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Generation of mechanical force by grafted polyelectrolytes in an electric field
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We study theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical
force by grafted polyelectrolytes in an external electric field, which favors its adsorption on the grafting plane.
The force arises in deformable bodies linked to the free end of the chain. Varying the field, one controls the
length of the nonadsorbed part of the chain and hence the deformation of the target body, i.e., the arising force
too. We consider target bodies with a linear force-deformation relation and with a Hertzian one. While the first
relation models a coiled Gaussian chain, the second one describes the force response of a squeezed colloidal
particle. The theoretical dependences of generated force and compression of the target body on an applied field
agree very well with the results of MD simulations. The analyzed phenomenon may play an important role in
future nanomachinery, e.g., it may be used to design nanovices to fix nanosized objects.
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I. INTRODUCTION

Due to its obvious importance for applications, the
response of polyelectrolytes to external electric fields has
been of high scientific interest for the past few decades
(see, e.g., [1–18]). Moreover, novel experimental techniques
that allow exploration of a single polymer chain have
aided developments in this area [11]. In fact, the ability
of polyelectrolyte chains to adapt their conformation in
external electric fields, i.e., to change between expanded
and contracted states when the applied field varies, is an
important property. It may be used in future nanomachinery:
Possible examples of such nanodevices may be nanovices or
nanonippers manipulated by an electric field.

Suppose one end of a chain is fixed on a plane (i.e., the
polyelectrolyte is grafted) while the other end is linked to
a nanosized (target) body that can suffer deformation. If the
polyelectrolyte is exposed to an external electric field that
favors adsorption at the grafting plane, its conformation will be
determined by both the field and the restoring force exerted by
the deformed target body on the chain (see Fig. 1). Increased
adsorption of the polyelectrolyte in response to a changing
electric field will cause a deformation of the target body and
give rise to a force acting between the chain and target. More
precisely, the force will depend on both the magnitude of
the deformation and the specific force-deformation relation of
the target body. Hence, by applying an electric field, one can
manipulate the conformation of polyelectrolyte chains as well
as the force affecting the target body.

The nature of target bodies may be rather different however;
the most important ones with respect to possible applications
seem to be either polymer chains or nanoparticles, e.g.,
colloidal particles (see Figs. 1 and 2). In the latter case
the force-deformation relation is given by the Hertzian law,
which accurately describes the elastic response of squeezed

nanoparticles [19,20]. On the other hand, polymer chains can
exhibit coiled states with a linear force-deformation relation
or stretched conformations with a nonlinear relation (see, e.g.,
[21]). To describe the phenomenon it is necessary to express
the size of the polyelectrolyte chain as well as the force acting
on the target body as a function of the applied electric field.

In the present study we address the problem theoretically
and numerically by means of molecular dynamics (MD)
simulations. We analyze a model of a polyelectrolyte chain
grafted to a plane, linked by its free end to a deformable target
body and exposed to an external electric field. The target body
is modeled by linear or nonlinear springs with corresponding
force-deformation relations. A time-independent electric field
is applied perpendicular to the grafting plane so that it
favors complete polyelectrolyte adsorption on the plane. For
simplicity we consider a salt-free solution, i.e., there are only
counterions that compensate for the charge of the chain. For
intermediate and strong electric fields (the definition is given
below), additional salt leads to a renormalization of the surface
charge. This happens because the salt co-ions simply screen
the plane, leaving the qualitative nature of the phenomenon
unchanged. Hence the salt-free case addressed here is the basic
one, which allows a simpler analytical treatment. The general
case of a solution with additional salt ions will be studied
elsewhere [22].

Counterions having the same charge sign as the grafting
plane are repelled, leaving the chain unscreened see (see
Fig. 1). This feature is dominating if the specific volume per
chain is not small and the electric field is not weak. In weak
fields a noticeable fraction of counterions is located close to the
chain, which leads to a partial screening of the external field
and of the Coulomb interactions between monomers. Here we
consider systems with a large specific volume and with fields
that are not very weak. The screening of the chain in this case
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FIG. 1. Illustration of the generation of mechanical force by an
electric field. The electric field causes chain contraction indicated by
down arrows. The restoring force f of the deformed target body (up
arrows) can be both linear and nonlinear, depending on the nature of
the target body. The right panel shows that the target body is modeled
by a spring.

may be treated as a small perturbation. We study the static case
when the current across the system is zero. It is noteworthy
that for the specific volumes and magnitudes of the electric
field addressed here, MD simulations demonstrate a lack of
the counterion screening even at finite electric current [13].

Here we present a first-principle theory of the phenomena
and compare theoretical predictions with MD simulations
results. We observe quantitative agreement between theory
and MD data for all magnitudes of electric field, except very
weak fields when screening of the polyelectrolyte becomes
significant. The simpler problem of the conformation of a
grafted polyelectrolyte exposed to a constant force in an
electric field has been explored theoretically and numerically
in a previous study [12]. In Refs. [12,13] we also reported some
simulation results for a chain linked to a deformable target
body along with our previous simpler theory for the restoring
force. In the present study we develop a first-principles theory,
based on a unified approach that describes the adsorbed part
of the chain as well as the bulk part under the action of the
force from the target body.

The paper is organized as follows. In Sec. II we present our
analytical theory, where we calculate the free energy of the
chain and the force acting on the target body. In Sec. III the
numerical setup is discussed and in Sec. IV we present the MD
results and compare them with our theoretical predictions. We
summarize our findings in Sec. V.

II. THEORY

We consider a system, composed of a chain of N0 + 1
monomers, which is anchored to a planar surface at z = 0.

FIG. 2. Illustration of the work principle of the nanovice. The
target particle, i.e., the colloidal particle, is fixed at sufficiently strong
fields due to the polyelectrolyte chain compression; it will be released
at zero field. The restoring force f corresponds in this case to the
Hertzian response of a compressed sphere. To illustrate a possible
device, two polyelectrolyte chains are sketched, although only one
chain, linked to the Hertzian spring, was used in the simulations
reported (see the right panel).

FIG. 3. Typical simulation snapshot of a grafted polyelectrolyte
exposed to electrical field Ẽ = 1, perpendicular to the grafting
plane, and coupled to a deformable colloidal particle of diameter
h0 = 80b. The action of the particle is modeled by a Hertzian spring
with spring constant κ̃ = κb5/2/kBT = 1. The total length of the
chain is N0 = 320. As can be seen from the figure, for the system
parameters addressed, counterions are practically decoupled from the
polyelectrolyte.

