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Nonlinear reconstruction of single-molecule free-energy surfaces from univariate time series
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The stable conformations and dynamical fluctuations of polymers and macromolecules are governed by
the underlying single-molecule free energy surface. By integrating ideas from dynamical systems theory with
nonlinear manifold learning, we have recovered single-molecule free energy surfaces from univariate time series
in a single coarse-grained system observable. Using Takens’ Delay Embedding Theorem, we expand the univariate
time series into a high dimensional space in which the dynamics are equivalent to those of the molecular motions
in real space. We then apply the diffusion map nonlinear manifold learning algorithm to extract a low-dimensional
representation of the free energy surface that is diffeomorphic to that computed from a complete knowledge of all
system degrees of freedom. We validate our approach in molecular dynamics simulations of a C24H50 n-alkane
chain to demonstrate that the two-dimensional free energy surface extracted from the atomistic simulation
trajectory is – subject to spatial and temporal symmetries – geometrically and topologically equivalent to that
recovered from a knowledge of only the head-to-tail distance of the chain. Our approach lays the foundations to
extract empirical single-molecule free energy surfaces directly from experimental measurements.
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I. INTRODUCTION

Free-energy surfaces present a powerful tool to describe the
stable states and dynamical pathways of molecules, which have
been profitably employed to describe the microscopic behavior
of polymers, peptides, and proteins [1–4]. The configuration
of a molecule comprising N atoms can be described by a
3N -dimensional vector of Cartesian coordinates. Interactions
between the atoms in the molecule, mediated, for example,
by covalent bonds, electrostatic interactions, and dispersion
forces, introduce cooperative couplings between the atomic
degrees of freedom that render the effective dimensionality of
the molecule, m, far lower than the 3N -dimensional atomic
coordinate space [3]. In a temporal sense, a molecular system
admits a low-dimensional description if—on sufficiently long
time scales—its dynamical evolution is governed by a small
number of collective modes to which the remaining degrees of
freedom are effectively slaved [5–7]. In a geometric sense, the
trajectory of the system through the 3N -dimensional phase
space is effectively restrained to an intrinsic manifold of
much lower dimensionality [3,6]. The existence and validity of
such low-dimensional descriptions has been demonstrated for
many macro- and biomolecules [3,4,8–14]. For example, the
effective dimensionality of the 22-atom alanine dipeptide [15]
and a coarse-grained model of the 57-residue src homology
3 domain [4] have been shown to be approximately two,
and that of a C24H50 n-alkane chain to be approximately
three [3].

Projection of molecular configurations into this reduced
dimensional space requires a mapping, g : R3N → Rm, spec-
ifying m collective variables, �ψ = [ψ1,ψ2, . . . ,ψm], formed
from the 3N degrees of freedom. For all but the simplest
molecules, this mapping is expected to be highly nonlinear and
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unavailable from analytical theory. In recent years, a number of
nonlinear machine learning approaches have been employed
to systematically infer such mappings by discovering low-
dimensional manifolds within high-dimensional molecular
simulation trajectories [3,4,6,8–10,12].

Under the ergodic hypothesis, the distribution of molecular
configurations in sufficiently long simulation trajectories is
expected to follow the Boltzmann distribution. The single-
molecule free-energy surface (smFES) as a hypersurface in
Rm+1, F ( �ψ), can be estimated from the observed proba-
bility distribution of snapshots projected onto the manifold,
P̂ ( �ψ), using the statistical mechanical relationship, F ( �ψ) =
−kBT lnP̂ ( �ψ) + C, where kB is Boltzmann’s constant, T is
the temperature, and C is an arbitrary constant [e.g., Fig. 1(a)].
The smFES is of great value in revealing metastable and
stable configurational states, dynamical pathways connecting
these states, and quantitatively linking molecular chemistry
to thermodynamic and dynamical behavior [3,4,6,14,16,17].
For example, free-energy surfaces were recently employed
to understand the mechanism by which the anticancer drug
daunomycin intercalates into B-DNA [18], and to identify
a new structural intermediate in the activation pathway of
c-src tyrosine kinase as a potential target for novel anticancer
therapeutics [19]. With the advent of highly parallel sim-
ulation packages, powerful computer hardware, and robust
dimensionality reduction algorithms, the recovery of single-
molecule free-energy surfaces from molecular simulations
is now routine [4,6,19], but simulations are restricted to
microsecond time scales and rely upon classical force fields
that are approximations to the true underlying quantum
mechanical interactions. The free-energy surfaces recovered
from computational studies are therefore approximations to
the true smFES. It would represent a significant advance
in single-molecule physics if single-molecule free-energy
surfaces could instead be directly recovered from experimental
data.
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FIG. 1. Schematic overview of the single-molecule free-energy surface (smFES) reconstruction methodology. (a) Top left: The dynamical
evolution of the molecular system proceeds over a low-dimensional manifold M supporting the smFES. The dynamics of the n-tetracosane
polymer chain in water considered in this work are contained in a two-dimensional manifold parametrized by the collective variables [ϒ1,ϒ2] that
are nonlinear combinations of the molecular degrees of freedom. The smFES maps out the Gibbs free energy of the chain F dedimensionalized
by the reciprocal temperature β = 1/kBT as a function of these order parameters. Computing M requires access to the atomic coordinates of the
molecule that are typically only available from molecular simulations. Bottom left: Measurements of an experimentally accessible observable
v(t) furnish a scalar time series providing a coarse-grained characterization of the single-molecule dynamics. In this work, we consider the
head-to-tail distance, �, as a quantity measurable by FRET [21]. Assembling d successive measurements separated by a delay time τ produces
an n-dimensional delay vector �y(t) = [v(t),v(t + τ ),v(t + 2τ ),v(t + 3τ ), . . . ,v(t + (d − 1)τ )]. By computing delay vectors over the entire
time series, the scalar time series is projected into an n-dimensional delay space. Bottom right: Under quite general conditions on τ , d , and the
observable v(t), Takens’ theorem [29–34] asserts that the manifold �(M) containing the delay vectors �y(t) is a diffeomorphism to the manifold
M containing the real space molecular dynamics, and the variables [ϒ∗

1 ,ϒ∗
2 ] parametrizing �(M) are related by a smooth and invertible

transformation � to those parametrizing M . Using this approach, topologically and geometrically identical reconstructions of single-molecule
free-energy surfaces can be determined directly from experimental measurements. (b) The original and reconstructed manifolds M and �(M)
exist as low-dimensional surfaces in high-dimensional space. In this work, M is a two-dimensional surface in the 72-dimensional space of
Cartesian coordinates of the 24 united atoms of the polymer, and �(M) is a two-dimensional surface in the (d = 20)-dimensional delay
space. We discover and extract the low-dimensional surfaces using a manifold learning technique known as diffusion maps [3,6,39,40,81,82].
Colloquially, this approach may be considered a nonlinear analog of principal components analysis that discovers low-dimensional curved
hyperplanes preserving the most variance in the data. As an illustrative example [6], we show the application of diffusion maps to the “Swiss
roll” data set comprising a cloud of points in [X,Y,Z] defining a two-dimensional surface in three-dimensional space (top). The diffusion map
discovers the latent two-dimensional manifold, and extracts it into the two collective variables [�2,�3] quantifying, respectively, the location
of the points along and perpendicular to the main axis of the spiral (bottom).

State-of-the-art single-molecule experimental techniques
can furnish measurements of a small number of coarse-grained
observables. For example, single-molecule particle tracking
can furnish approximate backbone contours of linear macro-
molecules such as λ-DNA [20] from which molecular descrip-
tors such as the radius of gyration or head-to-tail distance of the
molecule can be extracted. Single-molecule Förster resonance
energy transfer (smFRET) can supply one to three intramolec-
ular distances between fluorescent dye molecules covalently
grafted to the molecule of interest [21,22]. Given a time series
in one (or more) system observables, hidden Markov models

can estimate the most probable number of discrete metastable
states and their interconversion rates [21,23]. Similarly, the
computational mechanics approach of Crutchfield and cowork-
ers [24,25], and its recent sophistication by Li et al. [26],
can infer a state space network and transition probabilities
from univariate measurements. An approach recently proposed
by Haas et al. dispenses with the need to discretize the
data into metastable states by inferring the parameters of
a one-dimensional Langevin equation to project the smFES
onto the measured observable [27]. Rather than inferring the
metastable states of the molecule, or projecting the smFES onto
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the measurement variable, the present work seeks to answer
the following question: Is it possible to infer from a univariate
time series of a single molecular observable a representation of
the single-molecule free-energy surface that is geometrically
and topologically equivalent to that which would have been
recovered from a complete knowledge of all molecular degrees
of freedom? In other words, is it possible to extract from a time
series of a single molecular measurement a representation
of the m collective variables, �ψ = [ψ1,ψ2, . . . ,ψm], and
the free-energy landscape over these variables, F ( �ψ), that
would have been computed by analyzing the 3N -dimensional
trajectory of the Cartesian coordinates of all atoms in the
molecule?

By integrating ideas from dynamical systems theory,
nonlinear manifold learning, and statistical mechanics, we
demonstrate in molecular dynamics simulations of a polymer
chain that—up to a smooth transformation and spatiotemporal
symmetries—the answer to this question is in the affirmative.
Attractor reconstruction seeks to infer the geometry and
topology of the intrinsic manifold, M , of a dynamical system
from a few system observables without knowledge of the
underlying governing equations [28]. Takens’ delay embed-
ding theorem [29–34] provides a prescription to reconstruct
a topologically and geometrically equivalent realization of
the intrinsic manifold, �(M), from a scalar time series in a
generic system observable by projecting the time series into
a high-dimensional space in which the dynamical evolution
is C1-equivalent (i.e., related by a continuously differentiable
function) to that in the original space. Villani et al. conducted
molecular dynamics simulations of the 4-residue tropoelastin
peptide in water, and employed delay embeddings of the pep-
tide end-to-end distance to estimate the effective dimensional-
ity of the dynamics and compute Lyupanov exponents [35,36].
Giannakis and Majda employed delay embeddings and Lapla-
cian eigenmaps to infer the periodic, low-frequency, and
intermittent spatiotemporal modes underpinning the dynamics
of the upper-ocean temperature in a computational climate
model [37]. Berry et al. integrated delay embeddings with
diffusion maps to decompose high-dimensional dynamical
processes into dynamical modes active at different time scales
and recover the slow modes governing the long-time dynam-
ics of coupled ordinary differential equations, 2D reaction-
diffusion simulations, and videos of liquid crystal growth [38].
In this work, we use Takens’ theorem to expand a univariate
time series of the molecular head-to-tail distance into a
high-dimensional space in which the dynamical evolution
is C1-equivalent to that of the molecule in real space, then
employ diffusion maps [6,39,40] to recover a topologically
equivalent reconstruction of the smFES. Takens’ theorem
asserts that this reconstructed smFES is—up to the removal of
spatiotemporal symmetries—a diffeomorphism (i.e., related
by a smooth and invertible mapping) to that which would
be recovered by direct application of diffusion maps to the
3N -dimensional simulation trajectory. We empirically verify
this assertion by showing that the Jacobian determinant of the
coordinate transformation between the two surfaces remains
single-signed. By demonstrating in molecular simulations that
we can recover a geometrically and topologically equivalent
representation of the true smFES from a single experimentally
accessible molecular observable, this work lays the theoretical

and algorithmic foundations to infer single-molecule free-
energy surfaces directly from experimental data. We present
a schematic overview of our methodology in Fig. 1. We now
proceed to discuss each component of the method in detail
and validate our approach in an application to molecular
simulations of a polymer chain.

II. RESULTS AND DISCUSSION

A. smFES from molecular dynamics simulations

We have previously applied diffusion maps to recover the
smFES of n-tetracosane C24H50 in water [3]. This chemically
simple homopolymer exhibits a rich conformational behavior,
and serves as a prototypical model for the study of the
hydrophobic effect in protein folding [41–43]. We selected
this system as well-understood but nontrivial system in which
to demonstrate and validate our methodology. As detailed in

FIG. 2. Application of diffusion maps to the atomistic simulation
trajectory employing a Gaussian kernel of bandwidth ε = 0.04
specified using the approach in Ref. [83]. (a) Neglecting the trivial
leading eigenvalue, λ1 = 1, the spectral gap between λ5 and λ6

indicated by the horizontal line informs an embedding dimensionality
of four into [ �φ2, �φ3, �φ4, �φ5]. (b) Projection of the data into [ �φ2, �φ3]
results in an effectively one-dimensional manifold, revealing a
functional dependence between these two collective variables. We
eliminate this redundancy using hierarchical nonlinear principal
components analysis (h-NLPCA) to extract the effectively one-
dimensional manifold that we term ��23. Points are colored by the
first principal moment of the gyration tensor ξ1 [48].
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the Methods Summary, we conducted molecular dynamics
simulations of n-tetracosane in water, and applied the diffusion
map nonlinear dimensionality reduction algorithm to the
72-dimensional simulation trajectory recording the Cartesian
coordinates of the 24 united atoms. In brief, we computed
pairwise distances between all 10 001 configurations in the
molecular simulation trajectory as the root mean squared
distance (RMSD) between the united atom coordinates of
rotationally and translationally aligned chain configurations.
By calculating a spectral decomposition of a random walk over
this configurational ensemble, the diffusion map recovers the
slowest modes of a diffusion process over the data identifiable
as the important collective modes driving the dynamical
evolution of the system [6,39,40]. The diffusion map identifies
a four-dimensional manifold within the 72-dimensional space
occupied by n-tetracosane defined by an embedding into the
top four collective modes [ �φ2, �φ3, �φ4, �φ5] [Fig. 2(a)]. Following
previous work, we consider the influence of the solvent
degrees of freedom implicitly through their impact on the
configurational ensemble sampled by the chain [3]. Consistent
with previous findings, the projection of the data into �φ2 and �φ3

define an effectively one-dimensional manifold, indicating that
these eigenvectors are functionally dependent collective vari-

ables describing the same dynamical mode of the system [3].
We have previously drawn the analogy with multivariate
Fourier series in which sin(x) and sin(2x) are components
oriented in the same spatial direction that are nonetheless
orthogonal [3]. We eliminate this redundancy by applying hier-
archical nonlinear principal components analysis (h-NLPCA)
(Methods Summary) to the [ �φ2, �φ3] subspace to extract the
one-dimensional manifold that we term ��23 [Fig. 2(b)] [44,45].
An elegant alternative means to systematically detect and
eliminate such so-called “repeated eigendirections” using
locally linear approximations was recently proposed by Dsilva
et al. [46]. The combined dimensionality reduction offered
by sequential application of diffusion maps and h-NLPCA
permits us to construct the three-dimensional embedding of
the molecular dynamics trajectory into [��23, �φ4, �φ5] illustrated
in Fig. 3. This projection defines the intrinsic manifold, M ,
of the n-tetracosane system. Temporally, the three collective
variables spanning this manifold are the slow dynamical
modes of the system to which the remaining degrees of
freedom are effectively slaved [3,5]. Geometrically, this
manifold is the three-dimensional hypersurface in phase space
to which the dynamical evolution of the molecular system
is effectively restrained. Representative molecular snapshots

FIG. 3. Embedding of the atomistic simulation trajectory into the top three collective modes [��23, �φ4, �φ5] identified by diffusion maps.
Projection of the 10 001 simulation snapshots into (a) the �23-φ5 projection colored by the first principal moment of the gyration tensor ξ1,
(b) the �23-φ5 projection colored by ξ2, and (c) the �23-φ4 projection colored by ξ3. (d) The smFES F (��23, �φ4, �φ5) with isosurfaces plotted at
βF = 3, 4, 5, 6, 7, 8, 9, where F is the Gibbs free energy and β = 1/kBT . The “kink-and-slide” collapse pathways are indicated by arrows,
wherein a kink forms at the head or tail of the chain, the kink migrates towards the center of the chain expelling water molecules from between
the arms to form a symmetric hairpin with a dry interior, then the chain condenses into a hydrophobically collapsed right- or left-handed helical
coil.
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are projected over this and all subsequent embeddings using
VMD [47].

