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Near-second-order transition in confined living-polymer solutions
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We analyze a near-second-order transition occurring in solutions of living polymers confined by two parallel
surfaces in equilibrium with a reservoir solution. The molecular self-consistent field theory in the regime of weak
adsorption or depletion is mapped to phenomenological Landau theory, where the order parameter is the average
degree of polymerization or, equivalently, the normalized chain-end concentration. The distance between two
surfaces at which the transition occurs scales as �2

c |c| where �c is the correlation length of the polymer solution in
the reservoir and c−1 is de Gennes adsorption length. In the second half of the paper we focus on experimentally
observable features. The predicted transition can be detected experimentally by probing the living-polymer
mediated disjoining potential between surfaces by means of, e.g., colloidal probe atomic force microscopy. To
facilitate experimental investigations we derive simple explicit expressions for the disjoining potential for several
regimes. By comparison with full numerical calculations it was verified that these are quite accurate.
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I. INTRODUCTION

Recently, we published on the equilibrium behavior of
living polymers confined between two adsorbing surfaces
while the confined solution is at equilibrium with a reservoir at
constant chemical potential [1]. We predicted the occurrence
of a transition at which several relevant properties change
dramatically upon a small change of control parameters. In
the present paper we clarify the nature of this transition,
relating it to the general theory for phase transitions in
confined systems. The theory of boundary critical phenomena
was developed to explore the effect of surfaces on binary
alloys and magnets [2,3]. The phase separation in binary
liquids [4] and the transition temperature of superconducting
thin films [5] are analogous as well. For all these cases, the
transition can be analyzed in terms of the Landau theory [6],
which yields the Ginsburg-Landau equation for the order
parameter. For thin films with a thickness D, the transition
temperature shifts from its value in the bulk by 2ξ 2c/D, where
ξ is the correlation length and c−1 the extrapolation length
of the de Gennes boundary condition [7]. We address the
analogy between the transition occurring in confined living
polymer solutions and the phase transitions in the above-
mentioned confined solid-state systems. We show that for the
living-polymer case a Landau potential can be deduced from
our “molecular-model-based” theoretical analysis [1,8–10].
Comparing this potential with the usual expressions for the
Landau potential, we see that in the living-polymer system
the role of the reduced temperature is played by a parameter
quantifying the nonideality of the living-polymer solution.
Interestingly, from the molecular theory for living polymers
a term arises in the Landau potential, which corresponds
to a negative field contribution. Due to this term there is
no true second-order transition, but a weakened transition
that we denote “near-second order.” In this paper we show
furthermore that, somewhat unexpectedly, the transition is
not limited to living-polymer solutions confined between
adsorbing surfaces, but that the conditions at which it occurs
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extend into the depletion regime, occurring when the surfaces
are nonadsorbing towards the polymers.

Living polymers, often called supramolecular polymers
or dynamic polymers [11–14], are chains of segments con-
nected by reversible interactions [11,12]. Bonds between the
monomers that form such chains are formed and broken
continuously. In bulk solutions, the equilibrium chain-length
distribution of living polymers follows a simple exponential
law [15], and the number average degree of polymerization,
〈N〉, of such chains is controlled by the monomer concentra-
tion ρ and the equilibrium constant for binding, Kb: 〈N〉 ∝√

ρKb. To mention some “classical” examples belonging to
this class of soft matter we may refer to actin [16], liquid
sulfur [17], and wormlike micelles [18,19]. Understanding
the behavior of living polymers is getting more urgent as
modern supramolecular chemistry is creating many new exam-
ples [11,20]. Statistical properties of living-polymer solutions
subject to confinement by two parallel surfaces deviate from
bulk solutions. Varying the surface-segment affinity from
strongly adsorbing to completely depleting, we change the
local concentration inside the confined film. For (nearly) ideal
polymer solutions confined by two adsorbing surfaces this
transition has symptoms of a second-order transition [1,10].
The origin of this behavior lies in the synergy between the
local segment density and the degree of polymerization inside
a confined film at equilibrium with a reservoir.

