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Optimal size for emergence of self-replicating polymer system
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A biological system consists of a variety of polymers that are synthesized from monomers by catalysis, which
exists only for some long polymers. It is important to elucidate the emergence and sustenance of such autocatalytic
polymerization. We analyze here the stochastic polymerization reaction dynamics to investigate the transition
time from a state with almost no catalysts to a state with sufficient catalysts. We found an optimal volume that
minimizes this transition time, which agrees with the inverse of the catalyst concentration at the unstable fixed
point that separates the two states, as is theoretically explained. Relevance to the origin of life is also discussed.
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I. INTRODUCTION

All life systems known so far consist of a wide variety of
polymers that catalyze each other and are replicated through
catalytic reactions. In cells, for instance, ribosomes, whose
main components are RNAs, synthesize a variety of protein
species, such as polymerases, that catalyze RNA replication
[1]. When considering the origins of life, it is therefore
necessary to understand the emergence of a primordial
polymer system that allows self-replicating catalytic reac-
tions, in which resource monomers such as amino acids or
nucleotides, which are the building blocks of polymers, are
supplied [2,3]. It is also important to understand the time
scale of the synthesis of catalytic polymers by polymerizing
reactions of the monomers.

In this scenario, a polymer has to be long enough to
function as a catalyst. In general, without catalysts, a chemical
reaction to synthesize such a long polymer is extremely slow,
while polymers, even if they are synthesized, are constantly
degraded or diffused out. The synthesis can overcome possible
degradation or diffusion only under the actions of catalysts
(enzymes for protein; ribozymes for RNA) which accelerate
the reactions by 107 ∼ 1019 [4]. To sustain such a catalytically
active state, a certain amount of catalyst is needed, which in
turn is only synthesized from catalysts. Hence, the reaction
system with autocatalytic polymers is expected to exhibit
bistability between the inactive state with almost no catalysts
and the active state with abundant catalysts that reproduce
themselves. In fact, the importance of the transition from
the inactive to active state for the emergence of a primitive
replicating system has already been pointed out in the seminal
work by Dyson [5], while catalytic reaction networks have also
been extensively studied [6–11]. Here, we study this problem
by considering a simple autocatalytic polymerization process,
with the aim of obtaining the time required for the transition
from the inactive to active states.

The existence of bistable states and the transition to a
catalytically active state has been discussed recently [12,13].
In these studies, the rate equation of the concentrations of the
monomers and polymers were often adopted. However, at the
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stage of the emergence of catalytic polymers, the number of
molecules may not be so large, and the fluctuations are not
negligible. Hence the description by a rate equation may not
be appropriate. These fluctuations enable the transition across
the barrier between the two states. Hence, we adopt a stochastic
model with random collisions of molecules to investigate the
transition.

The effects of fluctuations due to the smallness in molecule
number have attracted considerable attention in chemical reac-
tion dynamics [14–20]. The change in the steady distribution
as well as the relaxation dynamics around the steady state
have been studied with respect to the decrease in the system
size. However, here we are interested in the transient time
course and statistics for the transition. We study the system-
size dependence of the transition time in several models for
stochastic polymerization reaction dynamics, in order to find
the optimal size that minimizes the transition. We then show
that this time is estimated by the inverse of the concentration of
the catalytic polymer at the unstable fixed point in the reaction
rate equation. We will also explain the origin of this inverse
law, and discuss its relevance to the origins of life.

II. AUTOCATALYTIC POLYMER MODEL

To introduce our model, we postulate the following prop-
erties of the biological polymerization process. (i) Monomers
are supplied sufficiently. (ii) Polymerization occurs stepwise
from monomers to longer polymers. (iii) Catalytic function
can emerge only for polymers with a sufficient length.
(iv) Polymerization proceeds extremely slowly without cat-
alysts, but is accelerated drastically with them.