A known deficiency of the diffusion map, and nonlinear
dimensionality reduction techniques in general, is that the
low-dimensional collective variables are unknown nonlinear
functions of the system degrees of freedom [6]. The gyration
tensor of the n-tetracosane chain presents a useful interpre-
tive “bridge” variable with which to correlate and develop
physical insight into chain motions in [��23, �φ4, �φ5] [3,48]. In
Figs. 3(a)–3(c) we color the projected molecular configura-
tions according to the principal moments of the chain gyration
tensor, {ξ1,ξ2,ξ3}, interpretable as the length of the chain
along its longest, next longest, and shortest axes [48]. The
motion of the chain over this intrinsic manifold resolves the
hydrophobic collapse mechanism that our previous analysis
revealed to proceed by a “kink-and-slide” mechanism [3],
wherein extended configurations in the global free energy
minimum collapse via shifting of a loose asymmetric bend
near the head or tail towards the middle of the chain to
form a tight symmetric hairpin that subsequently folds into
a right- or left-handed helix. Unfolding proceeds by the
reverse pathway. The free-energy profile over the intrinsic
manifold, M , F (��23, �φ4, �φ5) = −kBT lnP̂ (��23, �φ4, �φ5), defines
the smFES of the n-tetracosane chain in water as a surface in
R4 presented in Fig. 3(d).

B. Spatially symmetrized smFES from molecular
dynamics simulations

It is the goal of this study to employ Takens’ theorem to
recover a diffeomorphism of the smFES of the n-tetracosane
chain from a knowledge of only the head-to-tail distance,
�, between the terminal united atoms of the chain. We
selected � as an experimentally accessible observable that
can, in principle, be measured using a technique such as
smFRET [21,22]. In practice—particularly for a short alkane
chain—the attachment of extrinsic FRET dye molecules may
perturb the molecular motions of the molecule [22], and it can
be challenging to (i) attach the dyes, (ii) obtain long time series
before photobleaching, (iii) achieve sub-ms time resolution,
(iv) resolve adequate signal-to-noise ratios, and (v) measure
distances outside 2–8 nm [21]. It is the aim of the present study
to lay the theoretical foundations for the recovery of smFES
in the idealized case of perfect measurements. We defer to our
future work a confrontation of the important practical concerns
associated with the use of real smFRET data.

As we discuss below, the technique we use to recover the
smFES requires that the measured observable be generic in
the sense that it is a function of all system degrees of freedom,
and does not contain any symmetries not present in the system
being observed [29,49–51]. As a function of all chain degrees
of freedom (i.e., the 72 Cartesian coordinates of the 24 united
atoms, up to trivial rotations and translations), � satisfies the
first criterion, but it does possess two symmetries absent in the
molecule. First, � cannot distinguish the head-to-tail sense of
the molecule, such that it is invariant to head-to-tail inversions.
This means, for example, that it cannot distinguish whether a
kink in an asymmetrically kinked molecule occurs at the head
or the tail. Second, � is invariant to mirror symmetries of the
chain, such that it cannot distinguish between chiral enan-

tiomers of the same molecular configuration, and so cannot
differentiate between right- and left-handed helices. The role
of symmetries in dynamical systems and their observables in
phase space reconstruction has been studied in detail [50–53].
The prototypical example of this symmetry is the z variable in
the Lorenz equations, which cannot distinguish the symmetric
wings of the Lorenz attractor [50,53,54] (cf. Appendix B1).
Reconstruction of the manifold using z alone necessarily
collapses together the two wings, but is an otherwise good
reconstruction variable capable of producing accurate global
reconstructions of the phase space [53].

In the present case, reconstruction of the intrinsic manifold
from � can only be performed up to head-to-tail and mirror
symmetries of the chain. It is not possible, therefore, to
recover a diffeomorphism of the smFES extracted from the
full-dimensional molecular simulation from measurements
of � alone. Our objective instead should be recovery of a
representation of the smFES in which these two symmetries
are eliminated. We remove the symmetries by reapplying

FIG. 4. Application of diffusion maps to the spatially sym-
metrized atomistic simulation trajectory employing a Gaussian kernel
of bandwidth ε = 0.03 specified using the approach in Ref. [83]. (a)
The spectral gap between λ5 and λ6 indicated by the horizontal line
informs an embedding dimensionality of four into [ �φ2, �φ3, �φ4, �φ5].
(b) Projection of the data into [ �φ2, �φ3] results in an effectively one-
dimensional manifold, informing a functional dependence between
these two collective variables. We eliminate this redundancy using
h-NLPCA to extract the effectively one-dimensional manifold that
we term ��23. Points are colored by the first principal moment of the
gyration tensor ξ1.
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FIG. 5. Embedding of the spatially symmetrized atomistic simulation trajectory in which the head-to-tail and mirror symmetries of the
molecule were removed, into the top three collective modes [��23, �φ4, �φ5] identified by diffusion maps. Projection of the 10 001 simulation
snapshots into (a) the �23-φ5 projection colored by ξ1, (b) the �23-φ5 projection colored by ξ2, and (c) the �23-φ4 projection colored by ξ3.
Elimination of the head-to-tail symmetry collapses together asymmetrically kinked chain configurations, and elimination of mirror symmetry
collapses together right- and left-handed helices. (d) The smFES F (��23, �φ4, �φ5) exists as a two-dimensional surface within the three-dimensional
space spanned by [��23, �φ4, �φ5]. Free-energy isosurfaces are plotted at βF = 3, 4, 5, 6, 7, 8, 9, and the “kink-and-slide” collapse pathway is
indicated by an arrow.

diffusion maps to the molecular simulation trajectory in which
we define distances between pairs of chain configurations as
the rotationally and translationally aligned RMSD between the
united atom coordinates minimized over head-to-tail inversion
and mirror reflection. As above, the diffusion map identifies
a four-dimensional intrinsic manifold in which [ �φ2, �φ3] are
functionally dependent (Fig. 4), allowing us to apply h-
NLPCA to construct the [��23, �φ4, �φ5] intrinsic manifold in R3

in Figs. 5(a)–5(c) and associated smFES in R4 in Fig. 5(d).
The symmetrized intrinsic manifold is topologically equivalent
to a “folding” in half of the original attractor in both φ4

and φ5, corresponding to elimination of the mirror and head-
to-tail symmetries, respectively. Removing these two spatial
symmetries makes � an appropriate generic observable for its
reconstruction since it is both a function of all chain degrees
of freedom and does not contain any symmetries not present
in the spatially symmetrized molecular system.

The spatially symmetrized three-dimensional intrinsic
manifold exists as an effectively two-dimensional surface in
the three-dimensional space spanned by [��23, �φ4, �φ5], pro-
viding an opportunity for further dimensionality reduction
beyond that furnished by the diffusion map. Application of

h-NLPCA to the embedded data identifies a new basis set
of three nonlinear principal components, [ �ϒ1, �ϒ2, �ϒ3], formed
from nonlinear combinations of [��23, �φ4, �φ5] and arranged in
order of decreasing variance. That 99.95% of the variance in
the data lie within the top two nonlinear principal components
confirms that the manifold is effectively two-dimensional,
and can be projected into [ �ϒ1, �ϒ2] ∈ R2 with essentially no
loss of information (Fig. 6). We present this two-dimensional
intrinsic manifold and three-dimensional smFES in Fig. 7. The
“kink-and-slide” pathway for chain folding and unfolding over
the intrinsic manifold remains apparent, but where elimination
of the head-to-tail and mirror symmetries collapse together the
head-and-tail kinked conformations, and right- and left-handed
helices, respectively. It is the spatially symmetrized three-
dimensional smFES in Fig. 7(d) that we seek to reconstruct
from the scalar time series in �.

We note that the full, unsymmetrized manifold may, in
principle, be recovered by supplementing � with other simulta-
neous measurements capable of lifting the degeneracy in head-
to-tail inversion (e.g., an asymmetric intramolecular smFRET
distance) and mirror symmetry (e.g., circular dichroism). It is
the goal of the present work to recover the smFES from a scalar
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FIG. 6. Additional dimensionality reduction of the spatially
symmetrized diffusion map embedding of the atomistic simulation
trajectory (Fig. 5). (a) The three-dimensional diffusion map em-
bedding of the spatially symmetrized atomistic simulation trajectory
exists as an approximately two-dimensional surface in [��23, �φ4, �φ5].
(b) Application of h-NLPCA to the embedding generates a new basis
set of three nonlinear principal components, [ �ϒ1, �ϒ2, �ϒ3], formed
from nonlinear combinations of [��23, �φ4, �φ5] and arranged in order of
decreasing variance. This figure was generated using the “Nonlinear
PCA toolbox for Matlab” developed by Scholz [45,85]. (c) Plotting
the cumulative fraction of variance explained upon incorporating
additional nonlinear principal components shows that more than
99.95% of the variance in the embedding resides in the first two
principal components, confirming that the manifold is effectively two-
dimensional and can be projected into [ �ϒ1, �ϒ2] ∈ R2 with essentially
no loss of information.

time series, but a natural extension would be the construction
of multivariate Takens’ delay embeddings from multichannel
measurements [54].

C. smFES from delay embeddings

Takens’ delay embedding theorem is a well-established
result in dynamical systems theory dating to the early
1980s [29–34], but its implications can be unintuitive. The
theorem seems to state that the multidimensional free-energy
landscape upon which a system evolves can be recovered from
the history of a time series in a single system observable.
Projecting the high-dimensional system dynamics onto a
single measurement would seem to surrender any possibility
of recovering the multidimensional surface. So how can
Takens’ theorem be rationalized? Dispensing for the moment
with mathematical formality for the sake of clarity, two
factors must be borne in mind. First, Takens’ theorem permits
recovery only of a topologically equivalent representation of
the original landscape [32], meaning that the reconstructed
landscape is related to the original landscape through a smooth
transformation that may bend, stretch, or squash the manifold,
but not rip it apart or stick it together in new ways [55]. The
reconstructed manifold is therefore guaranteed to preserve all
of the topological properties of the original, including its edges,
its continuity, and its connectivity [55]. The reconstruction is
not, however, guaranteed to preserve the topography of the
manifold, since the smooth transformation may change the
probability distribution over the surface and therefore perturb
the heights and depths of the free-energy peaks and valleys.
For our purposes, this means that the reconstructed landscape
is guaranteed to faithfully identify the states of the system
and the connectivity of the structural transition pathways
between them, but the smooth transformation may perturb
the terrain of the free-energy landscape from that over the
original manifold. We are unaware of any theoretical results
placing bounds on the degree to which the transformation
may perturb the landscape. In this work, we quantify the
topographical perturbation numerically to demonstrate that
it is relatively mild for this particular system, and describe
in the Conclusions our ongoing work to place analytical
and/or theoretical limits on the extent of the perturbation.
Second, a univariate time series provides not just a single
measurement of the system state, but the entire history of that
observable. Provided that the measurement is a function of all
of the system degrees of freedom (i.e., it is generic) then the
evolution of the system over its multidimensional free-energy
surface is encoded into this univariate time trace. Keeping
a sufficiently long history of system univariate observations
enables Takens’ delay embeddings to unambiguously pinpoint
the location of the system on its multidimensional free-energy
surface. It is perhaps useful to make an analogy with Markov
chains: the future evolution of a mth order chain can be
predicted from knowledge of the last m states visited by the
system [56]. A second useful analogy is one with ordinary
differential equations: the existence and uniqueness theorem
states that—subject to some constraints on continuity and
smoothness—an N th order ordinary differential equation,
y(N) = F (x,y ′,y ′′, . . . ,y(N−1)), possesses a unique solution,
y(x), for a particular specification of its initial condition, x =
x0, and the first (N − 1) derivatives at that point y ′(x0) = σ1,
y ′′(x0) = σ2, . . ., y(N−1)(x0) = σ(N−1) [31,57]. By keeping a
sufficiently long record of the past history of y(x) these
derivatives may be computed by finite differences, permitting
calculation of the unique solution.

032412-7



JIANG WANG AND ANDREW L. FERGUSON PHYSICAL REVIEW E 93, 032412 (2016)

FIG. 7. Embedding of the spatially symmetrized atomistic simulation trajectory into the top two nonlinear principal components [ �ϒ1, �ϒ2]
identified by sequential application of diffusion maps and h-NLPCA. Projection of the 10 001 simulation snapshots colored by (a) ξ1, (b) ξ2,
and (c) ξ3. (d) The smFES F ( �ϒ1, �ϒ2) over which the “kink-and-slide” collapse pathway is indicated by chevrons.

Appreciating the possibly alien nature of these ideas, we
present in Appendix B two simple examples of the application
of Takens’ theorem to recover from univariate time series topo-
logically equivalent representations of the multidimensional
landscapes of (i) the Lorenz attractor and (ii) two-dimensional
Brownian motion in a three-well potential. Below, we use
this approach to recover a topologically equivalent repre-
sentation of the smFES of the n-tetracosane chain presented
in Fig. 7(d).