For fluid living-polymer solutions experimental methods
are available that cannot be used with the above-mentioned
solid-state systems. The influence of the confining surfaces
upon the confined solutions is reflected in the effective
interaction between those surfaces [1,21–24]. Such surface
interactions, and how they vary upon variation of the separation
between the surfaces, can be probed experimentally by
techniques such as surface-force balance methods or colloidal
probe atomic force microscopy (CP AFM) [25,26]. The second
part of this paper focuses on these experimentally accessible
consequences of the above-mentioned transition.

II. NEAR-SECOND-ORDER TRANSITION

The theory starts from an expression for the grand potential,
� = F − μn, for a living-polymer solution confined by two
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parallel surfaces with area A. A is taken to be so large that edge
effects can be neglected. Here, F denotes the free energy,
μ is the chemical potential of the monomers, and n is the
total number of monomers. Defining the z axis as normal to
the surfaces, the latter are located at z = 0 and z = D [8].
The grand potential is written as a functional of the density
of chains, ρN (z(N)), with degree of polymerization N and
“configuration” z(N), where the “configuration” is defined
by all z positions of chain segments. The Euler-Lagrange
equation ∂�/∂ρN (z(N)) = 0 can be rewritten as the Laplace-
transformed Edwards equation [1,8–10],

R2
0
d2g(z)

dz2
= xg(z)3 + (1 − x)g(z) − 1, (1)

for the order-parameter profile g(z). Here R0 = b
√〈N〉0/6

is the radius of gyration of an unperturbed coil with degree
of polymerization 〈N〉0. Here b is the mean-square segment
length and 〈N〉0 is the number-average degree of polymer-
ization in the reservoir. Parameter x = υρ0〈N〉0, where v

is the excluded-volume parameter and ρ0 the concentration
of segments in the reservoir, measures nonideality of the
solution; x = 0 defines ideal solutions [10]; and at x � 1
excluded-volume effects dominate over ideal terms [9]. The
reduced osmotic pressure in the reservoir can be written as
�〈N〉0/kTρ0 = 1 + x/2 [8,9], where the first term represents
the ideal van ’t Hoff law, and the second the excluded-volume
contributions.

The order parameter g(z) contains all information on the
structure of the confined solution, e.g., the density profile of
chain ends, 2ρ0g(z)/〈N〉0, the density profile of segments,
ρ(z) = ρ0g(z)2, and the average degree of polymerization in
the gap, 〈N〉 = 〈N〉0

∫ D

0 g(z)2 dz/
∫ D

0 g(z) dz.
We follow de Gennes in taking the effects of the segment-

surface interactions into account by the boundary condition
dg(z)/dz = −cg(z) at z = 0 and dg/dz = cg at z = D, where
c−1 is the adsorption or extrapolation length, which quantifies
the affinity between polymers and surface (the stronger the
affinity the larger c) [27]. c → −∞ implies that the surface
acts as a perfectly repulsive hard surface for the segments.
c = 0 marks the crossover towards positive adsorption.

In this paper we pay particular attention to the regime
of strong confinement, occurring when the extrapolation
length |c−1| exceeds the gap width D. Then the profile
g(z) can be taken to be homogeneous (“flat-profile ap-
proximation”) [1]. Integrating Eq. (1) over the confined
volume, and applying the Gauss theorem and the boundary
condition, the resulting volume integral of the left-hand side
of Eq. (1),

∫
(d2g(z)/dz2) dV , is substituted by the surface

integral
∫

(dg(z)/dz) dS, which equals 2Acg according to the
above-mentioned boundary condition. In the right-hand side
of Eq. (1), g is assumed to be constant across the gap and equal
to the value at the surface. Equation (1) then reduces to

xg3 + ψg − 1 = 0, (2)

where ψ = 1 − x − 2R2
0c/D. The physically relevant (i.e.,

positive and real) solution is g = η/(6x) − 2ψ/η, where

η = x2/3(108 + 12
√

3
√

(4ψ3 + 27x)/x)
1/3

[1]. From the ex-
pression for the relation between g(z) and the mean chain
length, we see immediately that g = 〈N〉/〈N〉0. Note that it is

assumed that g(z) is constant, whereas at the same time cases
for which c �= 0 are considered. This may seem somewhat
counterintuitive, but comparison with full numerical results
confirms that this is correct, and that a large error is made
when the above-mentioned surface integral is neglected [8].

