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Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein
as an example
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We inquire how structure emerges during the process of protein folding. For this we scrutinize collective
many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various
topological techniques, in combination with analytic tools that we deduce from the concept of integrable models
and structure of discrete nonlinear Schrödinger equation. The example we consider is an α-helical subunit of
the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological
oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process
computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and
in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary
structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we
identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths
to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.
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I. INTRODUCTION

A domain wall is a prototype collective excitation in a
physical system, and it is also the paradigm example of a
topological soliton [1]. A domain wall can appear whenever
there is a global symmetry that becomes spontaneously broken.
It constitutes the boundary that separates two neighboring
domains, in which the order parameter that detects the
symmetry breaking has different values.

In the case of a one-dimensional Heisenberg spin chain the
order parameter is a three component unit length vector. When
one of the three vector components vanishes identically, the
Heisenberg spin chain reduces to the XY spin chain [2,3].
A domain wall along the spin chain is a localized excitation
that interpolates between two different, ordered spin states in
which the order parameter has different constant values. Two
major types of domain walls are commonly identified along
the Heisenberg chain [2,3]. These are called the Bloch wall
and the Néel wall, respectively. In the case of a Bloch wall, the
Heisenberg spin variable rotates through the plane of the wall
and in the case of a Néel wall the rotation takes place within
the plane of the wall itself. Domain walls that are mixtures
of these two, can also occur along the Heisenberg spin chain,
while along the XY spin chain, only domain walls of the Bloch
type can be present.

In this paper, we demonstrate that the formation of
supersecondary structures, during folding of a protein [4], can
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be understood in terms of a Bloch domain wall that forms
along a Heisenberg spin chain, or along a closely related
XY spin chain. We propose that the spin chain interpretation
of a protein backbone provides a systematic framework for
understanding and describing the process of protein folding.
For this we employ all-atom force fields [5,6] to scrutinize
protein folding dynamics at the level of individual atoms and
their oscillations. We analyze the folding pathway using a
combination of topological techniques and global analytic
tools. We isolate the collective oscillations that are pertinent
for the folding process from the noisy background of thermal
and random individual atom fluctuations. In particular, we
illustrate how the individual atom motions become organized
and combined into a coherent structural excitation which we
identify as the Bloch wall.

As a concrete example we consider an α-helical subunit
of the HIV envelope glycoprotein gp41 [7], with Protein Data
Bank [8] (PDB) code 1AIK. There are six α-helical subunits in
the biological assembly, shown in Fig. 1. We consider in isola-
tion the subunit, for which the first amino acid is No. 628 in the
PDB file. In isolation, the subunit is unstable and starts folding.

The transmembrane glycoprotein 41 is itself a subunit of
the retrovirus envelope protein complex. In the case of the
HIV, its structure has been studied extensively. It is presumed
to have substantial biological relevance to the initial viral
infection. Accordingly, the gp41 protein is a popular target for
the development of an antiviral immune response, to prevent
and cure HIV infection. However, medical applications are
beyond the direct scope of the present study. Here, we shall
solely address and identify the physical mechanism, why and
how an individual, initially α-helical subunit of 1AIK becomes
unstable in isolation, and starts folding.

For our all-atom molecular dynamics simulations, we
utilize the GROMACS 4.6.3 package [9]. We analyze the results
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FIG. 1. The biological assembly of 1AIK is an oligomer with six
α-helical structures. The subunit that starts with amino acid number
628 in the PDB file is identified by the arrow.

using a variety of topological techniques and analytical tools.
Our approach derives from the mathematical structure of
Heisenberg and XY spin chains, in combination with the
properties of a discrete nonlinear Schrödinger (DNLS) Hamil-
tonian [2,3]. In particular, the DNLS equation that describes
the local extrema of the Hamiltonian, enables us to analytically
identify the profile of the domain wall, and to interpret it in
terms of a DNLS soliton [10].

Here, we present results from the detailed investigation of
a particular example. However, we expect our observations
and conclusions to be generic. Indeed, the present results are
fully in line with the previous findings [11–13] obtained by
using the coarse grained UNRES energy function [14–16]
in the case of protein A. The similitude of results that
are obtained by analyzing the protein folding process using
different tools, built and based on phenomena with very
different characteristic time and length scales, demonstrates
that we have correctly identified the relevant collective motions
that command the folding process.

II. METHODS

We have performed in silico experiments to fold one C-
chain subunit of the core structure of gp41 [7]. The structure
comes from the HIV envelope glycoprotein with PDB code
1AIK. The amino acid sequence is

W M E W D R E I N N Y T S L I H S
L I E E S Q N Q Q E K N E Q E L L.