Mathematically, Takens’ delay embedding theorem
[29–34] provides a means to reconstruct a topologically and
geometrically equivalent realization of the intrinsic manifold,
�(M), from a scalar time series in a generic observable—
not containing any symmetries that are not present in the
system—by projecting the time series into a high-dimensional
space in which the dynamical evolution is C1-equivalent (i.e.,
related by a continuously differentiable function) to that in
the original space. � is an invertible function mapping M to
�(M) such that both � and �−1 are smooth, such that �(M)
is geometrically and topologically equivalent to M [32,58]
(Methods Summary). Given our scalar time series {�(ti)}Ki=1
measured at equally spaced 10 ps intervals over the course
of the 100 ns molecular simulation (Fig. 8), Takens’ theorem
prescribes that we construct the mapping, �, through a delay
embedding,

�y(ti) = �(�(ti)) = [�(ti),�(ti + τ ), . . . ,�(ti + (d − 1)τ )], (1)

where τ is the delay time between successive system ob-
servations and d is the delay embedding dimensionality. By
considering sufficiently many delayed observations into this
projection, Takens’ theorem makes the remarkable assertion
that the dynamical evolution of the delay embedding becomes
equivalent to that of the dynamical evolution of the molecule
in its Cartesian coordinate space, with one related to the other
by a smooth and invertible transformation [59]. Formally, our
application of Takens’ theorem is to observations of a sub-
space, the dynamics of the polymer chain, subject to external
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FIG. 8. The scalar time series {�(ti)}K
i=1 measuring the head-to-tail

distance of the n-tetracosane at K = 10 001 points at 10 ps intervals
over the course of the 100 ns molecular simulation trajectory.
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FIG. 9. Application of diffusion maps and h-NLPCA to the
20-dimensional delay embedding constructed from the scalar time
series of the chain head-to-tail distance. (a) Diffusion maps were
applied using a Gaussian kernel of bandwidth ε = 4.00 specified
using the approach in Ref. [83]. The gap in the eigenvalue spectrum
between λ4 and λ5 indicated by the horizontal line informs an
embedding dimensionality of three into [ �φ∗

2 ,
�φ∗

3 ,
�φ∗

4 ]. (b) Application
of h-NLPCA to the embedding generates a new basis set of three
nonlinear principal components, [ �ϒ∗

1 , �ϒ∗
2 , �ϒ∗

3 ], formed from nonlinear
combinations of [ �φ∗

2 ,
�φ∗

3 ,
�φ∗

4 ] and arranged in order of decreasing
variance. (c) Plotting the cumulative fraction of variance explained
upon incorporating additional nonlinear principal components shows
that more than 99.79% of the variance in the embedding resides in
the first two principal components, confirming that the manifold is
effectively two-dimensional and can be projected into [ �ϒ∗

1 , �ϒ∗
2 ] ∈ R2

with essentially no loss of information.

forcing by solvent motion and the coupled thermostat and
barostat (Methods Summary). Takens’ theorem was originally
formulated for autonomous dynamical systems independent
of time and external influences [33,34], and so our application
appeals to recent generalizations of Takens’ theorem by
Stark et al., who proved it to hold, under very general
conditions, for both deterministically and stochastically forced
systems [33,34]. The projected time series {�y(ti)}K ′

i=1 defines
the reconstructed intrinsic manifold �(M) ∈ Rd . Takens’
theorem assures recovery of �(M) for d � (2k + 1), where
k is the dimensionality of the original system, but k < d <

(2k + 1) can be sufficient [30,60]. The theorem places no
restrictions on the value of τ . In practice, empirical tools
exist to choose appropriate values of τ and d for finite data
and a system of unknown dimensionality. We employ the
mutual information approach of Fraser and Swinney to choose
τ = 20 ps [61], and the approach of Cao [62] based on the
false nearest neighbors method of Kennel et al. [63] to select
d = 20 (Methods Summary).

Due to the incorporation of 20 measurements of � spaced
at 20 ps intervals into each delay embedding vector �y(t), the
K = 10 001 observations of � produce only K ′ = 9963 points
in the delay embedding. Accordingly, we assign the properties
of each delay-embedded point from the mean over the points
constituting the delay vector. For example, in Figs. 10, 11,
and 13 we color each delay embedded point according to the
principal moments of the gyration tensor averaged over the 20
molecular configurations, {�1,�2,�3}, where we use upper
case to denote a multisnapshot average.

Above, we applied diffusion maps and h-NLPCA to extract
the intrinsic manifold, M , from the 3N -dimensional Cartesian
coordinate space of the atomistic simulation trajectory. We
employ an analogous approach to extract the reconstructed
intrinsic manifold, �(M), from the 20-dimensional delay
embedding, {�y(ti)}K ′

i=1. Computing pairwise distances between
delay embedding vectors using the Euclidean norm, the dif-
fusion map infers a three-dimensional projection of the delay
embedded data into the leading collective modes [ �φ∗

2 , �φ∗
3 , �φ∗

4 ]
[Fig. 9(a)], where we decorate the collective modes inferred
from the delay embedding with an asterisk to distinguish
them from those derived from the atomistic simulation. These
collective order parameters describe the slow modes of the
dynamical evolution of y(t) over �(M), which Takens’
theorem asserts is C1-equivalent to the dynamical evolution of
the molecular system on M [32]. As illustrated in Fig. 9(b), the
reconstructed intrinsic manifold produced by embedding the
9963 delay vectors into this three-dimensional space exists as a
two-dimensional surface resembling a potato chip. Application
of h-NLPCA confirms this assessment, showing 99.79% of
the variance in the data to reside within the top two nonlinear
principal components [Fig. 9(c)], permitting the projection of
�(M) into [ �ϒ∗

1 , �ϒ∗
2 ] with essentially no loss of information. We

present in Fig. 10(a) the projection of �(M) into [ �φ∗
2 , �φ∗

3 , �φ∗
4 ],

and in Fig. 10(b) its projection into [ �ϒ∗
1 , �ϒ∗

2 ].

D. Temporally symmetrized smFES from delay embeddings

A necessary condition for the existence of a diffeomor-
phism between M and �(M) is that the manifolds possess
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FIG. 10. Recovery of the reconstructed intrinsic manifold by the
application of diffusion maps and h-NLPCA to the 20-dimensional
Takens’ delay embedding of the � scalar time series. (a) Projection
of the 9963 delay embedding vectors into the top three collective
modes [ �φ∗

2 ,
�φ∗

3 ,
�φ∗

4 ] identified by diffusion maps. Points are colored
by the first principal moment of the gyration tensor averaged over
the 20 molecular configurations constituting each delay embedding
vector, �1. (b) Projection of the reconstructed intrinsic manifold in
panel (a) into the top two nonlinear principal components [ �ϒ∗

1 , �ϒ∗
2 ]

recovered from the application of h-NLPCA to the diffusion map
embedding. High (low) �1, extended (collapsed) chain configurations
lie at low (high) values of ϒ∗

1 . In the delay embedding vectors selected
for visualization, the 10th of the 20 configurations constituting the
delay embedding is visualized. (c) Reproduction of panel (b) with
points colored by the change in ϒ∗

1 between consecutive delay
embedding vector projections, �ϒ∗

1 (ti) = ϒ∗
1 (ti + τ ) − ϒ∗

1 (ti). The
delay embedding breaks the symmetry of Newton’s equations of
motion such that collapse and extension pathways are embedded
into different regions of the reconstructed intrinsic manifold. Chain
collapse proceeds as indicated by the lower arrow, and extension by
the upper, resulting in a net counterclockwise flow.

the same dimensionality. It is encouraging, therefore, that
the sequential application of diffusion maps and h-NLPCA
furnishes M ∈ R2 from the molecular simulation trajectory
in R72 [Figs. 7(a)–7(c)], and �(M) ∈ R2 from the Takens’
delay embedding of � in R20 [Fig. 10(b)]. Inspection of
these two manifolds, however, reveals that �(M) possesses
a reflection symmetry across the ϒ∗

1 axis that is absent in
M , suggesting that the two manifolds are not topologically
equivalent. Indeed the determinant of the Jacobian of the
coordinate transformation between the two manifolds is not
single-signed (Methods Summary), confirming the absence of
a diffeomorphism [52,53,64]. What is the root of this apparent
contradiction to Takens’ theorem?

As illustrated in Fig. 10(b), delay embedding vectors
residing at low values of ϒ∗

1 correspond to extended chain
configurations with large values of �1, whereas those at high
values of ϒ∗

1 correspond to collapsed hairpins and helices
with small �1. By computing the change in ϒ∗

1 between
successive delay embedding vectors, the origin of the reflection
symmetry in �(M) is revealed. In Fig. 10(c), we color
each point in �(M) by �ϒ∗

1 (ti) = ϒ∗
1 (ti + τ ) − ϒ∗

1 (ti). The
process of chain collapse from low to high ϒ∗

1 (high to low
�1) is indicated by the lower black arrow, corresponding to
progression along the lower half of �(M) passing through
negative values of ϒ∗

2 . The reverse process, chain extension
from high to low ϒ∗

1 (low to high �1), is indicated by the
upper black arrow, and corresponds to progression along the
upper half of �(M) passing through positive values of ϒ∗

2 .
Accordingly, the dynamical evolution of the delay embedding
defined by Eq. (1) produces a counterclockwise flow around
�(M) as the chain collapses and extends.

The existence of separate pathways for chain collapse and
extension stands in apparent contradiction to the expectation
that a classical molecular system in thermodynamic equilib-
rium should obey detailed balance and exhibit microscopic
reversibility [5,65]. In other words, it should not be possible to
tell from the observation of a single molecular configuration
whether the chain is in the process of collapse or extension,
and the sequence of configurations in collapse and extension
pathways should be coincident in the intrinsic manifold. This
expectation is borne out in the intrinsic manifold, M , recovered
from the molecular simulation trajectory where each data
point corresponds to a single observation of the system, but
not for that recovered from the delay embedding, �(M),
where each point corresponds to 20 successive observations.
The critical difference is that the construction of a delay
embedding as a sequence of measurements breaks the time
reversibility of Newton’s equations of motion, such that it
is possible to ascertain from the series of measurements
whether the chain is in the process of collapsing or ex-
tending. Specifically, the delay embedding of a particular
chain configuration in a collapse pathway will comprise 20
measurements of � decreasing in value, whereas the delay
embedding of an identical chain configuration undergoing
extension will comprise 20 measurements of � increasing
in value. Accordingly, two otherwise identical chain config-
urations are necessarily embedded in different coordinates
in the delay space. This symmetry breaking induced by
the delay embedding separates the collapse and extension
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FIG. 11. Recovery of the temporally augmented reconstructed intrinsic manifold by the application of diffusion maps and h-NLPCA to
the 20-dimensional Takens’ delay embedding of the � scalar time series produced by concatenating the delay embeddings resulting from
the forward and backward simulations. (a) Projection of the 19 926 delay embedding vectors into the top three collective modes [ �φ∗

2 ,
�φ∗

3 ,
�φ∗

4 ]
identified by diffusion maps. (b) Projection of the reconstructed intrinsic manifold in panel (a) into the top two nonlinear principal components
[ �ϒ∗

1 , �ϒ∗
2 ] recovered from the application of h-NLPCA to the diffusion map embedding. (c) Reproduction of panel (b) visualizing only the 9963

data points derived from the forward trajectory colored by �ϒ∗
1 (ti) = ϒ∗

1 (ti + τ ) − ϒ∗
1 (ti). (d) Reproduction of panel (b) visualizing only the

9963 data points derived from the backward trajectory colored by �ϒ∗
1 (ti).

pathways over the reconstructed intrinsic manifold and gives
rise to the observed reflection symmetry across the ϒ∗

1 axis in
Fig. 10(b).

We will now describe a procedure to eliminate the temporal
symmetry breaking artificially introduced by the delay em-
bedding. Given a trajectory from a dynamical system known
to obey a particular symmetry, additional trajectories can be
generated “for free” by applying the symmetry operation to
the observed trajectory [66–68]. Our molecular simulation
evolves according to Newton’s equations of motion, the time
reversibility of which make the time-reversed simulation an
equally valid system trajectory. Following Refs. [66,67], we
can double our data by concatenating the forward and reverse
trajectories, and then exploit the fact that our system is in
thermodynamic equilibrium to appeal to detailed balance to
retain the collapse and extension pathways that are coincident
on the reconstructed manifold.

Specifically, we take the K ′ = 9963 delay vectors defined
by Eq. (1), and invert the order of the elements to generate the
delay vector produced by the time-reversed simulation, �ν(ti) =
[�(ti + (d − 1)τ ), . . . ,�(ti + τ ),�(ti)], such that {�ν(ti)}K ′

i=1 de-
fines the reconstructed intrinsic manifold of the backwards
trajectory. We augment the delay embedding generated from

the forward simulation trajectory with that produced by
the backward trajectory to generate a combined ensemble
of 2K ′ = 19 926 points, {�y(ti),�ν(ti)}K ′

i=1, and apply diffu-
sion maps to extract the three-dimensional embedding into
[ �φ∗

2 , �φ∗
3 , �φ∗

4 ] in Fig. 11(a). Application of h-NLPCA reveals
99.89% of the variance to reside in the top two nonlinear prin-
cipal components, allowing us to generate the two-dimensional
projection into [ �ϒ∗

1 , �ϒ∗
2 ] in Fig. 11(b). This object is the

augmented reconstructed intrinsic manifold recovered from
the delay embedding generated from the combined forward
and backward simulation trajectories.