Seeking the analogy with other models for the second-order
phase transition, it is seen that Eq. (2) sets the minima of the
potential

U (g) = x
g4

4
+ ψ

g2

2
+ hg (3)

with h = −1. This expression has the form of a Landau
potential for the order parameter g under external field h.
If h would vanish, this would reduce to the Landau potential
which yields the second-order transition at ψ = ψc ≡ 0 [6].
Examining the nonconfined case (D → ∞), we see that the
critical value of x, for which ψ = ψc, is 1 [xc(∞) = 1].
Confinement shifts the critical value of x, and at the transition,
ψ = 0, we obtain [xc(D) − xc(∞)]/xc(∞) = −2R2

0c/D. The
expression for xc(D) has the same structure as the one for the
transition temperature of superconducting films as analyzed
in Ref. [5]. In the present expression, for living polymers R0

is the radius of gyration of the average chain in the reservoir,
and in the case of superconductivity R0 plays the role of the
superconducting coherence length. For living polymers, xc(D)
can be both larger and smaller than xc(∞), depending on the
sign of c.

The Landau potential U (g) with the order parameter g and
h = 0 describes the classical second-order transition. When
ψ < 0, the order parameter is nonzero, implying that chains
are present between the two surfaces. But when ψ � 0, the
order parameter is zero. This is illustrated by the dashed red
curves of Fig. 1.

With a fixed value for the “external field,” h = −1, such as
arises from Eq. (1) for confined living polymers in equilibrium
with a reservoir solution, the transition will be more gentle
(solid black lines in Fig. 1). Differentiating Eq. (2) twice, we
see that g(ψ) exhibits an inflection at ψ = ψc. This inflection
is what remains of the second-order transition when h = −1.
We refer to this “rudiment” of the second-order transition as
a “near-second-order transition,” especially for those cases
where it still corresponds to a large change of properties such
as 〈N〉, 〈ρ〉, and �d of the confined solution, upon a small
change of control parameters such as, e.g., D or x.

From Eq. (2) it is seen readily that the crossover from
positive adsorption (g > 1) to depletion (g < 1) occurs at
ψ = 1 − x. This implies that at any nonzero R0 and finite D

this crossover occurs at c = 0, as expected. Hence, for x = 1
the crossover from adsorption to depletion coincides with the
near-second-order transition. It is also seen immediately from
Eq. (2) that at the transition (ψ = 0) the order parameter scales
as g = x−1/3. Thus, for x < 1 the transition occurs in the
adsorption regime, as for g > 1 the segment concentration
inside the gap between the surfaces exceeds that in the
reservoir. For x = 0 there is a true second-order transition
at ψ = 0, at which g and hence the segment concentration in
the gap diverge [10]. For x > 1, we see that the transition
occurs in the depletion regime, as g < 1 at the transition,
implying that the segment concentration in the gap is smaller
than in the reservoir. All this is illustrated in Fig. 1, which
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FIG. 1. Transition of g [global minimum of the potential U (g)] for different values of the parameter x and the “external field” h: h = 0
(dashed red curves), h = −1 (solid black curves). The critical value of ψ,ψc ≡ 0 is defined by d2g/dψ2 = 0.

shows the development of the position of the minimum of
potential U (g) with ψ at different values of the parameters x,
for h = 0 and h = −1. At h = 0 the second-order transition
is clearly notable at ψ = 0. Whereas for the living-polymer
system at equilibrium with a reservoir, which implies that
h = −1, condition ψ = 0 refers to a “near-second-order
transition” showing up as an inflection. For the dilute reservoir,
which implies that x < 1, the transition occurs at adsorbing
conditions (c > 0, hence g > 1). For a marginal polymer
solution in the reservoir (x > 1) the transition takes place when
c < 0 (depletion) and therefore 0 � g < 1.

To finalize this section, we consider solutions of Eq. (2) in
the limit of small distances. When D → 0 then ψ → −∞
for adsorbing surfaces (c > 0), and ψ → ∞ for depleting
surfaces (c < 0). Asymptotic solutions for these cases are
easily obtained because both limits are far from ψc. For ψ →
∞ (depleting surfaces), g becomes small, and the nonlinear
term in Eq. (2) becomes negligible. Then g 
 1/ψ , and the
average degree of polymerization in the gap between the
surfaces vanishes as 〈N〉 
 −〈N〉0D/(2R2

0c). For ψ → −∞
(adsorbing surfaces) the term −1 in Eq. (2) is negligible.
Then we obtain g 
 √−ψ/x, and the average degree of
polymerization diverges as 〈N〉 
 〈N〉0(2R2

0c/(xD))1/2 [1].
We see that at small surface separations D, the scaling law for
〈N〉 is just controlled by the polymer surface affinity.