The anchoring end monomer is uncharged, while each of
the remaining N0 beads carries the charge −qe (e > 0 is the
elementary charge); N0 counterions of charge +qe make the
system neutral. The external electric field E acts perpendicular
to the plane and favors the adsorption of the chain (Fig. 3). The
free end of the polyelectrolyte is linked to a deformable body,
modeled by a spring with various force-deformation relations.
We study a few different cases. The reaction force f and the
energy of deformation Usp for a linear spring reads

f = −κ(h − h0), Usp = κ

2
(h − h0)2. (1)

Here κ is the elastic constant of the spring and h and h0

are the lengths of the deformed and undeformed springs,
respectively. A linear force-deformation relation corresponds,
for instance, to a target body given by a polymer chain in
a coiled Gaussian state (see, e.g., [21]). The corresponding
relation for a nonlinear spring has the form

f = κ|h − h0|γ sgn(h0 − h), Usp = κ

γ + 1
|h − h0|γ+1,

(2)

where γ > 1 characterizes the stiffness of the body, which may
be, e.g., a polymer chain in a semistretched conformational
state, i.e., in a state intermediate between a coiled and a
stretched one. It is known that stretched polymer chains
demonstrate much larger stiffness than Gaussian ones [21].
Hence, by varying the exponent γ one can mimic different
states of a chain. From the point of view of applications, it
is worthwhile studying the special case of a Hertzian spring
with γ = 3/2, which corresponds to the elastic response of a
squeezed nanoparticle [19,20], e.g., a colloidal particle

f = κ(h0 − h)3/2θ (h0 − h),

Usp = 2
5κ(h0 − h)5/2θ (h0 − h). (3)

Here h0 = dc is the diameter of an unloaded colloidal
particle and h that of the deformed one. The unit Heaviside
step function θ (x) reflects the fact that the Hertzian elastic
respond arises for compressive deformations only. Although
we performed MD simulations only for the above models of
the elastic response, the theoretical analysis is given for the
general case

Usp = Usp(h − h0), f = − ∂

∂h
Usp(h − h0), (4)
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where again h0 and h are the sizes of undeformed and deformed
target bodies, respectively.

To find the polyelectrolyte conformation in an electric
field and the force acting on the target body we evaluate
the conditional free energy of the system and minimize it
with respect to relevant variables. Let the number of (charged)
monomers adsorbed at the (oppositely charged) plane be Ns so
that N = N0 − Ns is the number of monomers in the bulk. Let
ztop be the distance of the free chain end, linked to the target
body, from the charged plane and R the end-to-end distance of
the adsorbed polymer part of Ns monomers. In what follows
we compute the conditional free energy F (N,ztop,R), which
may be written as

F (N,ztop,R) ≈ Fb + Fs + Fbs, (5)

where Fb = Fb(N,ztop) is the free energy of the system
associated with the bulk part of the chain and the target
body, Fs = Fs(Ns,R) is the free energy of the adsorbed
part of the chain, and Fbs = Fbs(N,ztop,R) accounts for the
interactions between the bulk and adsorbed parts. Minimizing
then F (N,ztop,R) with respect to N , ztop, and R one can find
the conformation of the chain and the force acting on the target
body (see the detailed discussion below).

In the present study we focus on the range of parameters
where the polyelectrolyte chain is weekly screened. This al-
lows us to treat the interaction of the chain with counterions as a
small perturbation and estimate it separately; this significantly
simplifies calculations. In what follows we compute separately
different parts of the free energy.

A. Free energy of the bulk part of the chain

For simplicity, we use the freely jointed chain model with
b being the length of the inter-monomer links, that is, the
size of the monomer beads. The MD simulations discussed
below provide a justification for this model. The location of
all monomers of the chain is determined by N0 vectors bi =
ri − ri+1, which join the centers of (i + 1)st and ith monomers
(i = 1,2, . . . ,N0). It is convenient to enumerate the monomers,
starting from the free end linked to the target body. Then the
beads with numbers 1,2, . . . ,N refer to the bulk part of the
chain and with numbers N + 1,N + 2, . . . ,N0 to the adsorbed
part. The (N0 + 1)st neutral bead is anchored to the surface.
Let the centers of the adsorbed beads lie at the plane z =
0;1 for simplicity the anchored bead is located at the origin
rN0+1 = 0. Then the location of the kth bead of the bulk part
(k = 1,2, . . . ,N ) may be written as

rk = rk − rk+1 + rk+1 − rk+2 · · · + rN0 − rN0+1 + rN0+1

=
N0∑
s=k

bs =
N∑

s=k

bs +
N0∑

s=N+1

bs = rN+1 +
N∑

s=k

bs ,

1Here we ignore the off-surface loops of the adsorbed part of the
chain. These may be taken into account [12], but they do not give
an important contribution to the total free energy for the range of
parameters addressed here.

where rN+1 is the radius vector of the (N + 1)st bead, which
is a surface bead; it is linked to the N th bead, located in the
bulk.

The intercenter distance of the ith and j th beads reads

rij =
j∑

s=i

bs , (6)

where each of the vectors bs has the same length b. Its
orientation may be characterized by the polar θs and azimuthal
ψs angles, where the axis OZ is directed perpendicular to
the grafting plane (Fig. 3). Hence, the distances between the
reference plane z = 0 and the kth bead, as well as between the
plane and the top bead, are

zk = b

N∑
s=k

cos θs, ztop = z1 = b

N∑
s=1

cos θs. (7)

The location of the top bead ztop, linked to the target body,
determines its deformation and the elastic energy due to the
body deformation

Usp(ztop) = Usp(ztop − ztop,0), f = −∂Usp

∂ztop
. (8)

Here ztop,0 is the location of the top bead of the chain when the
target body is not deformed. Because the chain is assumed to
be weakly screened, here we ignore screening effects, which
we estimate later as a perturbation. Then the potential of the
external field ϕext depends on z simply as ϕext(z) = −Ez, so
the electrostatic energy of kth bead associated with this field
reads −qeϕext(zk) = bqeE

∑N
s=k cos θs . Hence the interaction

energy of the bulk part of the chain with the external field has
the form

Hext =
N∑

k=1

−qeϕext(zk) = bqeE

N∑
k=1

N∑
s=k

cos θs

= bqeE

N∑
s=1

s cos θs. (9)

Now we need to take into account the electrostatic interactions
between chain monomers. Because of vanishing screening we
have

Hself,b = 1

2

N∑
i=1

N∑
j=1, j �=i

V (ri − rj ) = 1

2

N∑
i=1

N∑
j=1, j �=i

q2e2

εrij

,

(10)

where ε is the dielectric permittivity of the solution. Using
the Fourier transform of the Coulomb potential V (r) =
e2q2/εr and the expression (6) for the intermonomer distances,
Eq. (10) may be recast in the form (see the Appendix, Sec. 1)

Hself,b = q2e2

2ε

∑
s1 �=s2

∫
dk

(2π )3

(
4π

k2

)

× exp

(
i

s2∑
s=s1

k⊥ · b⊥
s + kzb

z
s

)
, (11)
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where k⊥,b⊥
s and kz,b

z
s = b cos θs are, respectively, the trans-

verse and longitudinal (parallel to the axis OZ) components
of the vectors k and bs .

In the following we first compute the partition function
associated with the bulk part of the chain. We impose the
condition that the distance between the surface and the top
bead, attached to the target body, is ztop. Then the bulk part of
the partition function reads

Zb(ztop) =
∫ 2π

0
dψ1 · · ·

∫ 2π

0
dψN

∫ 1

0
d cos θ1 · · ·

∫ 1

0
d cos θN

×e−βUsp−βHself,b−βHextδ

(
ztop−b

N∑
s=1

cos θs

)
b, (12)

where β = 1/kBT , with T being the temperature of the system
and kB the Boltzmann constant; the energies Usp, Hext, and
Hself,b are defined by Eqs. (8)–(11) and the factor b keeps Zb

dimensionless. In Eq. (12) we also assume that the vectors bs

cannot be directed downward (cos θs � 0), which guarantees
that the constraint zs > 0, s = 1, . . . ,N , holds true; this has
been confirmed in our MD simulations.