Every forward delay vector, �y(ti), possesses a backwards
partner, �ν(ti), containing the same values of � in reverse order.
By analyzing these 9963 pairs, we find that each member of
the pair is embedded with identical values of ϒ∗

1 , but their
ϒ∗

2 coordinates differ in sign, such that �y(ti) �→ [ϒ∗
1 ,ϒ∗

2 ] and
�ν(ti) �→ [ϒ∗

1 , − ϒ∗
2 ] (Fig. 12). Moreover, the flow over the

manifold of the forward points, �y(ti), is counterclockwise
[Fig. 11(c)], whereas that of the backwards points, �ν(ti), is
clockwise [Fig. 11(d)]. In sum, upon reversing the arrow of
time, delay embedding vectors extracted during a collapse
event containing successively smaller values of � with a
negative value of ϒ∗

2 , have become observations from an
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FIG. 12. Comparison of the [ �ϒ∗
1 , �ϒ∗

2 ] coordinates of the forward, {�y(ti)}, and backward, {�ν(ti)}, delay embeddings in the reconstructed
manifold in Fig. 11(b). The embedding of each forward delay vector, �y(ti), and its backward delay vector partner, �ν(ti), possess (a) identical
values of ϒ∗

1 , and (b) sign-inverted values of ϒ∗
2 , such that �y(ti) �→ [ϒ∗

1 ,ϒ∗
2 ] and �ν(ti) �→ [ϒ∗

1 , − ϒ∗
2 ].

extension event containing successively larger values of � with
a positive value of ϒ∗

2 .
For a system at thermodynamic equilibrium, detailed

balance asserts that every elementary process is equilibrated
by its reverse process [65]. In the present case, each elementary
step along a collapse pathway should be balanced by the
reverse step along an extension pathway, and so the collapse

and extension pathways must be coincident on the intrinsic
manifold. We enforce detailed balance and eliminate the
temporal symmetry breaking caused by the delay embedding
by taking our reconstructed manifold from the combined
forward and backward delay embeddings, and retaining from
each pair {�y(ti),�ν(ti)} the one possessing the larger value of ϒ∗

1 .
This procedure reduces our data back down to K ′ points, and

FIG. 13. Embedding of the temporally symmetrized � delay embedding into the top two nonlinear principal components [ �ϒ∗
1 , �ϒ∗

2 ] identified
by sequential application of diffusion maps and h-NLPCA. Projection of the 9963 delay embedding vectors colored by (a) �1, (b) �2, and (c)
�3. (d) The smFES F ( �ϒ∗

1 , �ϒ∗
2 ) over which the “kink-and-slide” collapse pathway is indicated by chevrons. In the delay embedding vectors

selected for visualization, the 10th of the 20 configurations constituting the delay embedding is visualized.
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FIG. 14. Empirical validation of the existence of a diffeomorphism between the intrinsic manifolds recovered from the atomistic simulation
trajectory and the � delay embedding. (a) Determinant of the Jacobian, det(J�), of the forward mapping, � : M → �(M), at each point on the
20-point averaged intrinsic manifold, M . (b) det(J�)(t) for each 20-point averaged point on M expanded out as a linear time series for clarity of
viewing. (c) Determinant of the Jacobian, det(J�−1 ), of the reverse mapping, �−1 : �(M) → M , at each point on the reconstructed manifold,
�(M). (d) det(J�−1 )(t) for each point on �(M) expanded as a linear time series. Projected points with fewer then 40 neighbors within the
bandwidth of the Gaussian kernel were not displayed due to insufficiently many neighbors to return a robust estimation of the Jacobian matrix
elements. That both det(J�) and det(J�−1 ) remain single-signed verifies that the two manifolds are diffeomorphic.

its net effect is simple: the embedding of the chain extension
events observed in the forward simulation trajectory—the
lower half of the manifold in Fig. 11(c)—are reflected across
the ϒ∗

1 axis to lie coincident with, but in the opposite sense to,
the chain collapse events in the upper half of the manifold.

We note that the same result could have been approximately
achieved by simply reflecting Fig. 10(b) across the ϒ∗

1 axis
without going through the process of creating the combined
forward and backward delay embedding. However, for finite
data there is no guarantee that the forward trajectory alone
will possess a symmetry plane exactly coincident with this
axis. In contrast, augmenting the data with its reverse delay
embedding provides each point with a temporally symmetric
partner and offers a systematic procedure to unambiguously
detect any temporal symmetries and guarantee a precise plane
of reflection. For example, the intrinsic manifold in Fig. 11(b)
possesses a single symmetry plane along the ϒ∗

1 axis, reveal-
ing the existence of precisely one temporal symmetry and
providing a means to remove it by performing the reflection.
We anticipate that this protocol will prove particularly useful
in applications to systems possessing multiple stable states
and/or higher-dimensional intrinsic manifolds.

We illustrate in Figs. 13(a)–13(c) the resultant temporally
symmetrized intrinsic manifold, �(M). To aid in visual

interpretation of the landscapes, we superpose onto selected
points in the delay embedding the 10th of the 20 configurations
constituting the delay vector. This configurational informa-
tion is available from our molecular simulation trajectories,
but would typically be unavailable in an application to
experimental data. In practice, the values of the physical
observable constituting the delay embedding vectors can reveal
coarse-grained features of the molecule as it moves over the
reconstructed landscape. For example, in the present case a
knowledge of the head-to-tail extent permits identification of
the extended, partially collapsed, and fully collapsed states
of the molecule and the folding pathway connecting them.
The distribution of {ξ1,ξ2,ξ3} over the spatially symmetrized
manifold, M , recovered from the atomistic trajectory in
Figs. 7(a)–7(c), is visually consistent with that of {�1,�2,�3}
over the temporally symmetrized manifold, �(M), recovered
from the delay embeddings in Figs. 13(a)–13(c). The topology
and topography of the smFES over M [Fig. 7(d)] and
�(M) [Fig. 13(d)] also appear similar, possessing a single
global free energy minimum corresponding to extended chain
configurations connected by a “kink-and-slide” pathway to a
shallow local minimum containing the collapsed helical coils.
In the next section we will verify that the two landscapes are
topologically identical.
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E. Topological and geometric equivalence of smFES

Takens’ theorem asserts that the manifolds M and �(M)
supporting the spatially and temporally symmetrized smFES
in Figs. 7(d) and 13(d) should be topologically equivalent,
such that one may be continuously and smoothly transformed
into the other. Mathematically, the two manifolds are related
by a diffeomorphism such that � is an invertible mapping,
and � and �−1 are both smooth. By the inverse function
theorem, if there exists a one-to-one correspondence between
points on the manifolds, and the Jacobian determinant of
the coordinate transformation relating the two manifolds
does not change sign, then the manifolds are globally
diffeomorphic [52,53,64,69]. By computing the Jacobian
transformation between the manifolds we will empirically
confirm the existence of this diffeomorphism and verify the
topological equivalence of the smFES recovered from the �

delay embedding to that computed from a complete knowledge
of all molecular degrees of freedom.

The delay embedding defined by Eq. (1) maps 20 �

observations of the molecular system in real space into a
single point in the delay embedding, �y(ti) = [�(ti),�(ti +
τ ), . . . ,�(ti + 19τ )]. Moreover, this embedding results in
9963 points in the delay embedding compared to 10 001
in the simulation trajectory. In order to draw a one-to-one
correspondence between the points composing M and �(M),
we define the following mapping,

[ �p(ti), �p(ti + τ ), . . . , �p(ti + 19τ )] = �P (ti) �→ �p∗(ti), (2)

where �p(ti) = [ �ϒ1(ti), �ϒ2(ti)] represents the coordinates on
the manifold M of the chain configuration extracted from
the molecular simulation at time ti , �P (ti) is the average
of the 20 coordinates [ �p(ti), �p(ti + τ ), . . . , �p(ti + 19τ )], and
�p∗(ti) = [ �ϒ∗

1 (tj ), �ϒ∗
2 (tj )] represents the coordinates on the

manifold �(M) of the delay embedding corresponding to the
20 observations of the head-to-tail chain distance [�(ti),�(ti +
τ ), . . . ,�(ti + 19τ )]. The terminal snapshots from the molec-
ular simulation trajectory for which �P (ti) is undefined are
removed from M . In this manner we define an unambiguous
mapping between 9963 points in M and �(M).

Having defined the one-to-one mapping, we now numeri-
cally compute for every point the Jacobians, J� and J�−1 , of the
forward, � : M → �(M), and reverse, �−1 : �(M) → M ,
mappings (Methods Summary). In Figs. 14(a)–14(b) we illus-
trate the Jacobian determinant of the forward transformation,
det(J�), at each point on the 20-point averaged manifold M ,
and in Figs. 14(c)–14(d) that of the reverse transformation,
det(J�−1 ), at each point on �(M). The magnitude of the
Jacobian determinant gives the factor by which the local region
is scaled under the transformation, and the sign indicates
whether or not the orientation is preserved. That det(J�) and
det(J�−1 ) remain single-signed over their respective manifolds
indicates that a smooth and invertible transformation exists at
each point on the manifold, providing empirical validation that
the manifolds are diffeomorphic.

III. CONCLUSIONS

We have integrated delay embeddings with nonlinear
dimensionality reduction techniques to recover from molecular

simulations a representation of the single-molecule free-
energy surface of an n-tetracosane chain in water from
measurements of only the head-to-tail distance of the chain.
Subject to the elimination of spatial symmetries associated
with our choice of the measurement observable, and temporal
symmetry breaking induced by the delay embedding, we
have verified that the smFES recovered in this manner is
geometrically and topologically equivalent to that recovered
from a trajectory in which the temporal evolution of all
molecular degrees of freedom are known.

This work demonstrates that topologically equivalent rep-
resentations of single-molecule free-energy surfaces can be
extracted from the analysis of univariate time series, laying
the foundations for the inference of biomolecular folding
landscapes directly from experimental measurements. Much
work, however, remains to be done. We considered the
idealized case of a simple homopolymer chain for which
the spatial symmetries to be eliminated given our choice of
measurement observable were clear, and which possessed
a single temporal symmetry. Furthermore, we analyzed a
continuous, noise-free 100 ns time series with 10 ps resolu-
tion. Delay embeddings of short, noisy, low-resolution, and
temporally disjoint experimental smFRET trajectories will
require careful processing, and the impact of these factors
upon the resultant smFES remains to be ascertained. In
future work, we plan to (i) extend our study to molecular
simulations of peptides and proteins, (ii) explore multichannel
measurements of several observables, none of which may, in
itself, be generic, (iii) examine the impact of the temporal
resolution of the time series on the reconstruction fidelity,
and (iv) confront the influence of noise by artificially con-
taminating our simulated scalar time series to lay empirical
bounds on tolerable signal-to-noise ratios. Finally, Takens’
theorem asserts the existence of a diffeomorphism between
the true smFES and that recovered from delay embeddings,
but the transformation itself is not supplied. Although the
topology of the landscape is maintained, interpretation of
its topography (i.e., the height of the free-energy wells and
barriers) under the action of an unknown Jacobian presents
a challenge. We are currently working to place limits on
the degree of stretching/squashing of the smFES under the
diffeomorphic transformation induced by the delay embedding
under different choices of physical observable and delay
embedding parameters both theoretically, using tools from
real analysis and probability theory, and empirically, by con-
ducting molecular simulations of more biologically realistic
systems.

IV. METHODS SUMMARY

Our theoretical and computational methods are summarized
below. Full details of the molecular simulations, phase space
reconstruction, dimensionality reduction, and diffeomorphism
validation are provided in Appendix A.

Molecular simulations. Molecular dynamics simulations
were conducted using the GROMACS 4.6 simulation suite [70]
employing the TraPPE potential [71] for n-tetracosane and
the SPC model of water [72]. The PRODRG2 server as-
sisted in the construction of chain topologies [73]. Lennard-
Jones interactions were shifted smoothly to zero at 1.4 nm,
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and Lorentz-Berthelot combining rules used to determine
dispersion interactions between unlike atoms [74]. Electro-
static interactions were treated using particle mesh Ewald with
a real-space cutoff of 1.4 nm and a 0.12 nm reciprocal-space
grid spacing [75]. Simulations were maintained at 298 K and
1 bar using a Nosé-Hoover thermostat [76] and an isotropic
Parrinello-Rahman barostat [77]. Equations of motion were
integrated using the leap-frog algorithm [78] with a 2 fs time
step, and the system equilibrated for 1 ns before performing
a 100 ns production run. System configurations were saved
every 10 ps.

Phase space reconstruction. Given a dynamical system
that evolves over a k-dimensional manifold M , and a uni-
variate time series in a generic measurement function v :
Rk → R, {v(t)}Tt=0, Takens’ theorem asserts that the state
of the system is uniquely specified by a d � (2k + 1)-
dimensional delay embedding �y(t) =�(v(t)) = [v(t),v(t + τ ),
v(t + 2τ ), . . . ,v(t + (d − 1)τ )], where � : M → �(M) is a
diffeomorphism, defining an invertible function mapping the
manifold M to a geometrically and topological equivalent
embedding, �(M), in the d-dimensional Euclidean space
[29–31,33,34]. In practice, k < d < (2k + 1) can be sufficient
to uniquely specify the system state [30,60]. Employing the
head-to-tail distance, �, of the chain as our univariate time
series, we use the mutual information approach of Fraser and
Swinney [61] to select an appropriate delay time of τ = 20 ps,
and the false nearest neighbors approach of Cao [62] to
select an appropriate delay embedding dimensionality of
d = 20.

Dimensionality reduction. We apply diffusion maps [39,40]
followed by hierarchical nonlinear principal components anal-
ysis (h-NLPCA) [44,45] to (i) the 72-dimensional molecular
dynamics trajectories of Cartesian coordinates of the n-
tetracosane united atoms to extract the intrinsic manifold
M ∈ R2, and (ii) the 20-dimensional delay embeddings of
� to extract the reconstructed intrinsic manifold �(M) ∈
R2. The diffusion map is a nonlinear machine learning
approach to extract low-dimensional nonlinear manifolds
resident within high-dimensional spaces [3,39]. By perform-
ing a spectral analysis of a discrete random walk over
K high-dimensional observations in RD , the diffusion map
infers a low-dimensional mapping into Rk with k < D � K:
observationi �→ [ �φ2(i), �φ3(i), . . . , �φk+1(i)]. The { �φj }Kj=1 con-
stitute the eigenvectors of the discrete random walk, with
associated eigenvalues {λj }Kj=1. By the nature of the random

walk, the top pair is trivial ( �φ1 = �1, λ1 = 1). A gap in
the eigenvalue spectrum defines an appropriate number of
eigenvectors, k, to incorporate in the embedding. We have
previously shown that diffusion map embedding can contain
functional dependencies between the embedding variables
{ �φj }k+1

j=2 [3]. We employ h-NLPCA [44,45] to identify and
eliminate such dependencies and achieve lower-dimensional
representations of M and �(M) beyond that attainable by
diffusion maps alone.