The analysis in this paper is based on a mean-field
approximation at the level of the second virial coefficient
among segments (= excluded-volume parameter). As clarified
by Schaefer in Ref. [28] and reviewed, e.g., in Chap. 1
of Ref. [29], it is known that a mean-field description of
polymers in solution works well in certain regimes, such as
the ideal-dilute and marginal regimes, but exhibits deviations
in others. The mean-field approximation accounts for a
crossover between the dilute and the marginal regime, which
is in our symbols given by x = 1. Within the mean-field
approximation the nonideal dilute and semidilute regimes are
not described correctly. So, when either the reservoir phase
or (local concentrations in) the confined phase or both fall
in the later “non-mean-field” regimes, deviations are to be
expected. The qualitative behavior will be similar as predicted,
but scaling exponents may deviate. The importance of the
non-mean-field regime depends on the chain stiffness and is
significant especially for very flexible chains. For the highest
concentrations, higher-order interactions, beyond the second
virial coefficient among segments, give rise to the concentrated
regime. Owing to these higher-order interactions, (local)

segment concentrations ρ (and hence also g) will in practice
be restricted by a close-packing upper bound.

III. CONNECTION WITH EXPERIMENT

To connect with experiment, we now focus on interactions
between surfaces immersed in solutions of living polymer. The
contributions owing to the living polymers to these surface
interactions reflect the structure and properties of the living
polymers confined between the surfaces. For plan-parallel
surfaces these interactions can be quantified in terms of the
so-called disjoining potential �d per unit area, or the disjoining
pressure pd = −∂�d/∂D, where D is the distance between
the surfaces. The relation between theoretical predictions for
plan-parallel surfaces and experimental systems involving
curved surfaces is made by the Derjaguin relation [30,31],
which states that for distances that are considerably smaller
than the radii of curvature of the surfaces, the disjoining
potential per unit area �d between two planar surfaces is
proportional to the normalized disjoining force Fd/R between
curved surfaces with characteristic radius R. The proportion-
ality constant depends on the nature of the curvature of the
surfaces involved (e.g., cylindrical, spherical). In colloidal
systems such surface interactions are crucial because the
interaction between particle surfaces determines the behavior
of colloidal systems as a whole. Furthermore, these forces can
be experimentally investigated by a surface force balance or by
CP AFM [25,26]. Such surface-interaction experiments may
be utilized to experimentally investigate the near-second-order
transition for living-polymer solutions in confinement. In
superconductivity experiments, the film thickness is fixed and
temperature is the control parameter in measuring the film
conductivity. In the case of living-polymer solutions, the dis-
tance between the confining surfaces is readily varied in, e.g.,
a CP AFM experiment, while the polymer excluded-volume
parameter (analog of temperature for the superconductivity
case) is fixed. Therefore, the disjoining potential between
planar surfaces will be carefully examined in this second part
of the paper.

The influence of the confining surfaces upon the confined
solution is reflected by an interaction between the surfaces,
which can be quantified in terms of the disjoining potential per
unit area, �d ≡ �σ (D) − �σ (∞), where �σ (D) ≡ � + �D

denotes the interfacial excess grand potential per unit area. � is
the grand potential per unit area and � is the osmotic pressure
at equilibrium. It can be expressed in terms of the equilibrium
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FIG. 2. The normalized interfacial excess grand potential versus normalized gap width for three sets of parameters at �c|c| < 1. Solid
and dash-dotted curves denote the exact solution of Eq. (1) with Eq. (4), and open circles show the flat-profile approximation, Eq. (2) with
Eq. (6). Dotted lines represent the small-distances asymptotic, Eqs. (7), and dashed lines represent the result obtained with Eq. (10). The
vertical dashed line at �/R0 indicates the crossover distance from strong to almost no interference between surfaces. (a) Depletion (c < 0),
(b) near-second-order transition (small x, positive c), and (c) positive adsorption from a marginal solution.

segment-concentration profile as [1]

�̃σ (D) =
∫ D

0
(1 − ρ̃(z)) dz + x

2

∫ D

0
(1 − ρ̃(z)2) dz, (4)

where for brevity, �̃σ (D) ≡ �σ (D)〈N〉0/(ρ0kT ) and ρ̃(z) ≡
ρ(z)/ρ0 is the solution of Eq. (1) with ρ̃(z) = g(z)2.