To proceed we assume that the value of Hself,b may be
approximated by its average over the angles ψ1, . . . ,ψN , that
is, Hself,b ≈ 〈Hself,b〉ψ , hence we assume that the transversal
fluctuations of the polyelectrolyte chain are small. Then, with
the use of (9), we rewrite Eq. (12) as

Zb(ztop) = (2π )N
∫ 1

0
dη1 · · ·

∫ 1

0
dηNδ

(
N∑

s=1

ηs − z̃top

)

× exp

[
−βUsp(ztop) − Ẽ

N∑
s=1

sηs − β〈Hself,b〉ψ
]
,

(13)

where ηs = cos θs , z̃top = ztop/b, Ẽ = βqeEb, and

〈Hself,b〉ψ = q2e2

2ε

∑
s1 �=s2

∫
dk

(2π )3

(
4π

k2

)

×
〈

exp

(
ik⊥ ·

s2∑
s=s1

b⊥
s

)〉
ψ

exp

(
ikzb

s2∑
s=s1

ηs

)
.

(14)

To evaluate the latter expression we exploit the approximation

ηs ≈ 〈ηs〉 = 〈cos θs〉 = ztop

bN
, (15)

which implies that ztop � bN (recall that we consider a freely
joined chain with constant links b) and that

∑s2
s=s1

ηs ≈
ztop|s2 − s1|/bN . Referring for details to the Appendix, Sec. 1,
we present here the result for Hself,b, averaged over transverse
fluctuations:

β〈Hself,b〉ψ = lBq2N2

ztop
(log N − 1), (16)

where lB = e2/εkBT is the Bjerrum length.
Using the integral representation of the δ function,

δ(x) = (2π )−1
∫ +∞

−∞
dξ eiξx,

we recast Zb(ztop) in Eq. (13) in the form

Zb(ztop) = (2π )N−1e−βUsp−β〈Hself,b〉ψ
∫ +∞

−∞
dξ e−iξ z̃top+W (ξ ),

(17)

where W (ξ ) contains the integration over η1, . . . ,ηN . Its
explicit expression is given in the Appendix, Sec. 2. For
large N � 1, one can use the the steepest-descent method
to estimate the above integral over ξ . Neglecting small terms,
we finally obtain

Zb(ztop) ≈ (2π )N−1e−βUsp−β〈Hself,b〉ψ−ξ0 z̃top+W (ξ0), (18)

where ξ0 is the root of the saddle point equation iztop −
∂W/∂ξ = 0,

ξ0 	 βqeEztop, (19)

and

W (ξ0) = 1

Ẽ
[Ei(ζ0) − Ei(ζN ) + log |ζ0/ζN |], (20)

with Ei(x) being the exponential integral function, ζ0 =
ξ0 − Ẽ, and ζN = ξ0 − ẼN . (The complete expression for Zb

and the derivation details are given in the Appendix, Sec. 2).
This yields the free energy Fb(ztop,N ) = −kBT logZb(ztop)
associated with the bulk part of the chain without the account
of counterions:

βFb(ztop,N ) ≈ βUsp(ztop) + β〈Hself,b〉ψ
+ ξ0z̃top − W (ξ0) − N log 2π. (21)

The impact of counterions on the conformation of the bulk
part of the chain may be estimated as a weak perturbation, so
the bulk component of free energy reads

Fb(ztop,N ) = Fb(ztop,N ) + Fc ch(ztop,N ), (22)

with

Fc ch = 4πσcqe2b

εẼ

eẼ(z̃top−L̃)

eẼz̃top/N − 1
− πσcqe2b

ε
z̃topN. (23)

Here L (L̃ = L/b) is the size of the system in the OZ direction,
S is its lateral area, and eσc = eqN0/S is the apparent surface
charge density, associated with the counterions. The derivation
of Fc ch is given in the Appendix, Sec. 3. As it may be seen
from the above equation, the impact of the counterions on
the chain conformation is small, provided eσc/E 
 1 and
ẼL̃ � 1. Assuming that these conditions are fulfilled in the
case of interest, Eq. (23) simplifies to

βFc ch 	 −ztop

2μ
N, (24)

where μ = 1/2πσclBq is the Gouy-Chapman length based on
the apparent surface charge density σc = qN0/S.

B. Free energy of the adsorbed part of the chain

Using the notation of the previous section, one can write
the radius vector of lth bead of the adsorbed part of the chain
as rl =∑l

i=N0
bi . Then the radius vector that joins two ends
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of the adsorbed part reads

R =
N+1∑
i=N0

bi =
Ns∑
s=1

ds , (25)

where we introduce ds = bN0+1−s for the sake of notational
simplicity. Obviously, for the adsorbed beads we have rkl =∑l

s=k ds . Thus, the free energy of the adsorbed part may be
written as

βFs = − logZs(Ns,R), (26)

where Zs(Ns,R) is the conditional partition function

Zs(Ns,R) =
∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

e−βHself,s

×δ

(
Ns∑
s=1

ds − R

)
b2, (27)

where Hself,s = (1/2)
∑

s1 �=s2
V (rs1 − rs2 ) describes self-

interaction of the adsorbed monomers with the potential
V (ri − rj ) defined in Eq. (10). The factor b2 in the preceding
equation keeps Zs dimensionless. Since we assume that the
adsorbed part of the chain forms a flat two-dimensional
structure, the integration in Eq. (27) is performed over Ns

azimuthal angles φ1, . . . ,φNs
, which define the directions of

Ns vectors d1, . . . ,dNs
on the plane. Note that the evaluation

of the conditional partition sum Zs(R) also allows one to
estimate the equilibrium configuration of the adsorbed part
of the chain. Using as previously the integral representation of
the δ function, we recast Eq. (27) in the form

Zs(Ns,R)

=
∫

dp
(2π )2

b2e−ip·R
∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

× exp

⎧⎨
⎩−β

2

∑
s1 �=s2

V (rs1 − rs2 ) + ip ·
Ns∑
s=1

ds

⎫⎬
⎭

=
∫

dpb2

(2π )2
e−ip·RZsp(p)

〈
exp

(
−β

2

∑
s1 �=s2

V (rs1 − rs2 )

)〉
p

,

(28)

where we define

Zsp(p) =
∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

exp

(
ip ·

Ns∑
s=1

ds

)

= (2π )Ns [J0(pb)]Ns . (29)

Here J0(x) = (2π )−1
∫ 2π

0 cos(x cos φ)dφ is the zeroth-order
Bessel function; we also take into account that p · ds =
pb cos φs . In Eq. (28) the average over the angles φ1, . . . ,φNs

is denoted by

〈(· · · )〉p = 1

Zsp(p)

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

× exp

(
ip ·

Ns∑
s=1

ds

)
(· · · ).

Referring for computational details to the Appendix, Sec. 4,
below we give the final result for the conditional partition
function:

Zs(Ns,R) = (2π )Ns

πNs

e−R2/Nsb
2−π

√
2q2lBN2

s /R, (30)

where R = |R|. From Eq. (26) then follows

βFs(Ns,R) = R2

Nsb2
+ π

√
2q2lBN2

s

R

−Ns log 2π − log πNs. (31)

Note that Ns = N0 − N . If we neglect the interaction of the
adsorbed part of the chain with the bulk part we can estimate
the equilibrium end-to-end distance of the adsorbed part R.
Minimizing Fs(Ns,R) with respect to R and keeping Ns fixed,
(∂Fs/∂R)Ns

= 0, we obtain the equilibrium value of R,

R = (q2b2lBπ/
√

2)1/3Ns. (32)

Equation (32) implies that the adsorbed part is stretched,
R ∼ Ns . Note that the condition of a stretched conformation
does not necessarily imply a linearly stretched chain. Loose
configurations of chaotic surface loops or circular conforma-
tions are also possible.