Diffeomorphism validation. Takens’ theorem asserts that
� : M ∈ R2 → �(M) ∈ R2 is a diffeomorphism, such that
M and �(M) are geometrically and topologically equivalent
manifolds related by a smooth and invertible transforma-
tion [29–31,33,34]. By the inverse function theorem, a global

diffeomorphism exists if the mapping � : M → �(M) is
bijective and its Jacobian determinant, det(J�), does not pass
through zero [52,64]. Using a mesh-free approach based on a
smoothed-particle hydrodynamics formulation to estimate the
partial derivatives constituting the elements of J� [79,80], we
empirically verify the existence of this global diffeomorphism,
proving that the single-molecule free-energy surface over
�(M) is geometrically and topologically equivalent to that
over M .
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APPENDIX A: MATERIALS AND METHODS

1. Molecular dynamics simulations of n-tetracosane

Following Ref. [3], we performed molecular dynamics
simulations of a coarse-grained n-tetracosane (C24H50) chain
in water using the GROMACS 4.6 simulation suite [70].
Initial chain configurations were constructed using the Gly-
coBioChem PRODRG2 server [73,84] and modeled using
the TraPPE potential [71], which represents each CH2 and
CH3 group as a single united atom. Accordingly, the chain
configuration is completely specified by a (3×24 = 72)-
dimensional vector specifying the Cartesian coordinates of
each united atom. Simulations were initialized by placing
the chain in a 5×5×5 nm cubic box with periodic boundary
conditions, and solvating to a density of 1.0 g/cm3 by 4117
water molecules modeled by the SPC potential [72]. High-
energy overlaps were removed by steepest descent energy
minimization to eliminate forces exceeding 2000 kJ/mol nm.
Lennard-Jones interactions were shifted smoothly to zero
at 1.4 nm, and Lorentz-Berthelot combining rules used to
determine dispersion interactions between unlike atoms [74].
The 5 nm cubic box size was sufficiently large that the
n-alkane chain did not interact with itself through the periodic
boundary, even in a fully extended all-trans configuration.
Electrostatic interactions were treated using particle mesh
Ewald (PME) with a real-space cutoff of 1.4 nm and a
0.12 nm reciprocal-space grid spacing [75]. Simulations were
conducted in the NPT ensemble at 298 K and 1 bar using
a Nosé-Hoover thermostat [76] and an isotropic Parrinello-
Rahman barostat [77]. Equations of motion were numerically
integrated using the leap-frog algorithm [78] employing a 2 fs
time step. As required by the TraPPE and SPC potentials,
bond lengths were fixed to their equilibrium values using the
LINCS algorithm [86]. The system was subjected to a 1 ns
equilibration run, after which time the temperature, pressure,
and energy had all attained stable average values, before con-
ducting a 100 ns production run. System configurations were
saved every 10 ps to generate a molecular dynamics trajectory
comprising 10 001 snapshots.
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2. Phase space reconstruction

A molecular system can be considered—provided that
electronic degrees of freedom are not relevant on the time
scales of interest—as a dynamical system evolving according
to the laws of classical mechanics. The phase space of
the system defines the ensemble of accessible system states
in the high-dimensional space spanned by the Cartesian
coordinates of all atoms in the system. As we shall describe
below, cooperative couplings between molecular degrees of
freedom can cause the accessible phase space to define a
relatively low-dimensional structure that can be extracted by
the application of nonlinear manifold learning to molecular
simulation trajectories [3]. Experimentally, we typically do
not have a complete knowledge of all system degrees of
freedom, instead possessing measurements of a small number
of experimental observables. Attractor reconstruction methods
seek to infer the geometry and topology of the phase space of
the dynamical system from few observables, typically without
requiring any knowledge of the underlying governing equa-
tions. These approaches are made possible by two theorems.
The Whitney embedding theorem [87] states that (2k + 1)
independent measurements of a k-dimensional dynamical sys-
tem unambiguously specify the system state. More precisely,
the mapping from the k-dimensional manifold, M , upon which
the system evolves into the (2k + 1) Euclidean space, U , is
surjective and structure preserving, defining an embedding
of the manifold. An embedding is a smooth and invertible
map, �, such that �(M) is a geometrically and topologically
equivalent “realization” of M in the space U [32]. In other
words, �(M) ∈ U is a fully unfolded image of M , with
each point on M uniquely located on �(M), and �(M) is
a reconstruction of the phase space of the system [58]. Takens’
delay embedding theorem [29–31,33,34] builds on Whitney
to show that the embedding can be constructed from a single
measurement function, v : Rk → R, that produces a univariate
time series, v(t)Tt=0—or its discrete analog, {v(ti)}Ki=1, where
K is the number of evenly spaced time points—by forming a
delay embedding,

�y(t) = �(v(t))

= [v(t),v(t + τ ),v(t + 2τ ), . . . ,v(t + (d − 1)τ )], (A1)

where τ is the delay time between successive system obser-
vations and d is the delay embedding dimensionality. The
theorem guarantees that if v(t) is a generic observable (i.e., a
function that depends on all system degrees of freedom and
contains no symmetries that are not present in the system
being observed [50]) and d � (2k + 1) then (i) the �y(t)
define an embedding, and therefore a reconstruction, of the
k-dimensional phase space of the dynamical system [58], (ii)
the dynamical evolution of the system on M is C1-equivalent to
that on �(M), and (iii) � : M → �(M) is a diffeomorphism,
an invertible function mapping M to �(M) such that both
� and �−1 are smooth [32], and implying the geometrical
and topological equivalence of M and �(M) such that one
may be smoothly and invertibly transformed into the other.
The existence of a diffeomorphism is not assured, but possible
nonetheless, for k < d < (2k + 1) [30,60]. The great value
of Takens’ theorem is that, in principal, it permits attractor
reconstruction from a single system measurement. In practice,

it can be challenging to determine appropriate values of τ and
d, and to confront issues of sampling noise, finite data, and
weak dependence of the observable on one, or more, system
degrees of freedom [32,58].

In this work, we adopt as our univariate system observable
in which to construct delay embeddings the head-to-tail
distance, �, of the n-tetracosane chain. This observable con-
stitutes an observable that can be, in principal, experimentally
measured by single-molecule FRET [21]. As we discuss in
the main text, this measurement function does not satisfy
the criterion of a generic observable, since it is invariant to
two symmetries of the n-alkane chain [50]: (i) head-to-tail
inversion, and (ii) mirror symmetry. In other words, this
observable cannot distinguish (i) the head-to-tail directionality
of the chain, or (ii) the right- or left-handedness of chiral chain
conformations. We confront this difficulty by removing these
symmetries in the space of the real space chain dynamics such
that the delay embedding can provide a reconstruction of the
spatially symmetrized phase space.

Takens’ theorem holds for any value of the delay time, τ ,
but, in practice, finite trajectories and sampling noise make the
quality of the reconstruction strongly dependent on the choice
of τ [61]. Following Fraser and Swinney [61], we select an
appropriate value of τ by computing the mutual information,
I , between measurements of the head-to-tail distance at times
t and (t + τ ),

I (�(t),�(t + τ )) =
∑

t

P (�(t),�(t + τ ))log2

(
P (�(t),�(t + τ ))

P (�(t))P (�(t + τ ))

)
, (A2)

where P (�(t),�(t + τ )) is the joint probability distribution
function for �(t) and �(t + τ ), and P (�(t)) is the probability
distribution function for �(t). The values of � observed
over the course of the simulation lie within the range
0.3537–2.8845 nm, and we estimate the probability distri-
butions using a bin size of 0.5 nm. As shown in Fig. 15(a),
I (�(t),�(t + τ )) monotonically decreases with τ as knowledge
of the value of �(t) becomes progressively less informative of
�(t + τ ). Fraser and Swinney suggest as a good delay time
the value of τ corresponding to the first local minimum in
the mutual information [61]. In the absence of a minimum,
we instead follow Kantz and Schreiber to select the value of
τ at which the mutual information falls to 1/e of its initial
value [49], leading us to select τ = 20 ps.

Having chosen a suitable delay time, we use the approach
of Cao [62] based on the false nearest neighbors method
of Kennel et al. [63] to determine an appropriate delay
embedding dimensionality, d, as the minimum dimension-
ality at which the reconstructed phase space becomes fully
unfolded [cf. Eq. (A1)] [62]. Too low a delay embedding
dimensionality causes points far apart on the original manifold,
M , to be artificially proximate in the reconstructed manifold,
�(M), due to self-intersections of an incompletely unfolded
reconstruction image. When the nearest neighbors of each
point in the reconstruction no longer change with increasing
embedding dimensionality, the attractor is fully unfolded. The
minimum value of d at which this behavior is observed is an
appropriate choice of embedding dimensionality. Cao defined
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FIG. 15. Empirical selection of delay time, τ , and delay embed-
ding dimensionality, d . (a) The mutual information in the � signal.
We choose τ = 20 ps corresponding to the delay time at which
I (�(t),�(t + τ )) drops to 1/e of its initial maximum, identifying the
minimum period of time beyond which subsequent measurements of
� contain significant “new” information about the system. (b) The
characteristic function E1(d), at a delay time of τ = 20 ps, measures
the number of false nearest neighbors of points in the reconstructed
embedding as a function of the delay embedding dimensionality.
Once the phase space reconstruction has been fully unfolded, E1(d)
saturates to unity, motivating our choice of d = 20.

a characteristic function, E1(d) (see Ref. [62] for details), that
provides a measure of the number of false nearest neighbors as
a function of d, and—in the case of deterministic processes—
saturates at unity once the phase space reconstruction is fully
unfolded [35,62]. As illustrated in Fig. 15(b), we find E1(d) to
reach saturation beyond a delay embedding dimensionality of
∼20, motivating us to choose d = 20.

3. Diffusion maps

The diffusion map [39,40,81,82] is a nonlinear manifold
learning technique that has been previously employed by
ourselves and others to infer low-dimensional parametrizations
of the free-energy surface for polymers, biomolecules, and
colloids [3,13,14,16,17,88]. Linear approaches, such as prin-
cipal components analysis (PCA) [89], are restricted to seek
low-dimensional hyperplanes parametrizing the data in the
high-dimensional space. Nonlinear approaches can discover

convoluted and curvilinear manifolds [6], which is of particular
value in applications to polymers and macromolecules pos-
sessing complex couplings (e.g., covalent bonds, dispersion
interactions, the hydrophobic effect) between their degrees of
freedom [3,4,6,14]. In this work, we employ diffusion maps
to discover low-dimensional nonlinear parametrizations within
(i) 72-dimensional molecular dynamics simulation trajectories
recording the Cartesian coordinates of each united atom in a
n-tetracosane chain, and (ii) 20-dimensional Takens’ delay
embeddings of the head-to-tail distance of the chain recorded
over the course of the simulation trajectory.

We have previously described the application of diffusion
maps to molecular simulations in Refs. [3,6]. In brief, given
an ensemble of K observations in D-dimensional space, we
first compute the K × K pairwise distances matrix, P, the
elements Pij of which hold the pairwise distances between
observations i and j . In the application of diffusion maps di-
rectly to the molecular dynamics simulation of n-tetracosane,
the observations correspond to the 72-dimensional vectors
recording the Cartesian coordinates of the 24 united atoms.
Following previous studies, we adopt as our distance metric
the root mean squared distance (RMSD) between the united
atom coordinates of pairs of configurations translationally and
rotationally aligned using the Kabsch algorithm [3,6,14,90].
Our molecular dynamics simulations explicitly represent the
solvent molecules surrounding the n-tetracosane chain, but
it is a challenge to explicitly incorporate solvent degrees of
freedom into the application of diffusion maps due to the
identical and fungible nature of solvent molecules [69,91].
Instead, we implicitly capture the impact of the solvent degrees
of freedom through their influence on the configurational
ensemble sampled by the chain over the course of the sim-
ulation [3,6]. We have recently proposed a means to explicitly
incorporate many-body effects into the mapping [16], but this
methodology has yet been applied to realistic molecular sys-
tems. In the application of diffusion maps to delay embeddings
of the head-to-tail distance, �, of the chain, the observations
correspond to 20-dimensional vectors recording 20 sequential
observations of the chain length. In this case we adopt the
Euclidean to measure pairwise distances between the vectors.

In the next step, we form the matrix A by convoluting the
elements of the pairwise distances matrix P with a Gaussian
kernel of bandwidth ε,

Aij = exp
(−P 2

ij

/
2ε

)
, i,j = 1, . . . ,K. (A3)

An appropriate bandwidth is systematically defined using the
procedure detailed in Ref. [83]. The diagonal matrix, D, is
computed from the row sums of A,

Dii =
K∑

j=1

Aij , i = 1, . . . ,K, (A4)

and the right-stochastic Markov matrix M formed as the matrix
product,

M = D−1A, (A5)

defines a discrete random walk over the observations with a
characteristic step size of ε [39]. By analyzing the spectral
properties of this process we can discover low-dimensional
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structures within the high-dimensional data [3,39,40]. Specif-
ically, M diagonalizes as [3],

M = ���T , (A6)

where � is a diagonal matrix holding the eigenvalues, λ1 =
1 � λ2 � . . . λK , with associated left, � = { �ψi}Ki=1, and right,
� = {�φi}Ki=1, column eigenvectors, which form a biorthogonal
set, �T � = 1 [3]. λ1 = 1 and �φ1 = �1 by the Markov property.
By expanding an arbitrary initial probability distribution
over the data into the basis of the left eigenvectors, �p0 =∑K

j=1 αj
�ψj , the distribution after k steps of the discrete

diffusion process can be written as �pk = ∑K
j=1 αjλ

k
j
�ψj .

From this expression �ψ1 (with λ1 = 1) is identifiable as the
equilibrium distribution, and higher eigenvectors as transient
modes with increasingly faster relaxation times.

If the system admits a description as a diffusion process,
a gap within the eigenvalue spectrum can be identified after
λk+1. The slow relaxations of the distribution over the data
are defined by the leading (k + 1) eigenvectors, to which
the remaining modes are effectively slaved [3,39,83]. Geo-
metrically, the leading eigenvectors define a low-dimensional
subspace, known as the intrinsic manifold, to which the
data are effectively restrained. The diffusion map defines the
embedding of the ith observation into the ith component of
the leading k nontrivial right eigenvectors of M,

observationi �→ [ �φ2(i), �φ3(i), . . . , �φk+1(i)], (A7)

where �φ1 is dropped as the trivial all-ones vector. For k <

D � K , the diffusion map achieves dimensionality reduction
by defining a projection of our K observations onto a low-
dimensional (nonlinear) intrinsic manifold discovered within
the high-dimensional space. Under the assumptions that the
system dynamics are well approximated by a diffusion process,
and the pairwise distance metric is a good measure of short-
time diffusive motions, then the diffusion map embedding
possesses two valuable properties: (i) Euclidean distances in
the embedding are equivalent to diffusion distances in the
original space, defining the time required for the system to
evolve from one state to another, and (ii) the eigenvectors
spanning the diffusion map embedding are identifiable as the
slow dynamical modes governing the long-time evolution of
the system [3,6,39,82].