A selection of results for �̃σ (D) is shown in Fig. 2. Results
based on the exact numerical solution of Eq. (1) are indicated
by solid and dash-dotted lines for four sets of parameters.
The sets are chosen to cover possible experimental scenarios
for ideal and marginal solutions confined by slight segment
repelling [c � 0, Fig. 2(a)] and segment adsorbing [c � 0,
Figs. 2(b) and 2(c)] surfaces. It is obvious to introduce the
characteristic length scale, �, which delimits two different
gap-width behaviors, namely, � � D, where the layers
adjoining the surfaces do not interfere with each other, and
D � �, where they do.

When polymer solutions between adsorbing surfaces are
nearly ideal (more generally at 0 � x � 1), Fig. 2(b), � is
the value of D at which the near-second-order transition takes
place at ψ = 0. Simple algebra provides the expression

� = 2
R2

0c

1 − x
. (5)

Notice that to keep the value of � finite and positive for x in
close proximity of 1, |c| should be negligibly small.

When two surfaces are far apart, so that surface layers do
not interfere (D > �), the interfacial excess grand potential is
controlled by the affinity of monomers to the single surface and
is independent of the distance D. The expression for �̃σ (D)
at large distances can be calculated from Eq. (4) using the
expression for the segment density profile at single surfaces
obtained by van der Gucht et al. [9].

For small distances, the combined effect of two surfaces
on segments is large, and the segment density in the gap is
close to homogeneous, and described well by the “flat-profile
expression,” Eq. (2). For such a homogeneous profile Eq. (4)

simplifies to

�̃σ (D) =
(

1 + x

2
− ρ̃ − x

2
ρ̃2

)
D, (6)

where ρ̃ ≡ ρ/ρ0 = g2 with g the solution of Eq. (2). Results
of Eq. (6) are shown in Fig. 2 by circles. We see that at D < �,
the flat-profile approximation coincides with the results of the
exact numerical solution of Eq. (1).

If the surface repels polymers, c < 0, the gap is nearly
empty at small distances and ρ̃ 
 0 in Eq. (6). In the case
of polymer-attracting surfaces, c > 0, the effect of surfaces
is large at small distances and g becomes also large. The
contribution −1 in Eq. (2) can then be neglected and therefore
ρ̃ 
 −ψ/x 
 2R2

0c/xD [1]. Thus for the adsorbing and
depleting surfaces at small D, Eq. (6) reduces to

�̃σ (D) 

{(

1 + x
2

)
D if c < 0, D < �,

− 2R4
0c2

xD
if c > 0, D < �.

(7)

In the expression for c < 0 we recognize the reduced osmotic
pressure of the reservoir solution times the distance, as it
should be for depletion interaction. Dotted lines in Fig. 2 are
from Eqs. (7). At small distances these coincide with the full
numerical results. At large D, the density profile cannot be
considered flat anymore, and the effect of the inhomogeneity
becomes significant.

Indeed, for large distances between surfaces, the flat-
profile approximation is not precise in estimating the in-
terfacial excess grand potential. However, it is worthwhile
to calculate �̃σ (∞) assuming that the mean segment con-
centration inside the gap is about the same as its value in
the reservoir. Linearizing Eq. (2) around g = 1 we obtain
ρ̃ 
 [1 + 2c/(D(1 + 2x)/R2

0 − 2c)]
2
, and after substitution

into Eq. (6) and taking D → ∞, the interfacial excess grand
potential reads

�̃σ (∞) 
 −4�2
cc(1 + x), (8)

where the correlation length �c = R0/
√

1 + 2x characterizes
the length scale of the profile decay towards reservoir density
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ρ0, as defined in Ref. [21]. The appearance of the correlation
length �c in Eq. (8), which assumes homogeneous profiles,
indicates its origin coming from the inhomogeneous profile.
Direct use of Eq. (6) with ρ̃ = 1 gives �̃σ (∞) = 0. This is
valid only at c = 0. Only then the segment concentration
profile is truly flat. Somewhat counterintuitively, the “flat-
profile approximation” introduced with Eq. (2) does account
for certain consequences of profile inhomogeneity, as, e.g.,
reflected in Eq. (8). Below we consider the transition from an
inhomogeneous to a flat distribution of monomers to establish
conditions when Eq. (8) holds.