(1)

These amino acids are assigned Nos. 628–661 in the PDB
entry of 1AIK.

A. All-atom simulations

We have used the molecular dynamics package GROMACS

4.6.3 [9]. We have analyzed in detail a number of 80-ns-long
trajectories, with the crystallographic PDB conformation as the
initial condition. We have chosen the length of the trajectories
by inspecting, when major structural deformations take place.
We have employed three different force fields, to eliminate

force-field based artifacts. These are the united-atom force
field GROMOS53a6, and the all-atom force fields CHARMM27
and OPLS/AA.

The 1AIK subchain that we have investigated in detail,
consists of 34 amino acid residues, with PDB numbers
628–661. There are 16 200 atoms in the entire system that
we have simulated, including the solvent. The simulation box

has dimensions 47 × 47 × 74 Å
3
. This ensures that there is a

2 nm minimal distance between the protein atoms and the box
walls, with periodic boundary conditions.

We have described the solvent using the SPC water
model [17]. We have neutralized the system at a salt concen-
tration of 0.15 mol/l. We have used steepest-descent for initial
energy minimisation. The system was warmed up to 290 K by a
simulated annealing in a 100-ps position-restraint simulation.
We have chosen this relatively low temperature value for a
better control of random thermal noise but without forgoing
the underlying physical phenomena. For temperature control,
we have employed the Berendsen-thermostat with a time
constant 0.1 ps, and for pressure coupling—the Berendsen-
barostat with a pressure set to 1 bar and a time constant
0.5 ps. Constraints on all bonds were imposed with the
LINCS algorithm [18]. We have used the particle mesh Ewald
(PME) method [19] to compute the long-range electrostatic
interactions, with van der Waals and Coulomb cutoff radii of
0.9 nm. For the 80-ns production run with a time step of 2 fs,
that we analyze here in detail, we have changed the thermostat
to v-rescale and the barostat to Parrinello-Rahman, keeping
the initial time constants, to ensure the generation of a proper
canonical ensemble [9]. We have recorded the coordinates
every 20 ps, which gives rise to 4000 frames that form the
basis for our analysis.

B. Protein geometry

We have introduced, employed, and developed a number
of topological tools and analytic techniques to analyze and
interpret the results of our GROMACS simulations.

1. Discrete Frenet equation

We monitor the evolution of the protein geometry using
Frenet frames which are based on the backbone Cα atoms [20].
The framing depends only on the Cα atom coordinates ri ,
where i = 0, . . . ,N labels the residues and N = 33 in the
case of 1AIK. At a given ri , the frame consists of the unit
backbone tangent (ti), binormal (bi), and normal (ni) vectors,
defined as follows:

ti = ri+1 − ri

|ri+1 − ri | , (2)

bi = ti−1 × ti
|ti−1 × ti | , (3)

ni = bi × ti . (4)

Our aim is to identify and isolate the collective multiatom
motions that drive the protein folding process, from the
background of the various random fluctuations. We expect that
such coherent motions and oscillations have characteristic time
scales that are much longer than the period of an individual
atom covalent bond oscillation. In average, over the relevant
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time scales, the distance between two consecutive Cα atoms
can then be taken to be nearly constant, and equal to

|ri+1 − ri | ≈ 3.8 Å. (5)

Thus, at relevant time scales, the backbone dynamics can be
described entirely in terms of the virtual backbone bond and
torsion angles κi and τi , as the complete set of structural order
parameters [21,22]. These angles are defined as follows:

κi+1,i ≡ κi = arccos(ti+1 · ti), (6)

τi+1,i ≡ τi = ω arccos(bi+1 · bi), (7)

where

ω = sign[(bi−1 × bi) · ti]. (8)

Conversely, the frame vectors (2)–(4) can be expressed in terms
of these two order parameters iteratively, using the discrete
Frenet equation [20]⎛
⎝ni+1

bi+1

ti+1

⎞
⎠ =

⎛
⎝cos κ cos τ cos κ sin τ − sin κ

− sin τ cos κ 0
sin κ cos τ sin κ sin τ cos κ

⎞
⎠

i+1,i

⎛
⎝ni

bi

ti

⎞
⎠
(9)

and the Cα backbone is calculated from

rk =
k−1∑
i=0

|ri+1 − ri | · ti . (10)

Unlike the tangent vector ti , the normal and binormal vectors
ni and bi do not appear in Eq. (10). Thus, if we rotate these two
vectors simultaneously around the vector ti , the Cα geometry
remains intact and only the way how it is framed changes.
In particular, we shall make use of the rotation by π , which
constitutes the discrete Z2 gauge transformation,

κi → κi − π,
(11)

τk → −τk for all k � i,

that proved very convenient in analyzing the protein loop
structure [10–13,20–25].