The diffusion map defines a projection of the data onto
an intrinsic manifold in Rk . By compiling histograms of the
observed distribution of points over the manifold, P̂ ({ �φi}k+1

i=2 ),
the free-energy profile over the surface is estimated as
F ({ �φi}k+1

i=2 ) = −kBT lnP̂ ({ �φi}k+1
i=2 ) + C, where kB is Boltz-

mann’s constant, T is the temperature, and C is an arbitrary
constant. This hypersurface in Rk+1 defined by the application
of diffusion maps to the molecular simulation trajectory is the
smFES [3,6,14]. Appealing to Takens’ theorem, an equivalent
representation of the smFES, related by a smooth and invertible
transformation, is obtained by the application of diffusion
maps to delay embeddings of the molecular head-to-tail
distance.

4. Hierarchical nonlinear principal components analysis

As we have previously reported, although the eigenvectors,
{ �φi}ki=1, spanning the diffusion map embedding are orthogonal,
two (or more) eigenvectors can correspond to the same
dynamical mode of the system [3]. We have previously drawn
the analogy with multivariate Fourier series wherein sin(x)
and sin(2x) are orthogonal Fourier components oriented in the
same spatial direction [3]. Such dependencies are detectable
as approximately one-dimensional projections of the manifold
in particular eigenvector pairs, and we have eliminated this
redundancy by successively replacing functionally dependent
pairs of eigenvectors by the arclength of the one-dimensional
curve mapped out by the projection of the data into their
subspace [3]. This procedure is valuable in providing further
dimensionality reduction beyond that furnished by the diffu-
sion map by elimination of redundancies between collective
variables in the low-dimensional embedding.

In this work, we adopt a more sophisticated approach to
eliminate these functional dependencies using hierarchical
nonlinear principal components analysis (h-NLPCA) approach
developed by Scholz and Vigário [44,45]. This approach offers
several benefits over the replacement of redundant eigenvector
pairs by their arclength in that it can be applied to simulta-
neously eliminate multidimensional and nonlinear functional
dependencies (i.e., to recover a q-dimensional surface in the
subspace of p eigenvectors, where p > q), is straightforward
to apply in an automated fashion, and explicitly quantifies
the degree of information loss in the dimensionality reduction
through the fraction of variance explained.

The h-NLPCA algorithm may be considered a nonlinear
analog of standard principal components analysis (PCA) [89]
in that it seeks to infer a hierarchically ordered set of
(nonlinear) principal components in the sense that the top q

components explain the maximum possible variance within
a q-dimensional nonlinear projection [45]. This hierarchical
dimensionality reduction is achieved using a multilayer per-
ceptron with an autoassociative topology, commonly known
as an autoencoder [45]. The topology of the h-NLPCA
autoencoder is illustrated in Fig. 16. For a p-dimensional
data set, we establish p nodes in the input, bottleneck, and
output layers, and r > p nodes in the mapping and demapping
layers. The input, bottleneck, and output layers employ
linear activation functions, while mapping and demapping
layers employ the nonlinear tanh activation function [45]. In
this work, we are interested in identifying and eliminating
eigenvector redundancies in three-dimensional diffusion map
embeddings, so we set p = 3 and r = 8.

The network is trained (i.e., the parameters of the linear
and nonlinear activation functions are tuned) to perform
the identity mapping by enforcing that the output data, x′,
approximate the input data, x, by minimizing the hierarchi-
cal error, EH = ∑p

i=1 Ei , where Ei = 1
2 ||x′(i) − x||22 is the

squared reconstruction error of the network employing nodes
{1,2, . . . ,i} in the bottleneck layer, and x′(i) are the output
reconstructions of the input data produced by the network
employing nodes {1,2, . . . ,i} in the bottleneck layer. The
parameters of the activation functions in the network are tuned
to minimize EH using conjugate gradient descent [44,45,92].
Following Ref. [44], the minimization is regularized by
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FIG. 16. Topology of the autoassociative multilayer perceptron
(autoencoder) used to perform h-NLPCA. The input (a), bottleneck
(c), and output (e) layers each possess a number of nodes, p, equal
to the dimensionality of the input data, x. The mapping (b) and
demapping (d) layers contain r > p nodes. The input, bottleneck,
and output layers employ linear activation functions, while mapping
and demapping layers employ the nonlinear tanh activation function.
The autoencoder is trained to perform the identify mapping (i.e.,
the output of the neural network, x′, is equal to its input, x) by
minimizing the hierarchical error, EH = ∑p

i=1 Ei , using conjugate
gradient descent.

applying an L2 penalty to penalize large network weights
and stabilize training of the autoencoder network parameters.
Network construction and training is performed using the
open-source “Nonlinear PCA toolbox for Matlab” developed
by Scholz [45,85].

Dimensionality reduction Rp → Rq is achieved by pro-
jecting the p-dimensional input observation x into the output
values of the first {1,2, . . . ,q} nodes in the bottleneck layer.
This dimensionality reduction is inherently hierarchical, since
minimization of EH guarantees that the squared reconstruction
error of the nonlinear projection into the q-dimensional
subspace is minimized subject to minimization of the squared
reconstruction error in all (i = 1,2, . . . ,q − 1)-dimensional
subspaces [45]. We choose an appropriate value of q by
searching for a gap in the spectrum of the fraction of variance
explained as a function of the dimensionality of the nonlinear
projection.

5. Empirical validation of diffeomorphism

Takens’ embedding theorem asserts that for d � (2k + 1)
and v : Rk → R a generic measurement function of
a k-dimensional dynamical system, the delay embed-
ding � : M → �(M), where �(v(t)) = [v(t),v(t + τ ),v(t +
2τ ), . . . ,v(t + (d − 1)τ )], is a diffeomorphism (i.e., an in-
vertible function such that the function, �, and its inverse,
�−1, are smooth) mapping the k-dimensional manifold M to
a submanifold �(M) of the d-dimensional Euclidean space
U [32]. We recover the manifold, M , by applying diffusion
maps to the molecular dynamics simulation trajectory of the
n-tetracosane chain, and its image, �(M), by applying them to
the delay embedding of the head-to-tail distance of the chain.

By the inverse function theorem, if the determinant of the
Jacobian, J�, of the mapping � : Rk → Rk does not change
sign over the manifold M (i.e., does not pass through zero) and
is bijective [i.e., there is a one-to-one correspondence between
points on M and �(M)], then at each point over the manifolds

there exists an invertible map, and M and �(M) are globally
diffeomorphic [52,53,64]. In the language of control theory,
the system is observable from v(t) since its delay embedding
projection onto �(M) unambiguously specifies the system
state on M [52]. Defining the k × k Jacobian matrix as

J�(z1, . . . ,zk) = ∂(F1, . . . ,Fk)

∂(z1, . . . ,zk)

=

⎡
⎢⎣

∇�zF1
...

∇�zFk

⎤
⎥⎦

=

⎡
⎢⎣

∂F1
∂z1

· · · ∂F1
∂zk

...
. . .

...
∂Fk

∂z1
· · · ∂Fk

∂zk

⎤
⎥⎦, (A8)

where �z = [z1, . . . ,zk] defines a point on M and �F =
[F1, . . . ,Fk] the corresponding point on �(M) under the
mapping. We will show that the two manifolds we recover by
diffusion maps are diffeomorphic [i.e., �(M) can be obtained
by a continuous and smooth transformation of M , and vice
versa] by demonstrating that det(J�) remains single-signed
over M and, equivalently, det(J�−1 ) remains single-signed over
�(M).

In order to compute the elements of J�, we must draw
a one-to-one correspondence between the points defining
the representations of the intrinsic manifold inferred from
the simulation trajectory, M , and delay embedding, �(M).
By Eq. (A1), each point in �(M) comprises d simulation
snapshots, leading us to define the following mapping,

[ �p(ti), �p(ti + τ ), . . . , �p(ti + (d − 1)τ )]

= �P (ti) = �z(ti) �→ �p∗(ti) = �F (ti), (A9)

where �p(ti) are the coordinates on the manifold M of the
chain configuration extracted from the molecular simulation at
time ti , �P (ti) is the average of the d coordinates [ �p(ti), �p(ti +
τ ), . . . , �p(ti + (d − 1)τ )], and �p∗(ti) are the coordinates on
the manifold �(M) of the delay embedding corresponding
to the d observations of the head-to-tail chain distance
[�(ti),�(ti + τ ), . . . ,�(ti + (d − 1)τ )]. The terminal snapshots
from the molecular simulation trajectory for which �P (ti) is
undefined are removed from M . In this manner we define an
unambiguous mapping between points in M and �(M).

We employ this bijection to compute the elements of J�(�z)
over the manifold M . We evaluate the partial derivatives
constituting the matrix elements of the spatially dependent
Jacobian matrix using a mesh-free method to estimate partial
derivatives based on a formulation used in smoothed-particle
hydrodynamics (SPH) that it is more robust to noise than
simple finite difference estimators [79,80]. In this approach,
the value of a quantity ζ at any point �z—not necessarily
coincident with a projection of any particular observation
j—on the k-dimensional manifold M is expressed as a kernel-
weighted sum of the value of ζ at all projected observations,
{�z(j )}Kj=1, over the manifold,

ζ (�z) =
∑

j ζ (�z(j ))W (|�z − �z(j )|)∑
j W (|�z − �z(j )|) , (A10)
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where W (|�z − �z(j )|) is a kernel function for which we adopt a k-dimensional Gaussian,

W (|�z − �z(j )|) = exp
[− 1

2 (�z − �z(j )) · �−2 · (�z − �z(j ))
]
, (A11)

where � = diag(σ1,σ2, . . . ,σk) is a k × k diagonal matrix of the standard deviations of the Gaussian in each dimension.
We adopt an isotropic Gaussian kernel such that σ = σ1 = σ2 = . . . = σk . The spatial derivative ∇�zζ is straightforwardly
obtained as

∇�zζ =
∑

j ζ (�z (j ))∇�zW (|�z − �z(j )|)∑
j W (|�z − �z(j )|) −

∑
j ∇�zW (|�z − �z(j )|) · ∑

j ζ (�z(j ))W (|�z − �z(j )|)[ ∑
j W (|�z − �z(j )|)]2

=
∑

j (�z − �z(j )) · �−2W (|�z − �z(j )|) · ∑
j ζ (�z(j ))W (|�z − �z(j )|)[ ∑

j W (|�z − �z(j )|)]2 −
∑

j (�z − �z(j )) · �−2ζ (�z(j ))W (|�z − �z(j )|)∑
j W (|�z − �z(j )|) . (A12)

We compute from this expression the rows of J�(�z) in Eq. (A8)
at each projected observation, �z(j ), by setting ζ = {Fq}kq=1 and
�z = {�z(j )}Kj=1.

The value of σ in the Gaussian kernel [Eq. (A11)] controls
the characteristic “smoothing length” over which neighboring
points contribute to the estimate of ζ (�z). To assure that our
results are robust to the choice of this parameter, we define the
function, R(σ,�σ ), measuring the relative change in det(J�)
averaged over all projected observations {�z(j )}Kj=1 as a function
of the kernel bandwidth σ and a perturbation �σ ,

R(σ ; �σ )=
∑K

j=1 |det[J�(�z(j ); σ +�σ )] − det[J�(�z(j ); σ )]|∑K
j=1 |det[J�(�z(j ); σ )]| ,

(A13)

where we take absolute values to eliminate any fortuitous
cancellation of positive and negative deviations.
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FIG. 17. Selection of Gaussian kernel bandwidth σ in mesh-free
Jacobian estimation for the mapping �. R(σ ; �σ ) measures the
relative change in the Jacobian determinant, det[J�(�z(j ); σ )], averaged
over all observations, {�z(j )}K

j=1, under small perturbations to the
bandwidth of �σ/L = 0.01. L = 1.0 is the characteristic size of
the manifold M in Fig. 14(a). R(σ ; �σ ) reaches a local minimum
at σ/L = 0.09 corresponding to a balance between incorporating
sufficiently many neighbors into the estimator to robustly evaluate
partial derivates, but not so many as to incorporate irrelevant nonlocal
information.

In Fig. 17 we plot R(σ ; �σ ) for σ/L = [0.01:0.01:0.50]
with �σ/L = 0.01, where L = 1.0 is the largest distance
between any two points over the manifold M illustrated in
Fig. 14(a). At small values of the kernel bandwidth (σ/L <

0.05), det[J�(�z(j ); σ )] changes rapidly with σ as evinced by
large values of R(σ ; �σ ). This is attributable to noisy estimates
of the partial derivatives due to the inclusion of insufficiently
many neighbors into the estimator in Eq. (A10). At larger
bandwidths (0.05 < σ/L < 0.25), R(σ ; �σ ) approximately
plateaus. Moving to higher bandwidths (0.25 < σ/L < 0.30),
R(σ ; �σ ) increases as the bandwidth becomes so large
that nonlocal information irrelevant to the partial derivative
estimation is incorporated into the estimator. Finally, for
σ/L > 0.40, R(σ ; �σ ) approaches zero as essentially all
points in the embedding are incorporated into the estimator.
The plateau region at 0.05 < σ/L < 0.25 represents a balance
between incorporating sufficiently many neighbors to robustly
compute the partial derivatives, and not so many as to incor-
porate irrelevant nonlocal information into the estimator. That
R(σ ; �σ ) does not reach zero in this region can be understood
as a steady change in det[J�(�z(j ); σ )] with σ due to the elevated
smoothing of the data associated with the incorporation of
more neighbors into the estimator. Accordingly, we choose as
our bandwidth σ/L = 0.09, corresponding to the weak local
minimum in the plateau region.

In Fig. 18 we plot R(σ ; �σ ) corresponding to the Jacobian,
J�−1 , of the reverse mapping �−1 : Rk → Rk , from which we
select a bandwidth of σ/L = 0.11 for J�−1 ( �F ).