C. Interaction between bulk and adsorbed parts of the chain

The part of the free energy that accounts for interactions
between the bulk part of the chain and the adsorbed part may
be estimated as (see the Appendix, Sec. 5 for more detail)

Fbs(N,ztop,R) ≈ 〈Hsb〉N,ztop,R. (33)

Here Hsb is the interaction energy between N charged
monomers of the bulk part of the chain and Ns = N0 − N

monomers of the adsorbed part,

βHsb =
N∑

l=1

Ns∑
m=1

lB

|rl − rm| , (34)

where rl is the radius vector of the lth monomer of the bulk
part, rm is that of the mth monomers of the adsorbed part, and
〈(· · · )〉N,ztop,R denotes the averaging at fixed N , ztop, and R.
Using the definition of vectors bi and dj , given in previous
sections, we can write

rl − rm =
N∑

s=l

bs +
m∑

s=1

ds (35)

and recast Hsb in the form

βHsb =
N∑

l=1

Ns∑
m=1

∫
dk

(2π )3

(
4πlB

k2

)

× exp

(
ik ·

N∑
s=l

bs + ik ·
m∑

s=1

ds

)
. (36)

In Eq. (36) we again use the Fourier representation of the
interaction potential 1/r given in the Appendix, Sec. 1. Since
the averaging is to be performed at fixed N , ztop, and R we can
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approximate the exponential factor in (36) as〈
exp

(
ik ·

N∑
s=l

bs + ik ·
m∑

s=1

ds

)〉
N,ztop,R

≈ exp

[
− k2

⊥b2(N − l)

4

(
1 − z̃2

top

N2

)

+ ikz

ztop

N
(N − l) + i(k⊥ · R)

m

Ns

]
, (37)

where we apply the same approximations as in Eqs. (13), (15),
and (A3) for the bulk part of the chain and a similar one for
the adsorbed part,

m∑
s=1

ds ≈ R(m/Ns). (38)

Substituting (37) into (36) and performing integration over dk
(see the Appendix, Sec. 5 for details) we finally obtain

βFbs = lBNNs

R

[
log
(
1 +

√
1 + z∗2

top

)

+ 1

z∗
top

log
(
z∗

top +
√

1 + z∗2
top

)− log z∗
top

]

− lBN

Rz∗
top

log(2Nsz
∗
top), (39)

where z∗
top = ztop/R characterizes the relative dimensions of

the bulk and adsorbed parts of the chain.

D. Dependence of the force and deformation
on the external field

Now we can determine the dependence on the electric field
of the polyelectrolyte dimensions as well as the deformation
of the target body. Simultaneously one obtains the dependence
on applied field of the force that arises between the chain and
target. This may be done by minimizing the total free energy
of the system

F (N,ztop,R) = Fb(N,ztop) + Fs(Ns,R) + Fbs(N,ztop,R)

with respect to N , ztop, and R and using Ns = N0 − N and the
constraint ztop � bN (see the discussion above). The above
three components of the free energy are given, respectively,
by Eqs. (22), (31), and (39). This allows us to find N , ztop,
and R as functions of the applied electric field, that is, to
obtain N = N (E), ztop = ztop(E), and R = R(E). Then one
can compute the force acting on the target body. It reads

f̃ (z̃top)= Ẽz̃top − l̃Bq2N2(log N−1)

z̃2
top

− N

2μ̃
+ ∂βFbs

∂z̃top
, (40)

where f̃ = βbf (ztop), with f (ztop) = −∂Usp/∂ztop, is the
reduced force for a particular force-deformation relation (8),
and μ̃ = μ/b is the reduced Gouy-Chapman length. In Eq. (40)
we exploit Eq. (19) for ξ0 and the saddle point equation
iztop − ∂W/∂ξ = 0, valid for ξ = ξ0 (see the Appendix,
Sec. 2).

III. MD SIMULATIONS

We report MD simulations of a polyelectrolyte modeled
by a freely jointed bead-spring chain of length N0 + 1. The
(N0 + 1)th end bead is uncharged and anchored to a planar
surface at z = 0. All the remaining N0 beads carry one
(negative) elementary charge. Electroneutrality of the system
is fulfilled by the presence of N0 monovalent free counterions
of opposite charge, i.e., in our simulations q = 1. For sim-
plicity, we consider the counterions to have the same size as
monomers. We also assume that the implicit solvent is a good
one, which implies short-range purely repulsive interaction
between all particles, described by a shifted Lennard-Jones
potential. Neighboring beads along the chain are connected
by a finitely extensible nonlinear elastic (FENE) potential.
For the set of parameters used in our simulations, the bond
length at zero force is b 	 σLJ, with σLJ the Lennard-Jones
parameter. All particles except the anchor bead are exposed
to a short-range repulsive interaction with the grafting plane
at z = 0 and with the upper boundary at z = Lz. The charged
particles interact with the bare Coulomb potential. Its strength
is quantified by the Bjerrum length lB = e2/εkBT . In the
simulations we set lB = σLJ and use a Langevin thermostat to
hold the temperature kBT = εLJ, with εLJ the Lennard-Jones
energy parameter. For more details of the simulation model and
method see Refs. [23–25]. The free end of the chain is linked
to a deformable target body, which is modeled by springs with
various force-deformation relations. In this study we consider
the two cases that seem to be the most important ones in terms
of possible applications: linear and Hertzian springs described
by Eqs. (1) and (3), respectively.

In the simulations we use two different setups: one where
the spring is anchored at the top plane (Fig. 1, right panel)
and another where the spring is attached to the grafting plane
(Fig. 2, right panel). For simplicity, we assume that the anchor
of springs is fixed and that they are aligned in the direction of
the applied field, i.e., perpendicular to the grafting plane. Under
these assumptions, the instantaneous length of the spring is
L − ztop in the first case and ztop in the second one (see Figs. 1
and 2). Here we report simulation results obtained at total
chain length N0 = 320. The footprint of the simulation box is
Lx × Ly = 424 × 424 (in units of σLJ) and the box height is
Lz = L = 160.

A typical simulation snapshot is shown in Fig. 3. We found
that starting from relatively weak fields of Eqeb/kBT � 0.1
(recall that qe is the monomer charge), the adsorbed part of the
chain forms an almost flat two-dimensional structure. Small
loops of the chain rise out of the plane up to a height of
one monomer radius. The bulk part of the polyelectrolyte
is strongly stretched in the perpendicular direction to the
grafting plane with the interbead bonds being strongly aligned
along the applied field. In sharp contrast to the field-free case
[26–32], the counterion subsystem is practically decoupled
from the polyelectrolyte, which drastically simplifies the
analysis.