2. Heisenberg spin variables

According to (10) the entire Cα backbone geometry
is determined by the tangent vectors ti . Thus, following
Ref. [26–28], we may visualize the backbone geometry in
terms of these vectors: we take the base of ti to be at the
location ri of the ithCα atom. We identify the tip of ti as a
point on the surface of a unit two-sphere S2

i that is centered at
the point ri . We orient the coordinate system on the sphere so
that the north-pole coincides with the tip of ti . Thus the north
pole is always in the direction of the next Cα, which is at the
site ri+1.

We proceed to characterize the direction of the next tangent
vector ti+1, i.e., the direction from ri+1 towards the Cα atom
at site ri+2, in terms of the longitude and latitude angles of the
ith two-sphere S2

i . For this, we translate the center of S2
i from

ri towards its north pole, and all the way to the location ri+1 of
the (i + 1)th Cα atom, without introducing any rotation of the
sphere. We then record the direction of ti+1 as a point on the

FIG. 2. The distribution of (κ,τ ) values in all PDB structures
with better than 2.0-Å resolution, on the stereographically projected
two-sphere, with a rainbow encoding of the number of entries (red
corresponding to the largest number). The locations of the major
regular secondary structures are identified.

surface of the translated S2
i . This defines the coordinate values

(κi,τi), that determine how the backbone chain turns at site
ri+1, to reach the (i + 2)th central Cα atom at the point ri+2:
the angle κi measures the latitude of ti+1 on the translated
two-sphere S2

i , from its north pole. The angle τi measures
the longitude of ti+1, starting from the great circle that passes
both through the north pole and through the tip of the binormal
vector bi .

When we repeat the above procedure for all Cα atoms,
we obtain a (κ,τ ) distribution that characterizes the overall
geometry of a protein backbone. For a visualization of this
distribution we employ the geometry of a stereographically
projected two-sphere, in terms of the standard Riemann sphere:
we project the (κ,τ ) coordinates from the south pole to the
tangent plane of the north pole of the two-sphere. If (x,y) are
the coordinates of this tangent plane (Riemann sphere), the
projection is defined by

x + iy = tan
(κ

2

)
e−iτ . (12)

When we perform the projection for all Cα atoms in all
crystallographic protein structures in PDB that have been
measured with resolution better than 2.0 Å, we arrive at the
statistical angular distribution that we show in Fig. 2. It is
the landscape for the shape of the protein backbones from the
crystallographic data in PDB. By the way it is obtained, the
crystallographic protein structure should be very close to a
stationary minimum of the ensuing Gibbs free energy. Thus
Fig. 2 should present the collective landscape of stationary,
minimum-energy protein structures.

We observe that the PDB data is concentrated in an annulus
which is roughly between the circles κin ≈ 1 and κout ≈ π/2.
The exterior of the annulus κ > κout is an excluded region,
the ensuing conformations are subject to steric clashes. The
interior κ < κin is sterically allowed but in practice excluded in
PDB structures. Note that regular structures such as α helices
and β strands are distinguished as highly populated regions in
Fig. 2, with

(κ,τ )α ≈ (1.57,0.87) ∼
(

π

2
,1

)
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FIG. 3. (a) A generic loop is a trajectory on the stereographically
projected (κ,τ ) sphere that connects a region corresponding to a
regular secondary structure (here A) to another one (here B); (b) in
terms of the variable (13), a loop becomes a Bloch domain wall that
interpolates between ground states A and B, along a Heisenberg spin
chain.

for α helices and

(κ,τ )β ≈ (1, − 2.9) ∼ (1, ± π )

for β strands. Different regions in Fig. 2 can be connected
by loops, which can be considered as trajectories along the
variables (κ,τ ). We have found that loops have the tendency to
encircle the inner circle. In Fig. 3(a), we show, as an example,
a generic loop that connects the right-handed α-helical region
(here A) with the β-stranded region (here B).

To describe a backbone segment analytically, we combine
its Cα’s bond and torsion angles into the three component unit
vectors

si =
⎛
⎝cos τi sin κi

sin τi sin κi

cos κi

⎞
⎠. (13)

We interpret these vectors as the local order parameters along
an imaginary linear one dimensional Heisenberg spin chain,
labeled by the index i. This converts the Cα geometry into a
configuration along a linear Heisenberg chain in a one-to-one
manner. In Fig. 3(b), we have sketched how the generic
trajectory shown in Fig. 3(a) appears in terms of such a
Heisenberg spin chain configuration.