APPENDIX B: TAKENS’ RECONSTRUCTION
OF TWO TOY SYSTEMS

The capacity of Takens’ theorem to recover multidimen-
sional manifolds containing the dynamics of a multidimen-
sional time series from observations of a single scalar system
observable can be unintuitive. Given the possibly alien nature
of these ideas, we present below applications of Takens’ theo-
rem to demonstrate the recovery from univariate time series of
the multidimensional landscapes of two simple but nontrivial
toy systems, one deterministic—the Lorenz model—and one
stochastic—two-dimensional Brownian motion in a three-well
potential.
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FIG. 18. Selection of Gaussian kernel bandwidth σ in mesh-free
Jacobian estimation for the mapping �−1. R(σ ; �σ ) measures
the relative change in the Jacobian determinant, det[J�−1 ( �F (j ); σ )],
averaged over all observations, { �F (j )}K

j=1, under small perturbations to
the bandwidth of �σ/L = 0.01. L = 1.0 is the characteristic size of
the manifold �(M) in Fig. 14(c). R(σ ; �σ ) reaches a local minimum
at σ/L = 0.11 corresponding to a balance between incorporating
sufficiently many neighbors into the estimator to robustly evaluate
partial derivates, but not so many as to incorporate irrelevant nonlocal
information.

1. Reconstruction of the Lorenz attractor

The (dimensionless) Lorenz model [93] is defined by a
set of three coupled ordinary differential equations defining
trajectories of {x,y,z} ∈ R3,

dx

dt
= σ (y − x),

dy

dt
= x(ρ − z) − y, (B1)

dz

dt
= xy − βz,

where σ , ρ, and β are constants. Following the original formu-
lation by Lorenz, we choose σ = 10, ρ = 28, β = 8/3 [93].
Under these conditions, the dynamics of the system are chaotic
(i.e., exhibit sensitive dependence on initial conditions). The
chaotic trajectories of {x,y,z} ∈ R3 define a low-dimensional
fractal attractor of correlation dimension (2.05 ± 0.01) [94],
constituting the subset of three-dimensional phase space—the
intrinsic manifold—to which the system will evolve from
an arbitrary initial condition. We can draw an analogy to
molecular systems wherein the intrinsic manifold defines the
low-dimensional surface in a high-dimensional Cartesian co-
ordinate space to which the molecular motions are effectively
restrained.

We illustrate in Fig. 19 a numerical trajectory of the
Lorenz system commencing from the initial point (x,y,z) =
(0.00,1.00,1.05) over the range t = [0,100]. Points are dis-
played at intervals of �t = 0.0049. Numerical integration
was performed in MATLAB using the ode45 integrator with
a tolerance of 1×10−6 [95]. The trajectory evolves to a
closed subset of the phase space resembling a butterfly—
the eponymous Lorenz attractor [93]. It is the goal of this

X(t) Y(t)

Z(t Y)

FIG. 19. The Lorenz attractor is a fractal object of correlation
dimension (2.05 ± 0.01) [94] within the three-dimensional phase
space of the Lorenz model [Eq. (B1)]. Points represent samples from
a single numerical trajectory of the Lorenz system and are colored
according to the value of their y coordinate. We will employ Takens’
theorem to demonstrate that topologically equivalent representations
of this attractor can be reconstructed from univariate time series in a
single system observable.

demonstration to show that we can use Takens’ theorem to
recover a topologically equivalent reconstruction of the Lorenz
attractor from delay embeddings of a univariate time series in
a single system observable. The Lorenz model is a canonical
test problem in dynamical systems theory, and reconstruction
of the Lorenz attractor has been considered in many previous
works [32,50,51,53,62,94,96].

Takens’ delay embedding theorem [29–34] provides a
means to reconstruct a topologically equivalent realization,
�(M), of the intrinsic manifold, M , from a scalar time
series in a single observable. The theorem requires that the
observable is generic, and does not contain any symmetries
that are not present in the system. Takens’ theorem proceeds
by constructing a high-dimensional delay embedding of the
scalar time series to reconstruct a representation of the intrinsic
manifold, �(M), over which the dynamical evolution of the
system is C1-equivalent to that over the intrinsic manifold, M ,
in the original space. Before proceeding, let us examine the
precise meaning of the italicized terms.

(1) The intrinsic manifold is the low-dimensional subset
of the high-dimensional phase space within which the system
dynamics are restricted to reside, typically as a result of
couplings between system degrees of freedom. In the Lorenz
system, this is the Lorenz attractor.

(2) Topologically equivalent means that the relative ar-
rangement and connectivity of the geometric features of the
original intrinsic manifold, M , are preserved in its recon-
struction, �(M). In the present case of the Lorenz attractor,
for example, we should expect the Takens’ reconstruction to
properly preserve the two wings of the butterfly and the holes
in their centers. Takens’ theorem does not, however, claim that
the reconstruction will preserve the topography of the intrinsic
manifold, so that the manifold may be stretched and squashed,
and the distribution of points over its surface densified or
rarefied. In the Lorenz system, we should expect that the

032412-21



JIANG WANG AND ANDREW L. FERGUSON PHYSICAL REVIEW E 93, 032412 (2016)

butterfly wings may be bent and contorted in the Takens’
reconstruction.

(3) Generic observable means a scalar measurement of
the system dynamics that is a function of all degrees of
freedom. In principle, an arbitrary function will suffice, but
in practice, reconstruction may fail if the observable depends
only very weakly on some degrees of freedom. In the Lorenz
model, a generic observable would be any function of all
three coordinates f (x,y,z). As we show below, since the
x coordinate is coupled to the evolution of y and z, so
f (x,y,z) = x(y,z) constitutes a generic observable.

(4) That the generic observable does not contain any
symmetries that are not present in the system means that the
observable should not be symmetric in its arguments (i.e., the
system degrees of freedom) in any manner that the system
is not. As can be checked from Eq. (B1), the Lorenz system
is invariant under the transformation (x,y,z) → (−x, − y,z),
indicating that it possesses a symmetry in x-y that is visually
manifested in the two butterfly wings [53]. The variable z

is unchanged under the action of this symmetry, and so
cannot resolve the two wings [53]. As previously explored
in Refs. [51,53,54], we should expect that Takens’ delay
embedding in the observable f (x,y,z) = z(x,y) will not
respect this topological symmetry, and will collapse together
the two wings of the butterfly. This reconstructed attractor
will not, therefore, be topologically equivalent to the Lorenz
attractor.

(5) A delay embedding is the procedure by which discrete
scalar time series {x(ti)}Ki=1 is converted into a d-dimensional
vector time series {�y(ti)}K ′

i=1 under the following operation,

�y(ti) = [x(ti),x(ti − τ ), . . . ,x(ti − (d − 1)τ )], (B2)

where τ is the delay time. This operation has the effect
of representing the state of the system at any particular
time instant as a d-dimensional vector of evenly spaced
observations of x recording the past history of the system.
In this work, we choose to work with future rather than past
embeddings [i.e., replacing τ → (−τ )], which represents the
system state by its future trajectory in x. Systematic means
exist to choose appropriate values of d [62,63] and τ [61].

(6) That the dynamical evolution is C1-equivalent to that
in the original space means that the manner in which the
dynamics of the system evolve in the reconstructed intrinsic
manifold, �(M), residing within the d-dimensional space
constructed from the Takens’ delay embedding is related by
a continuous and smooth (i.e., at least once differentiable)
function whose inverse is also continuous and smooth, to the
dynamic evolution in the original intrinsic manifold, M . In the
case of the Lorenz system, the manner in which the chaotic
Lorenz trajectories orbit around the Lorenz attractor—a figure
eight flow around the butterfly wings—can be mapped by a
smooth and invertible function to the manner in which the
trajectories in the Takens’ delay embedding orbit around the
reconstructed attractor.

Using the methodology detailed in the main text—Methods
Summary: Phase space reconstruction—and presented in more
detail above—Appendix A2: Phase space reconstruction—we
will now proceed to construct Takens’ delay embeddings to

generate reconstructions of the Lorenz attractor in Fig. 19
from univariate time series in a single system observable.

Observable = x(t). We first consider the Lorenz variable
x as our univariate observable, producing a univariate time
series x(t). This is a generic observable of the system, since
the evolution of x is coupled to that of y and z [i.e., f (x,y,z) =
x(y,z); cf. Eq. (B1)]. Given our scalar time series {x(ti)}Ki=1
measured at intervals of �t = 0.0049 over the course of the
time horizon t = [0,100], Takens’ theorem prescribes that we
construct the delay embedding,

�y(ti) = [x(ti),x(ti + τ ), . . . ,x(ti + (d − 1)τ )], (B3)

where τ is the delay time between successive system ob-
servations, d is the delay embedding dimensionality, and
the projected time series {�y(ti)}K ′

i=1 defines the reconstructed
intrinsic manifold �(M) ∈ Rd . Empirical tools exist to select
τ and d. We use the mutual information approach of Fraser
and Swinney to choose τ = 0.429 [61], and the approach
of Cao [62] based on the false nearest neighbors method of
Kennel et al. [63] to select d = 3.

We present in Fig. 20 the ensemble of {�y(ti)} ∈ R3 synthe-
sized by our delay embedding of the scalar time series {x(ti)}.
Takens’ theorem asserts that this embedding constitutes a
topologically equivalent reconstruction of the Lorenz attractor,
and that the dynamical flow of the points over the manifold is
C1-equivalent to that over the original attractor. The relatively
simple and low-dimensional nature of the Lorenz system
allows this to be confirmed from visual inspection, from which
it is apparent that the reconstruction reproduces the two wings,
the holes in their centers, and the figure eight flow of points
over the manifold.

Observable = z(t). We now consider the Lorenz variable
z as our observable, producing a univariate time series z(t).
Following an identical approach to that above, we construct
Takens’ delay embeddings with τ = 0.146 [61], and d = 3
[62]. As discussed above, in this case we should not expect
the reconstruction to preserve the topology of the Lorenz

X(t)
X(t+ )

X
(t+

2
)

Y

FIG. 20. Reconstruction of the Lorenz attractor from three-
dimensional Takens’ delay embeddings of the scalar time series
x(t). To assist in comparisons with Fig. 19, each point �y(ti) =
(x(ti),x(ti + τ ),x(ti + 2τ )), where τ = 0.429, is colored according
to the y coordinate of the center point, y(ti + τ ). By Takens’ theorem,
this reconstruction is topologically identical to the Lorenz attractor
in Fig. 19.
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FIG. 21. Reconstruction of the Lorenz attractor from three-
dimensional Takens’ delay embeddings of the scalar time series
z(t). To assist in comparisons with Fig. 19, each point �y(ti) =
(x(ti),x(ti + τ ),x(ti + 2τ )), where τ = 0.146, is colored according
to the y coordinate of the center point, y(ti + τ ). The observable z

contains a spurious symmetry that is not present in the Lorenz system
such that it cannot distinguish between the two butterfly wings. This
violates a key assumption for the success of Takens’ theorem causing
it to fail, and the reconstructed attractor is not topologically equivalent
to the Lorenz attractor in Fig. 19.

attractor since the observable z does contain a symmetry not
present in the system, in that it cannot distinguish the two
butterfly wings. The topological inequivalence is apparent
from the three-dimensional delay embedding presented in
Fig. 21, where the reconstruction has collapsed together the
two butterfly wings. This negative example demonstrates
the importance of using a scalar observable that does not
contain any spurious symmetries not present in the system.
This condition turns out to be of central importance in our
application of Takens’ theorem to the C24H50 n-alkane chain
in the main text.

2. Reconstruction of the potential energy landscape
of a Brownian particle

As a second example, we consider the application of Tak-
ens’ theorem to reconstruct a two-dimensional potential energy
landscape from univariate measurements of the dynamics of a
Brownian point particle within the potential. Since a point
particle possesses no configurational entropy, the potential
energy E(�r) is identical to the free energy F (�r), where �r is
the coordinates of the particle on the potential surface. In
contrast, the polymer considered in the main text does contain
configurational entropy, so in that case it is the free-energy
landscape that we seek to recover.

The motion of a Brownian particle with constant and
isotropic diffusivity, D, in an external potential, E(�r), is given
by the equation of motion,

�̇r(t) = −D∇E(�r) + √
2Dξ (t), (B4)

where ξ (t) is a stationary Gaussian process with 〈ξ (t)〉 = 0
and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′) [97]. For clarity of exposition, we
consider the motion in dimensionless form such that the
particle position �r , time t , and potential E are all dimen-

FIG. 22. Two-dimensional Brownian dynamics in a three-well
potential energy landscape. The point cloud corresponds to the 10 000
snapshots of the particle location recorded over the course of the
numerical Brownian dynamics simulation.

sionless. (The dimensional equation of motion can be placed
in dimensionless form by scaling it with characteristic values
for time, length, and energy.) We consider the potential energy
landscape illustrated by the surface in Fig. 22, comprising three
identical isotropic Gaussian wells and a long ranged quadratic
restraining potential to prevent the particle from drifting off
to infinity. Mathematically, the dimensionless potential energy
surface is given by

E(x,y) = 1

2
κ(�r − �νi)

T (�r − �νi)

+
3∑

i=1

α√
(2π )2|�|

exp

[
1

2
(�r − �μi)

T �−1(�r − �μi)

]
,

(B5)

where �r = (x,y), the quadratic restraining potential, is cen-
tered at �ν = (1.5,1.5) and possesses a spring constant κ = 0.2,
and the Gaussian wells of depth α = (−70) and unit variance
� = (1 0

0 1) are centered at �μ1 = (0.0,0.0), �μ2 = (0.3,0.0),
and �μ3 = (0.0,0.3).

We adopt a diffusivity of D = 0.04, and initially locate the
particle at the origin �r0 = (0,0). We simulate the trajectory of
the Brownian particle over the time horizon t = [0,200,000]
by numerically integrating the equation of motion using the
Ermak-McCammon equation employing a time step �t = 0.2
[97]. We sample the particle location every 100 steps. The
point cloud defining the location of the particle at each of
these 10 000 time points is projected over the potential energy
landscape in Fig. 22.

Given complete knowledge of the location of the Brownian
particle at each time point [i.e., its (x,y) coordinates] we
can compute an approximation for the underlying (dimen-
sionless) potential energy landscape can be estimated from
the observed probability distribution of snapshots in the point
cloud, P̂ (x,y), using the statistical mechanical relationship,
E(x,y) = −lnP̂ (x,y) + C, where C is an arbitrary constant.
The approximation generated from the 10 000 samples of
the (x,y) system coordinates recorded over the course of
the simulation is presented in Fig. 23. It is the goal of
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FIG. 23. Potential energy surface estimated from 10 000 samples
of the system coordinates (x,y) recorded over the course of the
Brownian dynamics simulation.

this example to show that we can apply Takens’ theorem
to recover a topologically equivalent representation of the
potential energy surface in Fig. 23 from time series in a single
system observable.