IV. RESULTS AND DISCUSSION

In Figs. 4–8 we show results of MD simulations compared
to the predictions of our theory. In particular, the spring length
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FIG. 4. End-point height z̃top = ztop/b of a chain linked to a linear
spring, as a function of reduced applied field Ẽ = qeEb/kBT . Lines
show the results of the theory symbols the MD data. The dashed
black line demonstrates z̃top = N of the previous simplified theory
[13] with N taken from the MD data. The inset shows the reduced
force generated by the applied field f̃ = f b/kBT as a function of
reduced field. The bar equilibrium length of the spring is h0 = 10b and
its force constant is κ̃ = κb2/kBT = 1. The length of the deformed
spring reads Lz − ztop = 160b − ztop. The total length of the chain is
N0 = 320. The arrow indicates ztop for the undeformed spring.

and magnitude of the induced force are shown as functions of
the applied electric field. The spring length characterizes the
deformation of the target body caused by the force acting from
the polyelectrolyte chain. Figure 4 refers to a linear spring
anchored to the upper wall. Figures 5–9 show the behavior of
Hertzian springs of different bare equilibrium lengths (i.e., of
colloidal particles of different size); these springs are anchored
to the lower wall. The figures clearly demonstrate the very good
agreement between theory and MD data obtained in our study.
We wish to stress the lack of any fitting parameters used in these

FIG. 5. Reduced length of a Hertzian spring z̃ = ztop/b as a
function of reduced field Ẽ = qeEb/kBT . Lines show the results
of the theory and symbols the MD data. The inset shows the reduced
force generated by the applied field f̃ = f b/kBT as a function of
field. The bare equilibrium length of the Hertzian spring (undeformed
colloidal particle) is ztop,0 = dc = 20b and the force constant is
κ̃ = κb5/2/kBT = 1. The total length of the chain is N0 = 320. The
arrow indicates ztop for the undeformed spring.

FIG. 6. Same as Fig. 5, but for ztop,0 = dc = 40b. The dashed
black line demonstrates z̃top = N of the previous simplified theory
[13] with N taken from the MD data.

plots. Note, however, that the theory has been developed for a
highly charged chain with a relatively strong self-interaction
and interaction with the charged plane. This results in an almost
flat two-dimensional structure of the adsorbed part of the chain
and small transversal fluctuations of the bulk part; the bond
vectors of the bulk part cannot be directed down. Although
the theory is rather accurate, some systematic deviations are
observed for very small fields and for the shortest Hertzian
springs with ztop,0 = 20b. In the latter case the deformation of
the spring and the force acting on a target body are slightly
underestimated. This possibly happens since the condition
N � 1 is not as accurate for short springs as for long ones.

The theory also underestimates the number of monomer
beads N in a bulk for small fields. While the theory is rather
accurate when Ẽ > 1, there occur noticeable deviations from
MD data at small fields Ẽ < 1 (see Fig. 9). Fortunately, this
deficiency of the present theory with respect to N does not
degrade the accuracy of the theoretical dependences ztop(E)
and f (E), which seem to be the most important quantities
in terms of possible applications. It is noteworthy that for
aqueous solutions at the ambient conditions, the character-
istic units of force and field are kBT /b ≈ kBT /lB ≈ 6 pN
and kBT /be ≈ kBT /lBe ≈ 35 V/μm, respectively. The latter

FIG. 7. Same as Fig. 5, but for ztop,0 = dc = 60b.
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FIG. 8. Same as Fig. 5, but for ztop,0 = dc = 80b.

value is about one order of magnitude smaller than the critical
breakdown field for water [33]. Another feature is worth
noting. While the electric field is altered within a relatively
narrow range, the magnitude of the resulting force varies over
a rather wide range, which is clearly of great interest for
applications.

It is also noteworthy to compare the theoretical results
of the present study with the corresponding results of the
previous simplified theory (see Ref. [13]). Some representative
examples are shown in Figs. 4 and 6. Obviously the simplified
theory is accurate for linear springs, except at small fields
Ẽ < 1. At the same time it fails to satisfactorily describe the
behavior of Hertzian springs. The simplified theory drastically
underestimates deformation of a target body at small fields
(Ẽ < 0.5), noticeably underestimates it at intermediate range
(1 < Ẽ < 3), and overestimates it in strong fields (Ẽ > 4).
The simplified theory has an acceptable accuracy only in a
rather narrow field interval.

The phenomenon addressed in the present study may be
used in future nanomachinery: A prototype of a possible
nanodevice, which may be called a nanovice or nanonippers, is
illustrated in Fig. 2. Here the contraction of two polyelectrolyte

FIG. 9. Number of chain monomers in the bulk N as a function
of reduced applied field Ẽ = qeEb/kBT . Lines show the results
of the theory and symbols the MD data. The length of the
undeformed Hertzian spring is ztop,0 = 40b and the force constant
is κ̃ = κb5/2/kBT = 1. The total length of the chain is N0 = 320.

chains in an external electric field allows one to fix firmly a
colloidal particle, which would otherwise perform Brownian
motion. At zero or weak fields the particle will be released.
Using our theory, one can compute the magnitude of the
field needed to keep the particle fixed, although additional
knowledge about the intensity of the Brownian motion and
friction forces is required. Naturally, one can think about
other nanosize objects, e.g., viruses, cellular organelles, or
small bacteria. These objects would be characterized by other
force-deformation relations.

Consider, for example, nanovices in aqueous solutions at
the ambient conditions with lB = 0.7 nm. For simplicity we
analyze the case of only one chain (see the right panel of Fig. 2);
the generalization for a few chains is straightforward. Let
the polyelectrolyte chain be flexible and consist of N0 = 180
monomers of size b ≈ lB , each carrying a charge 1e. Let the
colloidal particle be of diameter d0 = 50b = 35 nm. If we use
the Young modulus Y = 0.01 GP, as for rubber [34], for the
particle material and ν = 0.1 for the Poisson ratio, we obtain
κ̃ = 2.86.2 In this case the field Ẽ = 1 of about 35 V/μm
generates a force of about 240 pN and the relative deformation
of �d/d0 = 0.123. Forty-four monomers remain in the bulk
and 136 are adsorbed. If the field increases up to Ẽ = 2, that
is, up to 70 V/μm, the force increases to about 440 pN, with
the deformation of �d/d0 = 0.186 and 41 monomers in the
bulk.

Naturally, there exist plenty of other possible applications
of the mechanism studied, which we plan to address in future
research.

V. CONCLUSION

We analyzed the generation of a mechanical force by an
external electric field, applied to a grafted polyelectrolyte
that is linked to a deformable target body. We developed a
theory of this phenomenon and performed MD simulations.
The case of strong electrostatic self-interaction of the chain
and its interaction with the charged plane was addressed. We
considered target bodies with two different force-deformation
relations, which seem to be the most important for possible
applications: (i) a linear relation and (ii) that of a Hertzian
spring. The first relation models the behavior of a coiled
Gaussian chain, while the second one represents that of a
squeezed colloidal particle. The theoretical dependences of the
generated force and of the compression of the target body are
in very good agreement with the simulation data. The theory,
however, underestimates the number of beads N of the bulk
part of the chain for weak fields and small sizes of colloidal
particles. Interestingly, the generated force strongly depends
on the applied electric field. While the magnitude of the force
varies over a wide interval, the field itself alters within a rather
narrow range only. The phenomenon addressed here may
play an important role in future nanomachinery. For instance,
it could be utilized to design vicelike devices (nanovices
and nanonippers) that keep nanosized objects fixed. Other

2The Hertzian force FH depends on the Young modulus Y , Poisson
ratio ν, radius of particle R, and deformation ξ as FH = κξ 3/2 =
2
3

Y
√

R

(1−ν2)
ξ 3/2 (see, e.g., [19,20]).
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applications of this phenomenon, which require manipulations
with nano-objects, such as fusing them together by an applied
pressure, are also possible.
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APPENDIX

Here we present some calculational detail of quantities derived in the main text.