Since the spin variable (13) takes values only in the annulus
κin < κ < κout of the two-sphere S2, it is apparent that a loop
can be de facto identified as a domain wall akin the Bloch wall
along a Heisenberg chain. The loop then interpolates between
the two different regular secondary structures, state A and state
B, respectively.

3. Residues and spin chains

The amino acid side chains can be similarly interpreted in
terms of a one dimensional linear spin chain. In fact, there
are several ways to identify the spin chain variable. Here we

FIG. 4. Cβ distribution in the corresponding Cα centered discrete
Frenet frames for all structures in PDB with resolution better than
1.0 Å. The regions corresponding to α helices (αR), β strands (β),
left-handed α helices (αL) are identified, the rest are (mostly) loops.

utilize the directional vector that points from the Cα atom at
ri towards the ensuing Cβ atom, located at rβ

i . This vector can
be introduced for all amino acids except glycine (G); note that
there is no glycine in (1).

We start with the unit vector

uβ

i = rβ

i − ri

|rβ

i − ri |
. (14)

We recall the Cα based discrete Frenet framing with the
coordinates (κi,τi) and represent (14) as three component unit
vectors in this coordinate system,

uβ

i → σ̂i =
⎛
⎝cos τ

β

i sin κ
β

i

sin τ
β

i sin κ
β

i

cos κ
β

i

⎞
⎠. (15)

Here, (κβ

i ,τ
β

i ) are the spherical coordinates of the i th Cβ atom,
on the surface of the Cα centered two-sphere S2

i . In Fig. 4, we
show the distribution of the vectors (15) on the surface of the
two-sphere, for all those crystallographic PDB structures that
have been measured with resolution better than 1.0 Å. Note
that the sphere is the same as in Figs. 2 and 3(a) but now there
is no stereographic projection.

We can interpret the distribution in Fig. 4 as the Cβ land-
scape of stationary folded protein structures with minimum
Gibbs energy. The highly localized character of the distribution
shows that there is a very strong correlation between the
Cα (backbone) geometry and the Cβ (side chain) geometry.
Accordingly, the ground-state structures of the corresponding
Heisenberg spin chain Hamiltonians must be very similar.

We proceed to introduce a set of O(2) spin variables for the
side-chain Cβ. For this we define the projection of (14) onto
the normal plane at the position of the ith Cα,

ui = uβ

i − (uβ

i · ti)ti
|uβ

i − (uβ

i · ti)ti |
.

For the next Cβ along the chain, we introduce similarly the
vector ui+1 and compute its projection onto the same normal

032409-4



BLOCH SPIN WAVES AND EMERGENT STRUCTURE IN . . . PHYSICAL REVIEW E 93, 032409 (2016)

FIG. 5. The angle ηi in (16) is defined as the angle between the
projections of the vectors ui and ui+1, connecting the ith Cα and Cβ,
and the (i + 1)th Cα and Cβ on the normal plane of ti . Note that in
the figure the ith Cα is in front of (on top of) the (i + 1)th Cα.

plane—at the position of the ith Cα,

vi = uβ

i+1 − (uβ

i+1 · ti)ti

|uβ

i+1 − (uβ

i+1 · ti)ti |
.

We then define the relative angle ηi ,

cos ηi = ui · vi . (16)

As shown in Fig. 5, ηi is the dihedral angle

ηi := Cβ(i) − Cα(i) − Cα(i + 1) − Cβ(i + 1). (17)

We note that the construction resembles that of Newman
projection in stereochemistry.

In analogy with Fig. 3(b), we identify the variable ηi as an
order parameter for a linear O(2) XY spin chain,

mi =
(

cos ηi

sin ηi

)
. (18)

Like the Heisenberg model, the XY model supports domain
walls that interpolate between two configurations where the
order parameter has different constant values. The domain wall
of the XY model is akin the Bloch domain wall of a Heisenberg
model. Figure 4 shows that the ground-state structure of the
side chain XY model is closely related to that of the backbone
Heisenberg model, in the case of crystallographic PDB protein
structures.

4. Folding indices

The formation, evolution and structure of a loop along a
folding protein can be monitored in terms of topologically
determined folding indices. Here we are interested in two
particular examples of folding indices, one that relates to the
backbone geometry and another one that relates to the side
chain geometry.