Initially only monomers are supplied, and the polymer-
ization progresses slowly owing to degradation or diffusion.
Once sufficient catalysts are synthesized, the catalytic reaction
to synthesize them progresses constantly. We investigate the
emergence and time scale of such autocatalysis by introducing
a model consisting of polymers. We denote the polymer of
length n as A(n), with A(1) being a supplied monomer.
Sequence information under multiple monomer species is
disregarded, and only the length is considered. We assume
that catalytic capacity appears at n = L. For successive
polymerization for each ligation reaction, we introduce model
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(I) with a set of reversible reactions:

A(n − 1) + A(1)
α

�
1

A(n),

A(n − 1) + A(1) + A(L)
αk

�
k

A(n) + A(L),

A(n)
μ→ ∅ (n = 2,3,4, . . . ,L).

Conversely, for polymerization processes which double the
length, we introduce model (II):

A(n) + A(n)
α

�
1

A(2n),

A(n) + A(n) + A(L)
αk

�
k

A(2n) + A(L),

A(n)
μ→ ∅ (n = 2,4,8, . . . ,L).

We first consider the simplest case for model (II), i.e., L = 4;
the general case will be studied later.

The model consists only of monomers, dimers, and
tetramers. Two monomers ligate into a dimer, and dimers ligate
into a tetramer. Without losing generality, the spontaneous
reaction rate without catalysts is set at unity, while the ligation
reaction is accelerated k times by the catalytic tetramers,
where k � 1, accordingly. The backward reaction rate is set
to α. We present the case where α = 1, while for α � 1 the
result generality holds. Indeed, the synthesis of the catalytic
polymer often needs energetic cost, and the forward reaction
is slower than the backward one, and then α � 1 is resulted.
Even if α < 1, however, as long as the polymer concentration
decreases with its length, the discussed results are valid.

These molecules are placed in a container with a (constant)
volume. We assume that molecules are well mixed in the
container, and we do not consider spatial inhomogeneity. From
the external reservoir, monomers are supplied sufficiently fast,
such that its number n1(= V ) is assumed to be constant. Then,
our dynamics are represented by the number of dimers n2(t)
and tetramers n4(t) at time t . The dimers and tetramers are
diffused out so that their numbers decrease with the rate μ.
Considering that all the reaction processes occur stochastically
with the rate following the mass action law for reactions, the
dynamics of the probability distribution of n2 and n4 is given
by

∂P (n2,n4,t)/∂t =
6∑

m=1

[πmP (n2 − ν2,m,n4 − ν4,m,t)

−πmP (n2,n4,t)], (1)

where m is the index of the reaction, and ν2,m,ν4,m are the
increments in the number of dimers and tetramers in the mth
reaction (for example, ν2,1 = 1, ν4,2 = 0, ν2,2 = −1, ν4,2 =
0, and so forth). The first term describes the inflow of the
probability from (n2 − ν2,m,n4 − ν4,m) by the reaction, and the
second term describes the outflow of probability from (n2,n4).
Each πm(ν2,m,ν4,m) is the transition probability of monomer
ligation, dimer cleavage, dimer ligation, tetramer cleavage, and
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FIG. 1. Nullclines of the rate equation, Eq. (2), for k = 104 and
μ = 30, plotted in the phase space (x4,x2). The blue line represents
the nullcline ẋ2 = 0, and the red line represents the nullcline ẋ4 = 0.
Intersection points of the lines A, B, and C are fixed points of the
equation, where A and C (black circles) are stable fixed points and B

(white circle) is an unstable one.

diffusion of dimer and tetramer, respectively, as given by

π1(+1,0) = 1
2κn1(n1 − 1)V −1,

π2(−1,0) = ακn2,

π3(−2,+1) = 1
2κn2(n2 − 1)V −1,

π4(+2,−1) = αn4V
−1 + αkn4(n4 − 1)V −1,

π5(−1,0) = μn2,π6(0,−1) = μn4,

where κ is the sum of the rate of spontaneous and catalytic
reaction as κ = 1 + kn4V

−1.