1. Computation of 〈Hself,b〉ψ

First we show that Hself,b given in Eq. (10) may written in the form (11). Using the integral representation of the δ function

δ(r) = (2π )−d

∫
eik·rdk,

where d is the dimension of the vector r, we write

1

|rlm| = 1

(2π )3

∫
dx
∫

dk eik·(rlm−x) 1

|x| = 1

(2π )3

∫
dk
(

4π

k2

)
exp

(
ik ·

m∑
s=l

bs

)

=
∫

dk
(2π )3

(
4π

k2

)
exp

(
i

m∑
s=l

k⊥ · b⊥
s + kzb

z
s

)
, (A1)

where 4π/k2 is the Fourier transform of 1/|x|. Summation of |rlm|−1 with the prefactor q2e2/2ε over all l,m = 1, . . . ,N yields
Eq. (11).

To find 〈Hself,b〉ψ in Eq. (14) first we compute the average〈
exp

(
i

s2∑
s=s1

k⊥ · b⊥
s

)〉
ψ

= 1

(2π )N

∫ 2π

0
dψ1 · · ·

∫ 2π

0
dψN exp

(
i

s2∑
s=s1

k⊥ · b⊥
s

)
. (A2)

Due to the lateral symmetry, we choose the direction of the vector k⊥ along the OX axis to obtain〈
exp

(
ik⊥ ·

s2∑
s=s1

b⊥
s

)〉
ψ

= 1

(2π )N

∫ 2π

0
dψ1 · · ·

∫ 2π

0
dψN exp

(
ik⊥b

s2∑
s=s1

cos ψs sin θs

)

=
s2∏

s=s1

∫ 2π

0

dψs

2π
eik⊥b cos ψs sin θs =

s2∏
s=s1

J0(k⊥b sin θs) = exp

[
s2∑

s=s1

log J0(k⊥b sin θs)

]

	 exp

[
s2∑

s=s1

log(1 − k2
⊥b2 sin2 θs/4)

]
≈ exp

[
−

s2∑
s=s1

k2
⊥b2 sin2 θs

4

]

≈ exp

[
−k2

⊥b2|s1 − s2|
4

(
1 − z̃2

top

N2

)]
, (A3)

where we use the approximation cos2 θs ≈ z̃2
top/N

2 and keep in the Bessel function expansion only the leading terms J0(x) =
1 − x2/4 + · · · , where x ∼ k. The latter approximation is justified since the main contribution from the integrand in (14) is
accumulated in the vicinity of k = 0.

Using now the approximation
s2∑

s=s1

ηs ≈ z̃top(s2 − s1)

N
(A4)

and substituting it together with (A3) into Eq. (14), we obtain

β〈Hself,b〉ψ = βq2e2

2ε

∑
s1 �=s2

∫
dk

(2π )3

(
4π

k2
⊥ + k2

z

)
exp

[
− k2

⊥b2|s1 − s2|
4

(
1 − z̃2

top

N2

)]
eikzz̃top|s1−s2|/N . (A5)

In this expression, one can integrate over k (first, over kz, using residues) to get the result

β〈Hself,b〉ψ = lBq2

2

∑
s1 �=s2

√
π

2h
eg2/4h2

Erfc
( g

2h

)
, (A6)
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where h2 = b2|s1 − s2|(1 − z̃2
top/N

2)/4 and g = |s1 − s2|z̃top/N . Since z̃top ∼ N and |s1 − s2| ∼ N � 1, it is easy to show that

g/2h � 1. With ex2
Erfc(x) = (

√
πx)−1 for x � 1 we obtain

β〈Hself,b〉ψ = lBq2N

2ztop

∑
s1 �=s2

1

|s1 − s2| 	 lBq2N

ztop

∫ N−1

1
ds1

∫ N

s1+1

ds2

s2 − s1
	 lBq2N2

ztop
(log N − 1), (A7)

that is, Eq. (16) of the main text.

2. Computation of Zb(ztop)

From Eqs. (17) and (13) it follows that W (ξ ) is defined as

W (ξ ) = log
∫ 1

0
dη1 · · ·

∫ 1

0
dηN exp

{
N∑

s=1

(iξ − Ẽs)ηs

}
= log

N∏
s=1

∫ 1

0
dηse

(iξ−Ẽs)ηs 	
∫ N

1
ds[log(eiξ−Ẽs − 1) − log(iξ − Ẽs)].

(A8)

The integral
∫ +∞
−∞ dξ exp[−iξ z̃top + W (ξ )] in Eq. (17) may be estimated with the use of the steepest-descent method, that is,

using the fact that for large N the value of z̃top is also large, ztop/b � 1. Then the saddle point equation reads

d

dξ
[−iξ z̃top + W (ξ )] = −iz̃top + i

∫ N

1
ds

[
eiξ−Ẽs

eiξ−Ẽs − 1
− 1

iξ − Ẽs

]
= 0. (A9)

With the new variable ξ0 = iξ , we obtain the equation that defines the implicit dependence of ξ0 on z̃top and N :

z̃top = 1

Ẽ

[
log

eξ0−Ẽ − 1

ξ0 − Ẽ
− log

eξ0−ẼN − 1

ξ0 − ẼN

]
. (A10)

For N � 1, one can find rather accurately the solution of Eq. (A10). Indeed, the assumption that ξ0 ∼ 1 
 N leads to the
conclusion that ztop ∼ log N , which may not hold true for either the coiled chain or for the chain stretched by the force. On the
other hand the assumption ξ0 ∼ N , which yields ξ0 − Ẽ ∼ N , implies that one can apply the approximation log[(ex − 1)/x] 	
x − log x at x � 1. Using the evident condition ξ0 − Ẽ � ξ0 − ẼN one obtains

Ẽz̃top 	 ξ0 − Ẽ − log(ξ0 − Ẽ)

or

ξ0 	 (z̃top + 1)Ẽ + log z̃topẼ.

If we again take into account that z̃top ∼ N � 1 and Ẽ ∼ 1 
 N we arrive at an even more simple solution for ξ0,

ξ0 	 Ẽz̃top.

Hence we obtain the approximate expression of the partition sum

Zb(ztop) ≈ (2π )N−1e−βUs−β〈Hself,b〉ψ exp

(
− ξ0z̃top + W (ξ0) − 1

2
log

|W ′′(ξ0)|
2π

)
, (A11)

with ξ0 given in the preceding equation and with W (ξ0) defined by Eq. (A8). It may be written as

W (ξ0) = (1/Ẽ)[Ei(ζ0) + log |ζ0/ζN | − Ei(ζN )], (A12)

where Ei(x) is the exponential integral function and we abbreviate ζ0 = ξ0 − Ẽ and ζN = ξ0 − ẼN . Similarly, we write W ′′ as

W ′′(ξ0) = Ẽ−1

[
eζN

eζN − 1
− eζ0

eζ0 − 1
− 1

ζN

+ 1

ζ0

]
. (A13)

Finally, we obtain the free energy Fb(ztop,N ) associated with the bulk part of the chain (without taking into account counterions)

βFb(ztop,N ) ≈ βUsp(ztop) + β〈Hself,b〉ψ − N log 2π + ξ0ztop − W (ξ0) + log |W ′′(ξ0)|1/2. (A14)

