎠

mod2

= 0. (A15)

Therefore, in order to find hyperloops, one can look for the
ground states of the dual model defined by the following energy
function:

Hdual(N ) =
N∑

i=1

∑
p∈∂i

np. (A16)

The simulated annealing method comes at this stage as the
most natural one to seek for the ground states of the Hamilto-
nian in Eq. (A16). One introduces an effective inverse tempera-
ture parameter βeff = T −1

eff and then samples configurations ac-
cording to the Boltzmann measure exp[−βeffHdual(N )], while
slowly decreasing Teff , until a configuration with E = 0 is

found. In order to find the smallest hyperloop we have realized
this simulated annealing search varying the size N of a TPM
with an auxiliary sublattice made of side 3 triangles and with
open boundary conditions. Varying N we considered always
lattices with a side that was a multiple of the incommensurate
sublattice cell side; namely we considered triangular lattices
of rhomboidal shape and side L = 6,9,12, . . . . The result of
our study is that the smallest hyperloop appears in a lattice
of side L = 12 made of L2 plaquettes of the TPM and 42

plaquettes of the additional sublattice. Such a hyperloop, which
is represented in Fig. 3, is made by 54 plaquettes of the TPM
model and 10 plaquettes of the additional sublattice.

APPENDIX B: LEAF-REMOVAL EXACT SOLUTION FOR
THE RANDOM-DILUTED TPM ON A RANDOM GRAPH

For a random regular graph the action of the “leaf-
removal” algorithm is represented in the thermodynamic
limit by an infinite set of differential equations [21] for the
connectivities of spins, n�(t), where t is the reduced time
t = n/N , with N the total number of spins in the system
and n the number of iterations of the leaf-removal algorithm.
Because the maximum possible value taken by n is N the
reduced time is in the interval [0,1]. Our random-diluted TPM
differs from the XOR-SAT because for the latter the initial
connectivity n�(0) is Poissonian, while in our case it is the
mixed Poissonian/binomial distribution of Eq. (23) in Sec. III
of the main text. The probability distribution in Eq. (23) is
the only ingredient of the original random-diluted TPM left
when the model is studied on the random regular graph. While
the behavior of n�(t ; αs,αL) can be studied analytically on the
random graph, for the original RD-TPM model this can be
studied only numerically. The differential equations for the
evolution of the connectivity under leaf removal are

ṅ�(t) = −δ�1 + δ�0 + 2

3(αs + αL − t)

× [(� + 1)n�+1(t) − �n�(t)], (B1)

where b(t) = [1 − t/(αs + αL)]1/3. The general solution for
� � 2 is

n�(t) = b2�(t)
∞∑

k=0

n�+k(0)
k∏

ρ=0

(� + ρ)
k∑

r=0

[−b2(t)]r

r!

1

(k − r)!
.

(B2)

By assuming the distribution in Eq. (23) as initial condition
n�+k(0) and plugging it into Eq. (B2) one finds for � � 2

n�(t) = [3αLb2(t)]�

�!

e−3αLb2(t)

N

3∑
r=0

Cr,�Br (g(t)), (B3)

where Br (x) is the Bell polynomial of order r in the variable
x,g(t) = 3αL[1 − b2(t)] and the coefficients Cr,� are

C0,� = ρ0 + �
ρ1

3αL

+ �(�−1)
ρ2

(3αL)2
+ �(�−1)(�−2)

ρ3

(3αL)3
,

C1,� = ρ1

3αL

+ (2� − 1)
ρ2

(3αL)2
+ (3�2 − 6� + 2)

ρ3

(3αL)3
,
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C2,� = ρ2

(3αL)2
+ 3(� − 1)

ρ3

(3αL)3
,

C3,� = ρ3

(3αL)3
. (B4)

The probability that a certain spin is a leaf at the iteration
t,n1(t), is then

n1(t) = b2(t)

[
n1(0) +

∫ t

0
ds

(
4n2(s)

3(αs + αL − s)
− 1

)
1

b2(s)

]
.

(B5)

When the probability to find a leaf vanishes before all the spins
are eliminated, i.e., when n1(t) = 0 with t < 1, the system has
a finite core. On the contrary when n1(t) = 0 only at t = 0
there is no core. Studying the behavior of n1(t) at different
values of αs and αL it is then possible to locate in the parameter
space the line (αcore

s ,αcore
L ). In order to find the SAT/UNSAT

transition one needs then to calculate the number of spins and
plaquettes in the core, when it is present. The concentration of
spins in the core reads

nc(t) =
∞∑

�=2

n�(t), (B6)

and by plugging the definition of n�(t) from Eq. (B2) into
Eq. (B6) one gets

nc(t) = e−g(t)

N

[
−K0(t) +

3∑
r=0

Kr (t)[−g(t) + eg(t)Br (g(t))]