In the continuum limit with V,ni → ∞, the change in
molecule concentration (x1 = 1, x2 = n2/V , x4 = n4/V ) [21]
is represented by the deterministic rate equation [22], as given
by

ẋ2 = (1 + kx4)
(

1
2x2

1 − αx2 − x2
2 + α2x4

) − μx2,

ẋ4 = (1 + kx4)
(

1
2x2

2 − αx4
) − μx4. (2)

For a certain range of parameters k and μ, this deterministic
rate equation has bistable fixed points, separated by an unstable
fixed point, which are denoted by A(xa

2 ,xa
4 ), B(xb

2 ,xb
4 ), and

C(xc
2,x

c
4), (xa

2 < xb
2 < xc

2,x
a
4 < xb

4 < xc
4) (see Fig. 1). The

fixed point A corresponds to the nonactive state with only
a few dimers and tetramers, while C corresponds to the active
state with autocatalytic reactions and sufficient catalysts.

III. OPTIMAL VOLUME FOR THE TRANSITION
AND ITS RELATION WITH UNSTABLE STATE

We now study the probabilistic chemical reaction system
by the Gillespie algorithm [23]. Examples of the time series
of the number of molecules are shown in Fig. 2 for different
values of V , where the initial condition of the number of dimers
and tetramers is set to zero. As shown, the transition from the
inactive to active state is observed at a certain time, while for
small V , there also exists transition back from the active to
inactive state.
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FIG. 2. Time series of the number of dimers n2 (blue line) and
tetramers n4 (red line) for k = 104, μ = 30, and (a) V = 102, (b) 103,
(c) 104. The times for the transition to the active state are t∗ ∼ 204,
∼1, and ∼754 for (a), (b), and (c), respectively.

We now define the transition time to the active state by the
time when the concentrations of both dimers and tetramers
n2/V , n4/V exceed the values given by the active fixed point
C(xc

2,x
c
4) in the rate equation. The volume dependency of the

transition time is plotted in Fig. 3. As can be seen in the
figure there is a minimum transition time at a certain optimal
volume Vopt. By decreasing V below Vopt, the transition
time increases asymptotically as V −1, while for V > Vopt, it
increases exponentially with the volume.

We computed Vopt by varying the parameters k and μ.
Interestingly, as shown in Fig. 4, these optimal volumes, when
plotted as a function of xb

4 , i.e., the tetramer concentration at the
unstable fixed point in the rate equation, are fitted on a single
curve, given by Vopt ∼ 1/xb

4 [24], for all the parameter values.
(If the backward reaction rate α is close to zero, the polymer
concentration could be higher than the monomer at the unstable
fixed point, and in this case, the monomer number that satisfies
1/xb

4 is less than unity for small V , and the optimal volume
cannot exist. Apart from this unrealistic case this relationship
of the optimal volume generally holds.)
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FIG. 3. Transition time from the inactive to active states, plotted
as a function of the volume V . For each parameter and size, the
time is computed as the average over 104 samples of the mas-
ter equation. Log-log plot for (k,μ) = (2.5×103,20),(5×103,20),
(5×103,40),(104,20),(104,40), and (2×104,40), with different colors
and symbols. The optimal Vopt that gives the minimum is indicated
by the thick arrow. The inset shows the corresponding semilog plot.
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FIG. 4. Relationship between Vopt and xb
4 . The abscissa give the

tetramer concentration at the unstable fixed point xb
4 , and the ordinate

shows the optimal volume Vopt as estimated in Fig. 3. Each point
is a result from different parameter values randomly selected from
k ∈ (0,5×104) and μ ∈ (0,100) where the rate equation exhibits
bistability.

We now explain the origin of this optimal volume and
its relationship with xb

4 . First of all, by using the standard
formalism [22], the master equation is approximated by
the Fokker-Planck equation (FP) for large volumes. It is
obtained by the Kramers-Moyal expansion or the chemical
Langevin equation as the expansion by 1/V . For our model
(α = 1,x1 = 1), the FP equation is straightforwardly obtained
as

∂P (x2,x4,t)/∂t = −
∑
i=2,4

∂xi
[Ai(x)P (x,t)]

+ 1

2V

∑
i,j=2,4

∂xi
∂xj

[Bi,j (x)P (x,t)],

A =
(

(1 + kx4)
(

1
2 − x2 − x2

2 + 2x4
) − μx2

(1 + kx4)
(

1
2x2

2 − x4
) − μx4

)
,

B =
(

(1 + kx4)
(

1
2 + x2

) + μx2 4(1 + kx4)
(

1
2x2

2 + x4
)

(1 + kx4)
(

1
2x2

2 + x4
)

μx4

)
.