In the limit of weak adsorption or depletion, Eq. (1) can
be linearized by substituting g(z) = 1 + δ(z). This yields a
second-order linear differential equation for δ(z). For large
gap widths, D � �c, the equation provides the segment density
profile

ρ̃(z) =
[

1 + �cc

1 − �cc

(
e− z

�c + e
z−D
�c

)]2

. (9)

This expression is valid at |�cc/(1 − �cc)| � 1 to keep |δ(z)| <

1. The profile may be considered homogeneous for values of
c small enough to ensure �cc � 1.

After substitution of Eq. (9) into the expression for the
interfacial excess grand potential, Eq. (4), the potential for
two infinitely separated surfaces becomes

�̃σ (∞) = −�2
cc(4 − 3�cc)

(1 − �cc)2

− x

12

�2
cc

(
48 − 108�cc + 88�2

cc
2 − 25�3

cc
3
)

1 − 4�cc + 6�2
cc

2 − 4�3
cc

3 + �4
cc

4
. (10)

The above expressions reveal a reduced scale �cc. At small
�c|c| (� 1), the potential reduces to Eq. (8) found from the flat-
profile approximation. The result for �̃σ (∞) calculated from
Eq. (10), which assumes a slightly inhomogeneous profile, is
shown in Fig. 2 by dashed lines. They are quite close to the
exact result. Equations (8) and (10) predict slightly different
values, when the value of �cc is not small enough.

The typical range of the interaction is quantified by the
crossover distance �, where the small-distance scaling law for
�̃σ (D) intersects with the level �̃σ (∞). The small-distance
scaling for �̃σ (D) is given by Eqs. (7), whereas �̃σ (∞) is
obtained from solution of Eq. (1) for a single surface [9]. For
weak adsorption or depletion �̃σ (∞) is approximated well
with Eq. (10). However, as shown above, in the case of the
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near-second-order transition, � does not depend on the
interfacial excess grand potential of the surface at infinite
separation. For all other conditions, this dependency
can be traced. For living polymers in depleting conditions
at any value of x, the first equation from the set of Eqs. (7)
provides

� = �̃σ (∞)

1 + x/2
. (11)

Hence, in the limit of small |c| for depleting surfaces, the
crossover distance � scales with c as −4�2

cc(1 + x)/(1 + x/2).
For strong depletion, c → −∞, � levels off to
�c(3 + 25x/12)/(1 + x/2) according to the flat-profile
approximation for the segment distribution between surfaces.

For marginal solutions (x > 1) confined between adsorbing
surfaces (c > 0), the second equation of the set of Eqs. (7)
yields

� = −2
R4

0c
2

x�̃σ (∞)
. (12)

Although all the three expressions [Eqs. (5), (11), and (12)]
for the crossover distance differ from each other, in the limit
of �c|c| � 1, we obtain the master scaling � = α�2

cc with
α as a factor depending on x and c. As an example, for a
near-ideal solution confined by slightly attractive surfaces,
Eq. (5) yields α = 2(1 + 2x)/(1 − x), and in the regime of
ideal solution, � 
 2R2

0c. Equations (8) and (10) are quite
accurate if |�̃σ (∞)/R0| < 1.

Figure 3 reports the effect of confinement on the living
polymer solution for different values of x. The top and bottom
panels refer to the mean degree of polymerization inside the
gap, g, and the disjoining potential between surfaces, �d (D),
respectively. Particular attention is paid to the cases where
the confined solution undergoes a pronounced near-second-
order transition at ψ = ψc, as g undergoes a large change
upon a small variation of the distance between surfaces. For
adsorbing surfaces [Figs. 3(a) and 3(b)], the change of 〈N〉
and �̃d ≡ �d〈N〉0/(ρ0kT ) is quite pronounced for x < 1. The
order parameter for small distances (where ψ < 0) scales as
predicted above: 〈N〉 
 〈N〉0(2R2

0c/(xD))1/2. Because of the
large excess of confined monomers at D < R0 and c > 0, and
the small value of �̃σ (∞), the excess grand potential and
the disjoining potential follow Eqs. (7): �̃d (D) 
 �̃σ (D) 

−(R4

0c
2)D−1.