In the case of a Heisenberg spin chain, there is a topological
index akin a winding number that characterizes and classifies
its Bloch domain walls. For the Cα Bloch wall shown in Fig. 3,
this topological index counts the net number of times the
corresponding trajectory encircles around the annulus in the

figure, i.e., around the north pole of the two-sphere. We remind
that due to steric constraints, the Heisenberg variable (13) takes
values in the annulus shown in Figs. 2 and 3(a). We also recall
that for the first homotopy class of a circle, π1(S1) � Z, which
justifies the introduction of a topological concept.

Analytically, we may assign to each loop, and more
generally to a backbone segment, between residues n1 and
n2 the following folding index Indf [29]:

Indf = [ 
 ], (19)

where


 = 1

π

n2−2∑
i=n1+2

⎧⎪⎨
⎪⎩

τi − τi−1 − 2π if τi − τi−1 > π

τi − τi−1 + 2π if τi − τi−1 < −π

τi − τi−1 otherwise

.

(20)
Here, [x] denotes the integer part of x. Note that 
 is the
total rotation angle (in radians) that the projections of the
Cα atoms of the consecutive loop (segment) residues make
around the north pole. The n1, n2 label the first and the last
residues of the loop, which are in the same time the last and
the first residues of the preceding, respectively, the following
regular secondary structures. The folding index is a positive
integer when the rotation is counterclockwise, and a negative
integer when the rotation is clockwise. The folding index can
be used to classify individual loop structures and backbone
segments, even entire protein backbones [29]. Note that the
folding index is normalized so that it is equal to twice the
number of times the vector in Fig. 3(b) rotates around its axis,
when the spin structure traverses a domain wall, i.e., it assigns
an even integer to the π1(S1) � Z winding number, in the case
of a closed trajectory.

For example, for the trajectory shown in Fig. 3 the folding
index has the value −1. For a loop connecting an α helix and
a β strand, the folding index is generically an odd integer. For
a loop connecting two α helices, or two β strands, the folding
index is generically an even integer.

In the case of the side chains, we utilize the Cβ angular
XY spin variable (16) to define a similar topological folding
index [13]. For this, we first choose a reference residue, e.g.,
the nth residue along the backbone. Starting with this reference
residue, we then evaluate the accumulated total angle η̂m over
a segment with m − n residues,

η̂m =
m∑

k=n

ηk (21)

and we define the ensuing index by

Indm =
[
η̂m

π

]
. (22)

Again, the index acquires its topological justification from
the fact that π1(S1) � Z. The dihedral ηk , the accumulated
total angle (21) and the ensuing index (22) can all be used to
study and classify loop structures, protein segments, and entire
proteins.

5. Landau free energy

A generic all-atom molecular dynamics simulation of
a folding protein contains a wide range of intermediate
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conformations. Some of these are essential for the correct
folding pathway, while some are merely random transients
with no inherent relevance to the folding process per se.
In order to identify the relevant conformational processes,
we need systematic methods that smooth over and weave
out the irrelevant random fluctuations. For this we recall the
standard Wilsonian universality arguments [30,31], to deduce
the form of the Landau free energy that emerges from the
thermodynamical Gibbs free energy. In the present context,
the derivation is based on the following two assumptions [22].

(1) We assume that the characteristic length scales that are
associated with spatial variations and deformations along the
protein backbone around its thermal equilibrium configuration,
are large in comparison to the covalent bond lengths. This
presumes that there are no abrupt edges but only gradual slowly
varying bends and twists along the backbone. From Figs. 2
and 4, we conclude that the steric constraints between the
backbone and the side chain atoms act as powerful inhibitors
of sharp, edgy motions.

(2) We also assume that the individual Cα virtual bond
length oscillations have characteristic time scales, which are
very short in comparison to the time scale which characterize
a folding process. The characteristic time scale of a random
covalent bond oscillation is around ten femtoseconds, while in
our simulations we record the individual atomic coordinates
every 20 ps. Accordingly, we may adopt (5) as the (time
averaged) value for all the nearest neighbor Cα-Cα distances.

Since bond and torsion angles (κi,τi) form a complete set
of structural order parameters [21], in the vicinity of a Gibbs
free energy local minimum (κi0,τi0), we may expand the free
energy in terms of these angles. For this we consider the
response of the interatomic distances to variations in these
angles, with

rab = rab(κi,τi),

where rab is the distance between any two Cα atoms a and b

along the backbone. The free energy expansion then takes the
form

G(κi,τi) = G(κi0,τi0)

+
∑
k,l

[
1

2

∂2G

∂κk∂κl |0
�κk�κl + 1

2

∂2G

∂τk∂τl |0
�τk�τl

+ ∂2G

∂κkτl |0
�κk�τl

]
+ . . . , (23)

where

�κi = κi − κi0,
(24)

�τi = τi − τi0.