(3)

We computed the volume dependency of the transition time
from the initial value x2 = x4 = 0 to x2 > xc

2 and x4 > xc
4 by

using the FP equation, as plotted in Fig. 5. The transition
time increases monotonically with V , and is fitted well with
exp(const. × V ). This is expected from the Kramers formula
[25] in which the probability to jump from one stationary state
to another is given by exp(−εU ), where ε is the noise strength
and U is the potential barrier to go to the new stationary state.
Here the noise in the FP equation is proportional to ε = 1/V ,
and the transition to the active state which has to go across
the unstable fixed point is given by the jump over the potential
barrier Ub. Hence the transition time increases as exp(UbV )
with the increase in V . In fact, the transition time computed by
the master equation asymptotically agrees with this estimate
for large V .
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FIG. 5. Transition time estimated by the FP equation (3) for k =
104 and μ = 30 (black line); the transition time directly estimated by
the master equation is also shown for comparison (red line).

[Indeed, for a one-variable Fokker-Planck equation

∂tP (x,t) = −∂x[A(x)P (x,t)] + 1
2∂2

x [B(x)P (x,t)], (4)

the corresponding potential is given by U (x) = ∫ x
A(x ′)/

B(x ′) dx ′. In the present two-variable case, such potential does
not generally exist [26], but the temporal evolution to cross the
saddle point B is restricted around its unstable manifold that
is located between the two nullclines (see Fig. 1). Thus the
motion is effectively represented by a one-dimensional motion,
and the effective potential exists for the present Fokker-Planck
equation.]

As this dependence is monotonic in V , the FP equation
can explain neither the existence of Vopt nor the increase
in the transition time for V < Vopt. For the explanation
the discreteness of the molecule number 0,1,2, . . . is very
important. We now explain the relationship Vopt ∼ 1/xb

4 along
this line.

For the transition to occur, the concentration x4 has to
exceed the value of the unstable fixed point xb

4 , while the
catalytic reaction needs at least a single tetramer. For small
V < 1/xb

4 , the average tetramer number is decreased below
unity. The tetramer number is therefore often zero, and the
probability of having a single molecule decreases with the
decrease in V . Then the probability of crossing xb

4 decreases
with V , if V xb

4 < 1. Thus, the transition time increases as V

decreases below 1/xb
4 , which gives the optimal volume for the

transition time.
We have confirmed that the relationship between the

optimal volume and the unstable fixed point is universal in an
autocatalytic polymerization process, as given by models (I)
and (II). Indeed, most autocatalytic polymerization processes
can be essentially constructed by a combination of models (I)
and (II). Here, the master equations for probabilities are given
in the same way as in Eq. (1), and the rate equation in the
infinite volume limit for models (I) and (II) is given by

ẋn = (1 + kxL)(xn−1x1 − xn − xnx1 + xn+1) − μxn

(n = 2,3,4, . . . ,L − 1),

ẋL = (1 + kxL)(xL−1x1 − xL) − μxL,

(5)
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FIG. 6. The same plot for model (I) with (L,k,μ) = (3,2.5×103,

100),(3,5.0×103,100), (3,1.0×104,200), (4,5.0×103,100),(4,1.0×
104,100), and (4,1.0 × 104,200). Computed in the same manner as
Fig. 3.

for model (I) and

ẋn = (1 + kxL)
(

1
2x2

n/2 − xn − x2
n + 2x2n

) − μxn

(n = 2,4,8, . . . ,L/2),

ẋL = (1 + kxL)
(

1
2x2

L/2 − xL

) − μxL

(6)

for model (II).
Again, the dynamical systems of the model equations (5)

and (6) have two stable fixed points A(xa
i ) and C(xc

i ) and one
unstable fixed point B(xb

i ) for a certain parameter region. Fixed
points in model (II) are the root of the self-consistent equation

xL =
(

1 + kxL

α(1 + kxL) + μ

)L−1

.