Before proceeding, we note that since the Brownian
dynamics proceed over a two-dimensional intrinsic manifold
in a two-dimensional phase space, there is no need to
apply dimensionality reduction algorithms to the simulation
trajectory to synthesize a low-dimensional projection of the
intrinsic manifold residing within a high-dimensional ambient
space. This stands in contrast to our analysis of the dynamics
of a polymer chain considered in the main text, where
we employ nonlinear dimensionality reduction to extract a
three-dimensional intrinsic manifold from a 72-dimensional
coordinate space.

Observable = x(t). We first consider the case that we
have access to only the x coordinate of the particle dynamics.
The dynamical evolution of x and y are coupled through the
potential energy landscape, E(x,y), meaning that the evolution
of x depends also on y, and x is a generic observable of
the system [i.e., f (x,y) = x(y); cf. Fig. 22]. This observable
does, however, contain a spurious symmetry not present in the
system, since it cannot distinguish the two Gaussian wells
located at (x,y) = (0.0,0.0) and (0.0, 0.3). As is visually
apparent from Fig. 22, these wells collapse together under
projection onto the x axis, and we should not expect to be
able to reconstruct a topologically equivalent potential energy
landscape from Takens’ delay embeddings of x(t). This is
precisely analogous to the case of the z observable in the
Lorenz system described above.

Following the same methodology as described for the
Lorenz attractor above, we construct a Takens’ delay em-
bedding in the scalar time series {x(ti)}Ki=1 measured at
equally spaced intervals of �t = 0.2 over the course of
the time horizon t = [0,200,000] [cf. Eq. (B3)], employing
the mutual information approach of Fraser and Swinney to
choose τ = 0.4 [61], and the nearest neighbors approach of
Cao [62] to select d = 20. Takens’ theorem asserts that the
dimensionality of the reconstructed intrinsic manifold must
be the same as that of the original intrinsic manifold, such
that the two-dimensional reconstruction lies latent within the

FIG. 24. Projection of the 20-dimensional delay embedding
of the scalar time series in x(t) extracted from the Brownian
dynamics simulations into the top two collective modes [ �φ2, �φ3]
identified by diffusion maps. Points are colored by the change in φ2

between consecutive delay embedding vector projections, �φ2(ti) =
φ2(ti + τ ) − φ2(ti).

20-dimensional delay embedding space. Using the approach
detailed in the main text—Methods Summary: Dimensionality
reduction—and presented in more detail above—Appendix
A3: Diffusion maps, and Appendix A4: Hierarchical nonlinear
principal components analysis—we use nonlinear dimension-
ality reduction to identify and extract the two-dimensional
reconstructed manifold. Indeed, application of diffusion maps
to the 20-dimensional delay embedding identifies a two-
dimensional embedding into the top two collective modes
[ �φ2, �φ3] that we present in Fig. 24.

It is clear from visual inspection of the embedding that
there exists an axis of reflection symmetry along φ3 = 0.
What is the source of this symmetry? Coloring the points over
the two-dimensional manifold by the change in �φ2(ti) =
φ2(ti + τ ) − φ2(ti) reveals a counterclockwise flow over the
manifold such that transitions of the system from the left side
to the right side of the reconstructed manifold progress by
the lower pathway, whereas transitions from the right to left
progress by the upper. The existence of separate pathways
for transitions of the Brownian particle from left to right
and right to left contradicts the expectation that a system
in thermodynamic equilibrium should obey detailed balance
and exhibit microscopic reversibility [5,65]. Accordingly, it
should not be possible to tell from a single observation of the
particle coordinates whether it is moving to the right or left.
This expectation is met for the point cloud over the original
intrinsic manifold (Fig. 22), but not for that recovered from
the delay embedding (Fig. 24). The difference is that the delay
embedding vectors are formed from a series of successive
measurements of the system, from which it is possible to
ascertain whether the particle is in the process of moving
right or moving left. Specifically, the delay embedding of a
particle moving along a particular pathway towards the right
will comprise a sequence of measurements of x increasing
in value, whereas that for a particle moving along the same
pathway but towards the left will comprise a sequence of
x measurements decreasing in value. Accordingly, a particle
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located at coordinates (x̃,ỹ) and moving to the right will be
embedded in a different location in delay space from a particle
at (x̃,ỹ) but moving to the left. In effect, the construction of a
delay embedding has broken the symmetry of the underlying
Newtonian mechanics, leading to the observed reflection
symmetry in Fig. 24. As we shall see, the well on the left side of
the reconstructed intrinsic manifold at (φ2,φ3) = (−0.005,0)
corresponds to the collapsing together of the two potential
wells at (x,y) = (0.0,0.0) and (0.0, 0.3), and the one on
the right at at (φ2,φ3) = (0.02,0) the the remaining well at
(x,y) = (0.3,0.0). We do not see an analogous top-bottom
symmetry in addition to the left-right just described due to the
inability of the observable x to distinguish the two Gaussian
wells at (x,y) = (0.0,0.0) and (0.0, 0.3) (cf. Fig. 23).

For clarity of exposition, we eliminate the spurious sym-
metry introduced by the delay embedding by projecting the
points embedded into the lower portion of the attractor into
the upper portion by reflecting them through the observed axis
of symmetry along φ3 = 0. We observe analogous spurious
temporal symmetries in our reconstruction of the intrinsic
manifold of the C24H50 chain in the main text, and describe
therein a more rigorous approach to eliminate this symmetry
in Results and Discussion: Temporally symmetrized smFES
from delay embeddings.

Having removed the spurious symmetry, we now proceed
to reconstruct the potential energy landscape over the recon-
structed intrinsic manifold using the relationship E(φ2,φ3) =
−lnP̂ (φ2,φ3) + C, where C is an arbitrary constant. As
illustrated in Fig. 25, we see that the reconstructed potential
energy landscape E(φ2,φ3) contains only two basins compared
to the three basins in the original potential E(x,y), and is
therefore not topologically equivalent. The reason, of course,
is the spurious symmetry in the observable x from which the
delay embeddings were constructed that cannot distinguish
between the two Gaussian wells at (x,y) = (0.0,0.0) and (0.0,
0.3). Indeed, by inspecting the x values of the points in the
delay embedding, we have verified that the deeper basin on
the left corresponds to the collapsing together of the two wells
at at (x,y) = (0.0,0.0) and (0.0, 0.3), and that on the right to
the single well at (x,y) = (0.3,0.0).

FIG. 25. Potential energy surface over the two-dimensional re-
constructed intrinsic manifold generated from delay embeddings of
the scalar time series in x(t).

Observable = x(t) − y(t). We now consider as our generic
observable a linear combination of x and y that does not
contain any spurious spatial symmetries. The expectation is
that this observable should permit the recovery of topologically
equivalent reconstructions of the potential energy landscape of
the Brownian particle using Takens’ theorem. Adopting as our
scalar observable f (x,y) = (x − y), we followed precisely
the same protocol as above to construct d = 20-dimensional
delay embeddings with a delay time of τ = 0.4. Diffusion
maps recover a three-dimensional manifold from within the
20-dimensional delay space spanned by the top three collective
variables [φ2,φ3,φ4]. Analysis revealed φ2 and φ3 to be
functionally dependent, defining a one-dimensional manifold
in the space of these two variables. We eliminated this
redundancy using hierarchical nonlinear principal components
analysis (h-NLPCA) to extract this one-dimensional manifold
that we term �23. The combined application of diffusion
maps and h-NLPCA allows us to generate a two-dimensional
reconstruction of the intrinsic manifold in [�23,φ4]. After
removing the spurious temporal symmetry in φ4 introduced
by the delay embedding (cf. Fig. 24), we generated the
reconstructed potential energy landscape illustrated in Fig. 26.
In this case, our reconstruction is a topologically equivalent
reconstruction of the original landscape (Fig. 23), reproducing
its structure and geometry. Analysis of the (x,y) coordinates
corresponding to the points in the delay embedding reveals the
well at (�23,φ4) = (0.2,0.0) corresponds to that at (x,y) =
(0.0,3.0), that at (�23,φ4) = (0.6,0.0) to (x,y) = (0.0,0.0),
and that at (�23,φ4) = (1.2,0.0) to (x,y) = (3.0,0.0). The
low-energy pathways linking neighboring wells in the recon-
structed potential energy surface reproduce their topological
adjacency in the original potential energy landscape, the higher
energy pathway linking the left and right wells corresponding
to rarely observed transitions between the (x,y) = (0.0,0.3)
to (x,y) = (0.3,0.0) wells that do not become trapped in the
intervening (x,y) = (0.0,0.0) basin.

By collecting time series in a generic observable that does
not contain any symmetries not present in the system, we have
used Takens’ theorem to successfully reconstruct topologically
equivalent representations of the original potential energy

FIG. 26. Potential energy surface over the two-dimensional re-
constructed intrinsic manifold generated from delay embeddings of
the scalar time series in x(t) − y(t).
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landscape containing the Brownian particle. As specified by
the theorem, we should not expect the topography of the
original landscape to be preserved, such that the reconstructed
intrinsic manifold may be a stretched and squashed version
of the original manifold that nonetheless preserves its topo-
logical geometry and connectivity. Indeed, the shape of the
reconstructed potential energy landscape in Fig. 26 is clearly
different from that of the original landscape in Fig. 23, while
still maintaining the topology.

Observable = 4 × sin[x(t) − 1.5] + 3 × cos[y(t)]. As a
final example, we consider as our system observable a highly
nonlinear system observable f (x,y) = 4 × sin[x(t) − 1.5] +
3 × cos[y(t)] that does not contain any symmetries not
present in the system. Following an identical procedure to
that above, we recover the two-dimensional reconstructed
energy landscape in Fig. 27. As is visually apparent, this
reconstruction is a topologically equivalent reconstruction of
the original potential energy landscape, containing the three
energy wells and the transition paths between them. As might
be anticipated from the complexity of the nonlinear scalar
observable, the topography of the landscape is substantially
perturbed compared to that recovered from the linear observ-

FIG. 27. Reconstructed potential energy landscape over the two-
dimensional reconstructed intrinsic manifold generated from delay
embeddings of the scalar time series in 4 × sin[x(t) − 1.5] + 3 ×
cos[y(t)].

able f (x,y) = (x − y), although the topology is once again
equivalent.
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[76] S. Nosé, A unified formulation of the constant tempera-
ture molecular dynamics methods, J. Chem. Phys. 81, 511
(1984).

[77] M. Parrinello and A. Rahman, Polymorphic transitions in single
crystals: A new molecular dynamics method, J. Appl. Phys. 52,
7182 (1981).

[78] R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles (Taylor & Francis, New York, 1988).

[79] R. A. Gingold and J. J. Monaghan, Smoothed particle hy-
drodynamics: Theory and application to non-spherical stars,
Mon. Not. R. Astron. Soc. 181, 375 (1977).

[80] G. R. Liu and D. Karamanlidis, Mesh free methods: Moving
beyond the finite element method, Appl. Mech. Rev. 56, B17
(2003).

[81] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensional-
ity reduction and data representation, Neural Comput. 15, 1373
(2003).

[82] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis,
Diffusion maps, spectral clustering and reaction coordinates of
dynamical systems, Appl. Comput. Harmonic Anal. 21, 113
(2006).

[83] R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer,
Graph Laplacian tomography from unknown random projec-
tions, IEEE Trans. Image Proc. 17, 1891 (2008).

[84] Available at http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg.
[85] Available for free download at http://www.nlpca.org/matlab.

html.
[86] B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, LINCS:

A linear constraint solver for molecular simulations, J. Comput.
Chem. 18, 1463 (1997).

[87] H. Whitney, Differentiable manifolds, Ann. Math. 37, 645
(1936).

[88] M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, De-
termination of reaction coordinates via locally scaled diffusion
map, J. Chem. Phys. 134, 124116 (2011).

[89] I. Jolliffe, Principal Component Analysis, 2nd ed. (Springer,
New York, 2002).

[90] W. Kabsch, A solution for the best rotation to relate two sets of
vectors, Acta Crystallogr., Sect. A 32, 922 (1976).

[91] R. G. Littlejohn and M. Reinsch, Gauge fields in the separation
of rotations and internal motions in the n-body problem,
Rev. Mod. Phys. 69, 213 (1997).

[92] M. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, J. Res. Natl. Bureau Standards 49, 409
(1952).

[93] E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20,
130 (1963).

[94] P. Grassberger and I. Procaccia, Measuring the strangeness of
strange attractors, Phys. D (Amsterdam, Neth.) 9, 189 (1983).

[95] MATLAB, Ver. 7.10.0 (R2010a), MathWorks, Inc., Natick, MA,
2010.

[96] L. M. Pecora, L. Moniz, J. Nichols, and T. L. Carroll, A unified
approach to attractor reconstruction, Chaos: An Interdisciplinary
J. Nonlinear Sci. 17, 013110 (2007).

[97] T. Schlick, Molecular Modeling and Simulation: An Interdisci-
plinary Guide (Springer Science & Business Media, New York,
2010).

032412-28

http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.1137/0914030
http://dx.doi.org/10.1137/0914030
http://dx.doi.org/10.1137/0914030
http://dx.doi.org/10.1137/0914030
http://dx.doi.org/10.1103/PhysRevE.80.031102
http://dx.doi.org/10.1103/PhysRevE.80.031102
http://dx.doi.org/10.1103/PhysRevE.80.031102
http://dx.doi.org/10.1103/PhysRevE.80.031102
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1107/S0907444904011679
http://dx.doi.org/10.1107/S0907444904011679
http://dx.doi.org/10.1107/S0907444904011679
http://dx.doi.org/10.1107/S0907444904011679
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1115/1.1553432
http://dx.doi.org/10.1115/1.1553432
http://dx.doi.org/10.1115/1.1553432
http://dx.doi.org/10.1115/1.1553432
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1016/j.acha.2005.07.004
http://dx.doi.org/10.1016/j.acha.2005.07.004
http://dx.doi.org/10.1016/j.acha.2005.07.004
http://dx.doi.org/10.1016/j.acha.2005.07.004
http://dx.doi.org/10.1109/TIP.2008.2002305
http://dx.doi.org/10.1109/TIP.2008.2002305
http://dx.doi.org/10.1109/TIP.2008.2002305
http://dx.doi.org/10.1109/TIP.2008.2002305
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://www.nlpca.org/matlab.html
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.1063/1.3569857
http://dx.doi.org/10.1063/1.3569857
http://dx.doi.org/10.1063/1.3569857
http://dx.doi.org/10.1063/1.3569857
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1063/1.2430294
http://dx.doi.org/10.1063/1.2430294
http://dx.doi.org/10.1063/1.2430294
http://dx.doi.org/10.1063/1.2430294