]
,

(B7)

where we have defined g(t) = 3αLb2(t) and the coefficients
Kr (t) read as

K0(t) = ρ0 + f (t)

[
ρ1

3αL

− ρ2

(3αL)2
+ 2

ρ3

(3αL)3

]

+ [f (t) + f 2(t)]

[
ρ2

(3αL)2
− 3

ρ3

(3αL)3

]

+ [f (t) + 3f 2(t) + f 3(t)]
ρ3

(3αL)3
,

K1(t) = ρ1

3αL

− ρ2

(3αL)2
+ 2

ρ3

(3αL)3

+ 2f (t)

[
ρ2

(3αL)2
− 3

ρ3

(3αL)3

]

+ [f (t) + f 2(t)]3
ρ3

(3αL)3
,

K2(t) =
[

ρ2

(3αL)2
− 3

ρ3

(3αL)3

]
+ 3

ρ3

(3αL)3
f (t),

K3(t) = ρ3

(3αL)3
. (B8)

The number of plaquettes left in the system at time t in the leaf-
removal algorithm is then simply provided by mc(t) = αs +
αL − t . For each point (αs,αL) in the parameter space one must
look for the time t∗ at which the leaf-removal algorithm stops
and then, if nc(t∗) > 0, consider the ratio γ = mc(t∗)/nc(t∗);
the static transition line is identified by γ = 1.

APPENDIX C: LEAF REMOVAL AND PARTIAL TRACES

Let us justify here some of the arguments in Sec. III B of
the main text. We briefly explain why in the case when leaf
removal eliminates all the spins from the interaction network
then also the partition function can be summed by means of
partial traces without giving rise to any close diagram; this
is the case when Z has the simple expression in Eq. (25)
of Sec. III B of the main text. The method of partial traces
consists of summing the partition function starting from the
open boundaries of the lattice. The necessary condition for
this method to work is that each step there is at least one spin
belonging to a single plaquette. Let us explain how the iterative
summation algorithm works:

(1) Look for a spin which appears in a single plaquette, say
σ0.

(2) Sum over values of the spin σ0 in the partition function:

Z =
∑

σ0,...,σN

exp

⎛
⎝β

Ms+ML∑
μ=1

σi(μ)σj (μ)σk(μ)

⎞
⎠

= cosh(β)
∑
σ0,...

[1 + σ0(ν)σ1(ν)σ2(ν) tanh(β)]

× exp

⎛
⎝β

Ms+ML∑
μ �=ν

σi(μ)σj (μ)σk(μ)

⎞
⎠

= 2 cosh(β)
∑

σ1,...,σN

exp

⎛
⎝β

Ms+ML∑
μ �=ν

σi(μ)σj (μ)σk(μ)

⎞
⎠. (C1)

(3) Check whether either σ1(ν) or σ2(ν) in Eq. (C1), or both,
are again participating in a single interaction γ �= ν after the re-
moval of ν by summation. If for instance σ1(ν) is appearing only
in σ1(ν)σj (γ )σk(γ ), go back to point 2. If both σ1(ν) and σ2(ν) are
participating in more than one interaction, go back to point 1.

(4) If and only if the above recursion can be iterated
summing over all the spins of the system the partition function
is the one of Eq. (25).

From the description of the method of partial traces, it is
clear that it is exactly the iterative scheme of leaf removal.
The situation when leaf removal leaves a finite core is the
situation where a closed diagram arises in Z , so that Z cannot
be simply summed by means of partial traces. It is worthwhile
to recall that in order to use leaf removal or partial traces
one must choose the correct boundary conditions; this is due
to the deterministic nature of these decimation algorithms.
Consider for instance the pure triangular plaquette model
with N spins [16]; the partition function is exactly known
to be Z = 2N [cosh(β)]N . Nevertheless, in the case of periodic
boundary conditions there are no leaves (no spins appearing
in a single plaquette), so that both the leaf-removal algorithm
and the partial-traces iterations cannot be started: it looks like
the whole system is a core of dimension N . On the contrary,
if one considers open boundary conditions, one finds from
partial traces that Z = 2N [cosh(β)]N , apart from corrections
negligible in the thermodynamic limit. Open boundary con-
ditions are therefore the correct choice if one wants to use
this kind of algorithm to study the thermodynamics of the
system. Moreover, in a phase diagram like the one of Fig. 6,
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open and periodic boundary conditions correspond to the
same points, because they differ for a subextensive number of
plaquettes.