Note that for N � 1 the term containing W ′′(ξ0) is logarithmically small as compared to other terms and may be neglected.
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3. Free energy of counterions

The results of the MD simulations show that the counterions are well separated from the chain if the field and volume of
the systems are not very small. Therefore, the impact of the counterions on the chain conformation may be treated as a small
perturbation. Here we perform simple estimates of the free energy of counterions. We can approximate it as

Fcount 	 Fcc + FcE + Fc ch,

where Fcc is the free energy associated with the counterion-counterion interactions, FcE refers to the free energy of the counterions
interactions with the external field E, and Fc ch is the free energy associated with the charged chain. In the case of interest one
can neglect the dependence of Fcc and FcE on the chain conformation, so we do not need to compute these terms. At the same
time Fc ch can be estimated as the electrostatic energy of the chain in the additional potential ϕc(z) caused by counterions,

Fc ch ≈
N∑

i=1

−qeϕc(zi). (A15)

To find ϕc(z) we start with the equilibrium Boltzmann distribution of counterions ρc(z) in the external field E neglecting their
self-interaction:

ρc(z) = ρ0e
qeEz/kBT = N0eqE

SkBT
eqeE(z−L)/kBT ,

where L is the size of the system in the direction along OZ and S is its lateral area. To obtain constant ρ0 in the preceding
equation, we apply the normalization condition S

∫ L

0 ρc(z)dz = N0. Next we compute the electric field Ec due to counterions,
performing the same derivation as for the electric field of a uniformly charged plane

Ec(z) = qe

ε

∫ L

0
dz1ρc(z1)

∫ 2π

0
dφ

∫ ∞

0

∂

∂z

rdr√
(z1 − z)2 + r2

= 2πeqN0

εS
e−qeEL/kBT [2eqeEz/kBT − eqeEL/kBT − 1]

= (4πeσc/ε)eẼ(z̃−L̃) − (2πeσc/ε), (A16)

where σc = qN0/S corresponds to the apparent surface charge density due to counterions and L̃ = L/b. The second term in
Eq. (A16), 2πeσc/ε, corresponds to the renormalization of the external field E due to the counterion screening of the upper plane
E → E − 2πeσc/ε. From Eq. (A16), finally we get the additional potential

ϕc(z) = 2πeσcz/ε − (4πeσcb/εẼ)eẼ(z̃−L̃). (A17)

Substituting Eq. (A17) into Eq. (A15) we obtain

Fc ch = −
N∑

i=1

2πσc

ε
qe2zi + 4πeσcb

εẼ
e−ẼL̃

N∑
i=1

e−Ẽz̃i . (A18)

Using z̃i =∑N
s=i cos θs [see Eq. (7)] along with the approximation cos θs = cos θs = z̃top/N , we find for the first and second

terms in Eq. (A17)

4πeσcb

εẼ
e−ẼL̃

N∑
i=1

e−Ẽz̃i = 4πeσcb

εẼ

eẼ(z̃top−L̃)

eẼz̃top/N − 1
,

N∑
i=1

N∑
s=1

2πσcqe2b

ε
cos θs = πσcqe2b

ε
z̃topN,

which yields Eq. (23) of the main text.

4. Computation of Zs(R)

We start with the computation of 〈e−βHself,s 〉p. Using only the first-order term in the cumulant expansion of the exponent we
write 〈

exp

(
− β

2

∑
s1 �=s2

V (rs1 − rs2 )

)〉
p

≈ exp

(
− β

2

∑
s1 �=s2

〈V (rs1 − rs2 )〉p

)
. (A19)

This is a mean-field approximation, which is usually a good approximation for systems with long-range interactions. Since V (r)
refers to the unscreened Coulomb interactions, we expect this approximation to be rather accurate.

Similar to Eq. (A1) we can write

V (rs1 − rs2 ) =
∫

dk
(2π )3

Ṽ (k)eik·(rs1 −rs2 ), (A20)
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where Ṽ (k) = (q2e2/ε)(4π/k2) is the Fourier transform of the interaction potential. This yields

〈V (rs1 − rs2 )〉p = 1

Z0(p)

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

exp

(
ip ·

Ns∑
s=1

ds

)
V (rs1 − rs2 ) =

∫
dk

(2π )3
Ṽ (k)〈eik·(rs1 −rs2 )〉p

= 1

Z0(p)

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφNs

∫
dk

(2π )3
Ṽ (k) exp

(
ip ·

Ns∑
s=1

ds + ik⊥ ·
s2∑
s1

dl

)

=
∫

dk
(2π )3

Ṽ (k)

[
J0(|k⊥ + p|b)

J0(pb)

]|s2−s1|
. (A21)

Here we take into account that p is a two-dimensional vector and use the definition (29) of Z0(p). Substituting Eq. (A21) into
Eq. (28) we arrive at

Zs(R) ≈ (2π )Ns

∫
dp

(2π )2
e−ip·R[J0(pb)]Ns exp

(
−β

2

∫
dk

(2π )3
Ṽ (k)

∑
s1 �=s2

[
J0(|k⊥ + p|b)

J0(pb)

]|s1−s2|)

= (2π )Ns

∫
dp

(2π )2
exp

(
−ip · R + Ns log[J0(pb)] − β

2

∫
dk

(2π )3
Ṽ (k)

∑
s1 �=s2

[
J0(|k⊥ + p|b)

J0(pb)

]|s1−s2|)

	 (2π )Ns

∫
dp

(2π )2
exp

(
−ip · R − 1

4
Nsp

2b2 − β

2

∫
dk

(2π )3
Ṽ (k)

∑
s1 �=s2

[
J0(|k⊥ + p|b)

J0(pb)

]|s1−s2|)
. (A22)

Using the new integration variable

G = p − 2iR
Nsb2

,

we obtain

Zs(R) = (2π )Ns e−R2/Nsb
2
∫

dG
(2π )2

e−Nsb
2G2/4 exp

⎧⎨
⎩−β

2

∑
s1 �=s2

∫
dk

(2π )3
Ṽ (k) exp

[
|s2 − s1| log

(
J0
(|k⊥ + G + 2iR

Nsb2 |b
)

J0
(|G + 2iR

Nsb2 |b
) )]⎫⎬

⎭
	 (2π )Ns e−R2/Nsb

2
∫

dG
(2π )2

e−Nsb
2G2/4 exp

⎧⎨
⎩−β

2

∑
s1 �=s2

∫
dk

(2π )3
Ṽ (k) exp

[
|s2 − s1| log

(
J0
(|k⊥ + 2iR

Nsb2 |b
)

J0
( 2i|R|

Nsb

) )]⎫⎬
⎭

≈ (2π )Ns
1

πNsb2
e−R2/Nsb

2−βW1(R). (A23)

To derive Eq. (A23) we take into account that since Ns � 1, only values of G ∼ 1/b
√

Ns contribute to the above integral. The
analysis also shows that R ∼ Nsb [see Eq. (32)], which allows us to neglect G as compared to (R/Ns)b2 and to perform the
Gaussian integration in the last line of (A23). Furthermore, we define

βW1(R) 	 β

2

∑
s1 �=s2

∫
dk

(2π )3
Ṽ (k)e−ik⊥·R|s2−s1|/Ns e−k2

⊥b2|s1−s2|/4

≈ q2lB

2π2

∫ Ns−1

1
ds1

∫ Ns

s1+1
ds2

∫ ∞

−∞
dkz

∫
dk⊥

e−ik⊥·R|s2−s1|/Ns e−k2
⊥b2|s1−s2|/4

k2
z + k2

⊥
, (A24)

where we use again the expansion of J0(x) and keep only the leading term. Integration over kz may be easily performed, yielding
π/k⊥. Hence we obtain∫ ∞