Using direct Gillespie simulations of the model, we computed
the transition time between the state with xL ∼ 0 to the
active state with xL ∼ xc

L, which has a minimum at a certain
volume Vopt (see Fig. 6). We have plotted Vopt for a variety
of parameters and maximal lengths L, again as a function of
xb

L in Fig. 7. We have thus confirmed that the relationship
between the optimal volume and the catalyst concentration at
the unstable fixed point, Vopt ∼ 1/xb

L, is universal.
Last, we also studied a model with plural monomer species

and sequence-dependent catalytic reaction. In this case again,
we have confirmed the existence of an optimal size for the
transition to the active catalytic state, where specific sequences
are selected.

IV. SUMMARY AND DISCUSSION

To sum up, we have unveiled the explicit condition for
autocatalytic polymers to emerge. As spontaneous synthesis
of polymers is much slower than diffusion or degradation,
longer polymers are not maintained only by that. In contrast
to this inactive state, catalysts are continuously replicated with
the autocatalytic reaction, in the active state. Fluctuations in
the number of molecules induce the transition from the former
to the latter state while at least a single catalyst is needed for
it. This tradeoff leads to the optimal volume to minimize the
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FIG. 7. The relationship between Vopt and xb
L for model (I) with

L = 3 (green), 4 (blue), and 5 (orange) and for model (II) with L = 8
(yellow). The data are computed in the same way as for Fig. 4.
Parameter values are randomly selected from k ∈ (0,104) and μ ∈
(0,100).

transition time, generally given by the inverse of the catalyst
concentration at the unstable fixed point of the deterministic
rate equation. Below this optimal volume, the time to assemble
a single catalytic polymer increases in proportion to V −1,
while beyond it, more catalytic polymers are needed for the
transition, and the time to achieve such fluctuation increases
exponentially with V .

Discreteness (0,1, . . . ) in the molecule number essentially
matters for the determination of the optimal volume, in contrast
to several studies that adopt the FP equation by the system-size
expansion [22,27] to obtain the change in distribution [18,20]
and the transition process [28,29]. In fact, the FP equation
approach can account for the exponential increase in the
transition time with the system size but not the optimal volume.
It is also interesting to note that despite the importance of the
discreteness in the number, the optimal volume is estimated
by the unstable fixed point of the rate equation that itself is
obtained in the infinite size limit.

Our result applies generally to an autocatalytic replication
process, where inactive and active states are bistable. The
inverse relationship between the optimal volume and the
catalyst concentration at the unstable fixed point that separates
the two stable states is general even though the unstable-point
concentration depends on several reaction parameters, and the
details of the polymerization process. In models (I) and (II),
the concentration decreases exponentially with the (minimum)
length of the catalyst polymer, such that the optimal volume
as well as the transition time increases.

Although the emergence of life would require several steps,
autocatalytic polymerization is essential as one of them. The
present result suggests that the volume of the reaction space
matters for it. A limited space with an appropriate size is
preferable, which would be first provided by a porous medium
such as a mineral surface, and later by a vesicle composed
of the lipid bilayer. For example, by considering model (II)
with k = 108 (liters/mol), μ = 1 (with the unit of spontaneous
reaction rate), α = 1 (l/mol), x1 = 1 (mol/l), and L = 16, the
unstable fixed point value of the catalyst in the rate equation
becomes xb

L = 8.4×10−9 (mol/l). Therefore, Vopt ∼ 1/(xb
LNA)

is estimated by 2×10−16 (liters), which is as small a value as a
bacterial cell, while these parameter values are not unique, and
reliable estimates are difficult since the chemical parameters
for the primitive catalytic polymerization are not currently
available. This estimate, however, will be useful in designing
protocells with catalytic polymers within a vesicle, which has
been extremely investigated in synthetic biology [30,31]. Our
optimal size will provide a guide to choosing an appropriate
vesicle size.
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