APPENDIX D: BELIEF-PROPAGATION EQUATIONS
FOR THE RANDOM-DILUTED TPM

As mentioned in the main text in Sec. IV, in order to
represent the two different kinds of plaquettes in the system, it
is convenient to introduce two different cavity fields, vγ→i and
uγ→i , respectively for the “short” and “long” range plaquettes.
These fields allow one to write the marginal probability
distribution of the spin i when all interactions around it but γ

are removed, with γ representing respectively a short or long
range plaquette:

pv(σi) = eβvγ→i σi

2 cosh(βvγ→i)
, pu(σi) = eβuγ→i σi

2 cosh(βuγ→i)
. (D1)

In order to write in a clear way the belief propagation (BP)
equations, we need to introduce also the couple of cavity fields
ṽi→γ and ũi→γ , which represent the effective field on σi when
only the plaquette γ is removed, respectively when γ is short
and long range. The belief propagation equations for our model
read then

ũj→γ =
nL−1∑

β∈∂j\γ
uβ→j +

ns∑
β∈∂j\γ

vβ→j ,

ṽj→γ =
nL∑

β∈∂j\γ
uβ→j +

ns−1∑
β∈∂j\γ

vβ→j ,

uγ→i = 1

β
tanh−1

⎛
⎝tanh(β)

∏
j∈∂γ \i

tanh(βũj→γ )

⎞
⎠,

vγ→i = 1

β
tanh−1

⎛
⎝tanh(β)

∏
j∈∂γ \i

tanh(βṽj→γ )

⎞
⎠, (D2)

where nL and ns denote respectively the number of long and
short range plaquettes attached to each spin j . Let us enclose
the belief propagation equations in Eq. (D2) in the expression

uγ→i = F({uβ→j }j∈∂γ \i). (D3)

The population dynamics algorithm is realized starting with a
sufficiently large sample of values for each of the two fields u

and v, randomly initialized with flat distribution in the interval
[−1,1]. A random sequential update of the values in the two
arrays is realized according to the BP equations in Eq. (D2).
The numbers of long, nL, and short range plaquettes, ns ,
attached to each spin and necessary for each iteration step
of the algorithm are random variables extracted according to
the distributions of Eq. (22) in the text. As is clear from the first
two lines of Eq. (D2), at each iteration step one also needs the
excess degree distributions pexc and ρexc, defined as follows. If
we already know that the long-range plaquette γ is attached to
the spin σi, pexc is the probability that nL − 1 other long-range
plaquettes are attached to σi . The same is true for the definition
of ρexc when we know that γ is a short-range plaquette. Such
distributions read respectively

pexc(nL−1) = nLp(nL)

〈nL〉 , ρexc(ns − 1) = nsρ(ns)

〈ns〉 . (D4)

On the Bethe lattice our model has both a dynamic phase
transition, at Td , and a thermodynamic transition, at TK .
While the dynamic ergodicity breaking at Td disappears in
interaction networks with finite loops, the ideal glass transition
at TK may survive. The dynamical transition temperature Td

corresponds to the formation of an exponentially large number
of metastable states separated by extensive barriers and such
that the system, when initialized in one of this states, is trapped
within it. In term of the cavity equations this phenomenon can
be recognized by introducing a couple of auxiliary fields uσ=±1

(an vσ=±1) for each type of cavity field (u and v). The cavity
fields uσ represent the value of the field on σ conditioned to the
knowledge of the value taken by this spin, either σ = 1 or σ =
−1. If the populations of uσ=1 and uσ=−1, which are calculated
according to the equations below, Eq. (D5), at equilibrium are
such that the P(u) = P1(u1) = P−1(u−1), where P,P1, and
P−1 are the probability distributions respectively of u,u−1 and
u+1, it means that the system is in the simple paramagnetic
state. On the contrary when the two distributions P1(u1) and
P−1(u−1) become different from the distribution P(u) of the
equilibrium field, it means that the system “remembers” the
initial condition and the effective field around a certain spin
favors the values taken by such spin in the initial condition:
ergodicity is dynamically broken. The equation to recursively
update the distributions Pσ (uσ ) is the following:

Pσ (uσ |u) =
∑

{mL(i),ns (i)}

2∏
i=1

pexc(mL(i))ρ(ns(i))
∫ ⎡

⎣ 2∏
i=1

mL(i)∏
j

ns (i)∏
k

dujdvkP(uj )P(vk)

⎤
⎦δ(u − F({uj ,vk}))

∑
σ1σ2

eβσσ1σ2

Z({uj ,vk})

×
2∏

i=1

mL(i)∏
j

ns (i)∏
k

eβuj σi

2 cosh(βuj )

eβvkσi

2 cosh(βvk)

∫ ⎡
⎣ 2∏

i=1

mL(i)∏
j

duj
σi
Pσi

(uj
σi
|uj )

ns (i)∏
k

dvk
σi
Pσi

(vk
σi
|vk)

⎤
⎦δ

(
uσ−F

({
uj

σi
,vk

σi

}))
,

(D5)

where ns(i) is drawn from ρn in Eq. (22) while mL(i) is drawn from ρexc in Eq. (D4). The same kind of equation holds for
Pσ (vσ |v), just with nL(i) [drawn from pn in Eq. (22)] in place of mL(i) and ms(i) [drawn from pexc in Eq. (D4)] in place of ns(i).