−∞
dkz

∫
dk⊥

e−ik⊥·R|s2−s1|/Ns e−k2
⊥b2|s1−s2|/4

k2
z + k2

⊥
= π

∫ ∞

0
dk⊥e−b2|s2−s1|k2

⊥/4
∫ 2π

0
e−i cos φk⊥R|s2−s1|/Ns dφ

= 2π2
∫ ∞

0
e−b2|s2−s1|k2

⊥/4J0

(
k⊥R|s2 − s1|

Ns

)
dk⊥ = π5/2 e−R2|s2−s1|/2N2

s b2

b
√|s2 − s2|

I0

(
R2|s2 − s1|

2N2
s b2

)
, (A25)

where I0(x) is the modified Bessel function of the first kind. Substituting the above result into Eq. (A24), we observe that since
R ∼ bNs , the main contribution in the integrals over s1 and s2 comes from the region where |s2 − s1| is small; here we can
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approximate I0(x) ≈ 1.3 Therefore, we can write

βW1(R) ≈ q2 l̃B
√

πN3/2
s

∫ 1

0
dx

∫ 1

x

dy
e−(R2/2Nsb

2)|y−x|
√|y − x| = q2 l̃B

√
πN3/2

s H

(
R2

2Nsb2

)
. (A26)

Here the function H (x) reads

H (x) =
√

π erf(
√

x)(x − 1/2) + xe−x

x3/2
;

it behaves as H (x) 	 √π
x

for x � 1. Hence, for R2 � Nsb
2 we obtain

βW1(R) = π
√

2q2lBN2
s

R
(A27)

and finally, the conditional partition function

Zs(R) 	 (2π )Ns

πNs

e−R2/Nsb
2−π

√
2q2lBN2

s /R. (A28)

5. Calculation of Fbs(N,ztop,R)

The conditional free energy of the system F (N,ztop,R) may be written in the following form:

e−βF (N,ztop,R) =
∫ 2π

0
dψ1 · · · dψN

∫ 1

0
d cos θ1 · · ·

∫ 1

0
d cos θNδ

(
ztop − b

N∑
s=1

cos θs

)
b

×
∫ 2π

0
dφ1 · · · dφNs

δ

(
Ns∑
s=1

ds − R

)
b2e−βUsp(ztop)−βHext−βHself,b−βHself,s−βHbs

=
∫

d�be
−βH1

∫
d�se

−βH2

∫
d�b

∫
d�se

−β(H1+H2)e−βHbs∫
d�b

∫
d�se

−β(H1+H2)

= e−βFb(N,ztop)e−βFs (Ns,R)〈e−βHbs〉N,ztop,R ≈ e−βFb(N,ztop)e−βFs (Ns,R)e−β〈Hbs 〉N,ztop ,R , (A29)

which yields Eq. (5) of the main text:

F (N,ztop,R) ≈ Fb(N,ztop) + Fs(Ns,R) + Fbs(N,ztop,R).

Here Fbs(N,ztop,R) = 〈Hbs〉N,ztop,R . In Eq. (A29) we introduce the shorthand notation∫
d�b =

∫ 2π

0
dψ1 · · ·

∫ 2π

0
dψN

∫ 1

0
d cos θ1 · · ·

∫ 1

0
d cos θN,

∫
d�s =

∫ 2π

0
dφ1 · · · dφNs

as well as

e−βH1 = e−βUsp(ztop)−βHext−βHself,b δ

(
ztop − b

N∑
s=1

cos θs

)
b; e−βH2 = e−βHself,s δ

(
Ns∑
s=1

ds − R

)
b2.

To compute 〈Hbs〉N,ztop,R we use as previously the approximation of small transverse fluctuations for the bulk part of the chain
Hbs ≈ 〈Hbs〉ψ . With this approximation one can write〈

exp

(
ik ·

N∑
s=l

bs + ik ·
m∑

s=1

ds

)〉
N,ztop,R

≈
〈

exp

(
ik⊥ ·

N∑
s=l

b⊥
s

)〉
ψ

〈
exp

(
ikzb ·

N∑
s=l

ηs + ik⊥ ·
m∑

s=1

ds

)〉
N,ztop,R

, (A30)

with the same notation as above. The first factor on the right-hand side of Eq. (A30) may be computed as in Eq. (A3), yielding〈
exp

(
ik⊥ ·

N∑
s=l

b⊥
s

)〉
ψ

= exp

[
− k2

⊥b2(N − l)

4

(
1 − z̃2

top

N2

)]
= e−k2

⊥h2
1 .

3More precisely, the function e−x2
I0(x) is rather close to e−x2

when x = R2|s2 − s1|/N 2
s b2 is of the order of unity; this guarantees that the

discussed approximation has an acceptable accuracy.
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Using the same approximation as in Eqs. (A4) and (38),

b

N∑
s=l

ηs ≈ ztop

N
(N − l) = g1,

m∑
s=1

ds = m

Ns

R = R′,

we arrive at Eq. (37), which we write as〈
exp

(
ik ·

N∑
s=l

bs + ik ·
m∑

s=1

ds

)〉
N,ztop,R

= e−k2
⊥h2

1+ikzg1+ik⊥·R′
,

where h1, g1, and R′ have been defined in the above equations.
Below we give the calculational detail of Eq. (39) where we need to compute the integral in Eq. (36) with the substitute from

(37). With the above notation for h1, g1, and R′ it may be written as

1

(2π )3

∫
4π

k2
⊥ + k2

z

e−k2
⊥h2

1+ikzg1+ik⊥·R′
dk.

First we compute the integral over kz using the residue at kz = ik⊥:∫ ∞

−∞

4π

k2
⊥ + k2

z

eikzg1dkz = 4π2

k⊥
e−k⊥g1 . (A31)

Next the integration over k⊥ may be performed to yield

4π2

8π3

∫ ∞

0
k⊥dk⊥

e−k2
⊥h2

1−k⊥g1

k⊥

∫ 2π

0
eik⊥R′ cos φdφ

=
∫ ∞

0
e−k2

⊥h2
1−k⊥g1J0(k⊥R′)dk⊥ = 1

R′

∫ ∞

0
e−z2(h1/R

′)2−z(g1/R
′)J0(z)dz 	 1√

R′2 + g2
1

, (A32)

where we take into account that g1/R
′ � h1/R

′ for N ∼ Ns � 1.
Using the above result for the integral over k we can find 〈Hbs〉N,ztop,R ,

β〈Hbs〉N,ztop,R 	 lB

∫ N

1
dl

∫ Ns

1

dm√
z2

top(N−l)2

N2 + R2 m2

N2
s

= lBNNs

ztop
log Z1 + lBNNs

R
log Z2 + lBN

ztop
log Z3, (A33)

where

Z1 = (ztop/R) +
√

1 + (ztop/R)2, (A34)

Z2 = (R/ztop)[1 +
√

1 + (ztop/R)2], (A35)

Z3 = R

2ztopNs

(A36)

and we use definitions of g1 and R′ and approximate the summation over l and m by the integration. After simple algebra we
arrive at the expression (39) for 〈Hbs〉N,ztop,R .
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