When the characteristic length scale of spatial deformations
around the minimum energy configuration is large in compari-
son to the covalent bond length, we may rearrange the expan-
sion (23) by locality: first local terms, then nearest-neighbor
terms, then the next-to-nearest-neighbor terms, and so forth.
Together with the demand of invariance under local rotations
in the (bi ,ni) plane, this form makes apparent [22,32,33] the
coincidence to the leading order of the expansion of the Gibbs
free energy with the energy of the following discrete nonlinear

Schrödinger equation [2,3,10]

F =
N∑

i=1

[
λ

(
κ2

i − m2
)2 + q

2
κ2

i τ 2
i − p τi + r

2
τ 2
i + . . .

]

+
N−1∑
i=1

(κi+1 − κi)
2 + . . . (25)

≡ Vpot[κ,τ ] +
N−1∑
i=1

(κi+1 − κi)
2. (26)

This functional form of the free energy is the most general
Landau free energy in terms of the chosen angular variables
(κi,τi), which is consistent with the invariance of the backbone
geometry under local rotations in the (ni ,bi) plane. The
corrections to (25) include next-to-nearest-neighbor couplings
and so forth, which are higher-order terms from the point of
view of our systematic expansion.

We note that in the continuum limit expansion (25)
yields the Coleman-Weinberg derivative (low momentum)
expansion [34]

F →
∫ L

0
ds [ V (φ) + A + |(∂s + iA)φ|2 + . . . ], (27)

where, following [32,33], we have identified the bond angle
with the complex scalar field κi → φ(s) and the torsion angle
with the U(1) gauge field τi → A(s), in the continuum limit.

The Wilsonian universality arguments are sufficient to
conclude that in the limit of slowly varying backbone geometry
any complete all-atom force field can be approximated by
the energy function (25). The parameters λ, q, p, r , and
m depend on the atomic level physical properties and the
chemical microstructure of the protein and its environment.
In principle, these parameters can be computed from this
knowledge. However, as always in the case of a Landau free
energy, it remains a challenge to compute these parameters
from the all-atom level.

6. Spontaneous symmetry breaking and solitons

The free energy (25) relates to the DNLS energy func-
tion [2,3,10]. The nonlinear, quartic bond angle contribution
is the familiar double-well potential that gives rise to a
spontaneous breakdown of the Z2 symmetry

κi ←→ −κi.

The spontaneous breakdown of this discrete symmetry is
pivotal for the emergence of a loop structure, in the case of
proteins. It gives rise to a Bloch wave that interpolates between
the two ground states κi = ±m.

More generally, the quartic potential admits a nonsymmet-
ric profile of the form

U ≈
∑
Cα

1

2
k0(κ − a)2(κ − b)2. (28)

Here, a and b are the positions of the minima of the quartic
potential, and k0 is a force constant. By carefully taking the
continuum limit of the Cα lattice, i.e., the limit where (5)
becomes small, and by introducing a mass-scaled variable
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ξ with m representing the effective mass of a residue, the
pertinent DNLS equation becomes

m
d2ξ

ds2
= −k0 ξ (ξ 2 − c2), (29)

where s is the arc length parameter along the backbone. With
c = (a + b)/2 and

mξ = κ − 1
2 (a + b), (30)

the solution of Eq. (29) is

ξ (s) = c tanh

[
c

√
k0

2m
(s − s0)

]
, (31)

where s0 is the position of the inflection point, so called,
the center of a kink. In terms of the original variables and
parameters

κ(s) = b e
c

√
k0
2m

(s−s0) + a e
−c

√
k0
2m

(s−s0)

cosh
[
c

√
k0
2m

(s − s0)
] . (32)

This is known as the dark soliton solution of the nonlinear
Schrödinger equation. It interpolates between the asymptotic
values, which correspond to the (local) minima of the potential,

κ(s) →
{
a s → −∞
b s → +∞ . (33)

In the case of a protein, the soliton describes the bond angle
profile of a super-secondary structure such as (α helix)-(loop)-
(β strand) shown in Fig. 3; the parameters have the values
a ≈ 1.5 and b ≈ 1.1 (radians) for the states A and B, shown
in the figure.