When the solution in the reservoir is marginal (x � 1) and
surfaces are depleting (c < 0), the transition at ψ = ψc is again
revealed by a change of the order parameter g by several orders
of magnitude [Fig. 3(c)]. For these low local concentrations
of confined monomers, the first term of Eq. (1) is negligible,
and hence parameter x has no effect on g. Then, for narrow
gaps (D � R0) and positive ψ , the order parameter increases
linearly with D, g 
 −D/(2R2

0c). For this case, the disjoining
potential is constant [Fig. 3(d)]. Thus, for small D, �̃σ (D) as
given by Eq. (7) (c < 0) is negligible as compared to −�̃σ (∞),
so the latter dominates �̃d (D). �̃σ (∞) is predicted by Eq. (10).
Hence, for small �cc, we obtain �̃d (D) 
 4R2

0c(1 + x)/(1 +
2x), which for large values of x becomes 2R2

0c.

IV. CONCLUSION

For a living-polymer solution strongly confined between
two surfaces (|c|D < 1), the synergy between the influence
of surfaces on the local concentration and the reversible
polymerization of the living polymers yields a near-second-
order transition inside the gap. As illustrated in Fig. 1, the
order parameter g and hence the normalized local monomer
concentration ρ̃ = g2 as a function of the parameter ψ (≡ 1 −
x − R2

0c/D) decreases from a high value at ψ → −∞ to zero
when ψ → ∞. At the transition, ψ = ψc ≡ 0. There g(ψ)
exhibits an inflection (d2ρ/dψ2 = 0). At the crossover from
depletion to adsorption c = 0 and g = 1 so that ψ = 1 − x.
For dilute solutions (x < 1) the transition occurs at adsorbing
surfaces only, because ψ = 0 implies that for x < 1 we get
R2

0c/D = 1 − x > 0, and hence that c > 0. The smaller x, the
more pronounced the transition, as illustrated in Figs. 3(a)
and 3(b). So the transition between adsorbing surfaces is
observed most clearly with near-ideal dilute living-polymer
solutions (x � 1). To maximize the interaction distance, e.g.,
in order to facilitate experimental investigations, a nearly
ideal living-polymer solution with a large mean radius of
gyration, R0, in solution should be chosen, together with a
small adsorption length, c−1 (strong adsorption). For marginal
solutions, and solutions even more concentrated than that
(x > 1), the transition only occurs between depleting surfaces,
as ψ = 0 implies that for large x, R2

0c/D = 1 − x < 0, and
hence c < 0. For such negative c, the transition at ψ0 is most
pronounced at high x values. Because �/R0 is small for this
regime, solutions with very large R0 are required in order to
observe the transition experimentally.

When the polymer solution is nearly ideal and confined
between adsorbing surfaces, the disjoining potential �d ,
which quantifies the interaction between surfaces and that
can be measured by means of, e.g., CP AFM, clearly
reflects the transition: �d experiences a significant sudden
decrease upon decreasing the distance between surfaces at
the gap width D = � at which ψ = ψc = 0. However, when
a marginal solution is confined by depleting surfaces, �d

levels off at small intersurface distances and becomes equal to
−�σ (∞).

The interaction distance between surfaces shows a master
dependency, � ≡ α�2

cc, where the prefactor α depends on the
particular conditions. For cases where the onset of interference
between the surface layers of the two confining surfaces does
not coincide with a near-second-order transition, one predicts
the scaling � 
 R2

0 |c|/x for marginal, and � 
 R2
0 |c| for

nearly ideal, solutions. Similar scaling laws can be derived
directly from ψ = 0, indicating that the surface separation at
which the transition occurs scales in the same way with �c and
c. Summarizing, �2

c |c| is the length scale of the range of the
solution mediated surface interactions.
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