The iteration step of the population dynamics according to Eq. (D5) proceeds as follows:
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(1) Choose an element to update in the population of fields uσ , which is equivalent to saying: choose randomly a spin σ in
the lattice. It is assumed that we are interested in the cavity field on σ that is obtained by removing all the plaquettes but one, say
the plaquette γ . When studying the distribution of uσ we know that γ is a long-range plaquette.

(2) Consider the spins σi which are interacting with σ through the plaquette γ . Extract then the number of long-range,
mL(i) − 1, and short-range, ns(i), plaquettes attached to each of the spins σi .

(3) Compute the cavity field u according to the function F in Eq. (D3) from the cavity fields {uj ,vk}.
(4) Choose the values of spins σi according to equilibrium measure for a given value of σ , namely with probability

p(σ1,σ2|σ ) = eβσσ1σ2

Z({uj ,vk})
∏2

i=1

∏mL(i)
j

∏ns (i)
k

eβuj σi

2 cosh(βuj )
eβvkσi

2 cosh(βvk ) .

(5) For each cavity field uj (vk) consider the attached u
j
σi

(vk
σi

).

(6) From the set of {uj
σi
,vk

σi
} update the field uσ (vσ ) according to F .

Once the population dynamic algorithm is converged and the stationary probability distributions also for the conditioned
cavity fields uσ and vσ are known, one can calculate from it the free energy within a single metastable state according to the
following formula:

fmeta = αL〈fL(u,v,uσ ,vσ )〉 + αs〈fs(u,v,uσ ,vσ )〉 −
∑

n

Qn(αs,αL)(n − 1)〈f (n)
σ (u,v,uσ ,vσ )〉, (D6)

where we have called here Qn(αs,αL) the mixed Poisson/binomial probability distribution of spin connectivity defined in Eq. (23)
as n�(αs,αL). The free energy per plaquette reads, in the case of a long-range plaquette, as

〈fL(u,v,uσ ,vσ )〉 = − 1

β

∑
{σi },i∈∂�

∑
{mL(i),ns (i)}

3∏
i=1

pexc(mL(i))ρ(ns(i))
∫ ⎡

⎣ 2∏
i=1

mL(i)∏
j

ns (i)∏
k

dujdvkP(uj )P(vk)

⎤
⎦

× eβ
∏3

i=1 σi

Z({uj ,vk})
3∏

i=1

mL(i)∏
j=1

ns (i)∏
k=1

eβuj σi

2 cosh(βuj )

eβvkσi

2 cosh(βvk)

×
∫ ⎡

⎣ 2∏
i=1

mL(i)∏
j

duj
σi
Pσi

(
uj

σi

∣∣uj
) ns (i)∏

k

dvk
σi
Pσi

(
vk

σi

∣∣vk
)⎤⎦ lnZ�

({
uj

σi
,vk

σi

})
. (D7)

The expression in Eq. (D7) has to be consistently modified for a short-range plaquette. The free energy per spin is then

〈f (n)
σ (u,u1,u−1)〉 =

∑
{σ }

∫ ⎡
⎣mL∏

j

ns∏
k

dujdvkP(uj )P(vk)

⎤
⎦ 1

Z({uj ,vk})
mL∏
j=1

ns∏
k=1

eβuiσ

2 cosh(βui)

eβvkσ

2 cosh(βvk)

×
∫ ⎡

⎣mL(i)∏
j

duj
σi
Pσi

(
uj

σi

∣∣uj
) ns (i)∏

k

dvk
σi
Pσi

(
vk

σi

∣∣vk
)⎤⎦ lnZσ

({
uj

σ ,vk
σ

})
. (D8)

The two partition functions Z� and Zσ appearing respectively in Eq. (D7) and Eq. (D8) are defined as

Z�
({

uj
σi
,vk

σi

}) =
∑
{σi }

eβ
∏3

i=1 σi

3∏
i=1

mL(i)∏
j=1

ns (i)∏
k=1

eβuj σi

2 cosh(βuj )

eβvkσi

2 cosh(βvk)
,

Zσ

({
uj

σi
,vk

σi

}) =
∑

σ

mL∏
j=1

ns∏
k=1

eβuj σ

2 cosh(βuj )

eβvkσ

2 cosh(βvk)
. (D9)

The free energy in the paramagnetic phase is the same as in the high-temperature expansion,

fpara = −β−1 ln(2) − β−1(αs + αL) ln cosh(β). (D10)

The configurational entropy can be finally obtained as


 = β(fmeta − fpara). (D11)
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