In the case of a protein chain, the arc length s becomes
replaced by a discrete variable which is equal to the position
of the ensuing Cα in the sequence. The variables κi and τi

are also mutually interacting, according to (25). The soliton
is constructed as the minimum of F in Eq. (25) [10,22–24].
It is the solution of a system of 2N − 5 nonlinear equations
in 2N − 5 unknowns, where N is the number of residues. In
order to obtain the solution, we first solve for τi in terms of κi ,

τi[κ] = p

r + q κ2
i

≡ u

1 + v κ2
i

(34)

with u = p/r and v = q/r . By inserting Eq. (34) into Eq. (25),
the torsion angles τ are eliminated and we obtain a system of
equations for the bond angles κ ,

κi+1 = 2κi − κi−1 + dVpot[κ]

dκ2
i

κi (i = 1, . . . ,N), (35)

where κ0 = κN+1 = 0 and

Vpot[κ] = p

r + q κ2
+ 2(1 − λm2)κ2 + λ κ4. (36)

Here, we recognize the discretized structure of Eq. (29). The
difference is in the first term on the right-hand side in Eq. (36).
However, it turns out that in the case of proteins, its effect is
not that pronounced as the effect of the other terms; it turns
out that the first term is small in value when compared to the
other two.

We can construct the profile of the dark soliton solution
to Eq. (35) numerically, by following the iterative procedure
introduced in reference [10]; the explicit form of the solution
is until now unknown, in terms of elementary functions.
However, by naively discretising the continuum dark nonlinear
Schrödinger equation soliton (32)

κi = μ1 exp [σ1(i − s)] + μ2 exp [−σ2(i − s)]

exp [σ1(i − s)] + exp [−σ2(i − s)]
, (37)

we obtain surprisingly good approximate solutions with pre-
cision of the order of several angstroms. Thus the Cα RMSD
between the crystallographic structure and the model approxi-
mation for the protein with PDB ID 1M6C amounts to 1.27 Å.
Here, μ1,2 ∈ [0,π ] mod(2π ) are parameters, which determine
the amplitude of the variation of κ and the asymmetry of the
inflection regions. The parameters σ1 and σ2 are related to
the inverse of the range of the inflection region. We remark
that in the case of proteins, the values of μ1,2 are determined
entirely by the adjacent helices and strands. Furthermore, far
away from the soliton center, we have in analogy with (33)

κi →
{
μ1 mod (2π ) i > s

μ2 mod (2π ) i < s
.

The corresponding torsion angles are evaluated in terms of the
bond angles using Eq. (34).

Note that in the case of proteins, the profile of Eq. (37)
becomes monotonically increasing when we add multiples
of 2π to the experimental values. Since the values of κi’s
are defined mod (2π ), this does not affect the backbone
geometry. The integer number of times the monotonically
increasing variable κi covers its fundamental domain [−π,π )
counts the number of solitons along the backbone. Recall that
negative values of κi are related to positive values of κi by Z2

symmetry (11). Finally, only the parameters σ1 and σ2 in (37)
are intrinsically specific parameters for a given loop. However,
they specify only the length of the loop, not its shape, which
is determined entirely by the functional form of Eq. (37) and,
as in the case of μ1 and μ2, they are combinations of the
parameters in Eq. (36).

In the expression (34) of the torsion angles τi, i =
1,2, . . . ,N − 3, there are only two independent parameters
u and v. Consequently, the profile of τi is determined entirely
by κi , and by the structure of the adjacent regular secondary
structures.

It has been shown [25] that most crystallographic protein
structures in PDB can be described with very high precision
in terms of such soliton profiles as their modular building
blocks. Moreover, it has been found that in the ensuing soliton
profiles, the number of parameters is generically much smaller
than the number of residues. Thus the energy function (25)
has a very high predictive power, in describing folded proteins
structures in PDB. Its predictions can be subjected to stringent
experimental scrutiny, both in the case of static and dynamic
proteins.

III. RESULTS

We now proceed to demonstrate, that all the concepts
and structures we have identified are observed during an
all-atom simulation of protein folding. We start with individual
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atom-level scrutiny, even though our goal is to identify and
model those collective conformational deformations that cause
a protein to fold. We inquire how does self-organization, in the
case of a protein, relate to universal concepts such as formation
of domain walls along spin chains. We study how accurately
can the dynamics and structure of the important collective
deformations be modelled by soliton profiles such as the one
described by the DNLS equation.

We have subjected the single C-chain subunit of the core
structure of gp41 [7] with PDB code 1AIK and residues
628–661, to detailed all-atom simulations. We have used the
GROMACS 4.6.3. package [9] with three different force fields—
GROMOS53a6, CHARMM27, and OPLS/AA—having thus the pro-
tein described by 383, 573, and 609 atoms, respectively. The
final production simulation models 80 ns of the protein evolu-
tion. We have concluded this to be sufficient, to identify and an-
alyze the important structural deformations that can take place.

A. Generalities

1. Backbone

In Fig. 6(a), we show the secondary structure of the
final conformations that we have obtained using the three
force fields, in our 80-ns simulations. We observe a clear
deformation, in a segment that consists of the first ten residues
from the N-terminal (upper part in the figure).

In Fig. 7, we display the weighted root-mean-square-
deviation (RMSD) of the protein backbone in the three force
fields,

RMSD(t1,t2) =
[

1

M

n∑
i=1

mi ||ri(t1) − r2(t2)||2
]1/2

. (38)

Here, ri(t) is the position of the atom i at time t , and

M =
n∑

i=1

mi,

where mi are the individual atom masses. The deformation
is most intense in the GROMOS53a6 force field. With this
force field, the initial α-helical structure begins collapsing
within 4–5 ns. With the OPLS/AA force field, we find that

FIG. 6. (a) Final conformations after 80 ns MD simulations with
GROMOS53a6 force field (black), CHARMM27 force field (red), and
OPLS/AA force field (green); (b) in the course of the simulation, the
N-terminal rotates anticlockwise while the rest of the protein rotates
clockwise.

FIG. 7. RMSD of the backbone atoms for the three force fields:
GROMOS53a6 (black), OPLS/AA (green), and CHARMM27 (red).

the deformation starts after around 40 ns, but then almost
instantaneously converges to a very close conformation. In the
case of the CHARMM27 force field, the helix tends to remain
intact within the selected time range. The deformation occurs
also here, however, only after a substantially longer time (not
considered in the present paper). Apparently, this force field
has a tendency to produce structures that have an overly α-
helical content. After extended comparisons of the three force
fields, including different time steps and simulation lengths, we
have chosen the GROMOS53a6 force field, with a 2-fs time step,
for the final production simulation of 80 ns that we analyze
here. Qualitatively, however, the results that we present are
independent of the force field and the time step chosen.

2. Qualitative considerations

In Fig. 8, we show the results from a do.dssp [9] secondary
structure analysis, in the case of the GROMOS53a6 simulation.
The following qualitative observations can be made. (1) After
around 4–5 ns corresponding to frames 200–250, there is an
initial formation of a coil structure, according to do.dssp
classification. The coil becomes initially stabilized around
residue number 29, which corresponds to amino acid number

FIG. 8. Secondary structure analysis using do.dssp along a 80 ns
trajectory, produced using the GROMOS53a6 force field. The PDB
residues 628–661 are labeled 0–33.
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656 in the PDB file. The coil is connected to the C-terminal
with a bend. At around 8 ns (around frame 400), there are
helical fluctuations in this structure towards N-terminal, and at
around 22–24 ns (frames 1100–1200) the coil structure moves
back towards the C-terminal. The motion takes place in two
steps, at around frame 1200 and then again at around frame
2800 after which the coil disappears, by merging into the
apparently random fluctuations of the C-terminal residues.

At the level of do.dssp, secondary structure analysis the
coil which emerges near the C-terminal and propagates along
the backbone, is putatively akin the propagating loop structure
that has been previously identified and studied in coarse
grained UNRES simulations of the protein G related albumin-
binding domain with PDB code 1GAB [12,13]. In particular,
the UNRES simulation [12] identifies a displaced protein loop
as a localized structure with a profile that can be described
by the soliton solution of the discrete nonlinear Schrödinger
equation (34) [(35)]. The simulation demonstrated that when
the loop soliton moves along the protein lattice, with cells
matching the residues, there are waves that are emitted in its
wake as vibrations in the lattice structure. These waves drain
the kinetic energy of the soliton, and cause it to decelerate.
Eventually, the kinetic energy of the soliton becomes depleted,
and it can no longer cross over the energy barriers between
lattice cells and becomes localized around a particular set
of lattice cells. The energy barriers that prevent the soliton
from translating along the backbone lattice were identified as
Peierls-Nabarro barriers [35–37] in Ref. [13].

In the present case of the C-terminal coil, there is apparently
a Peierls-Nabarro barrier that stops and prevents the coil
that is supposedly modelled by a DNLS, from propagating
away from the C-terminal beyond the residues 28 and 29.
Instead, it becomes initially trapped, then moves towards the
C-terminal and dissolves there. The soliton moves stepwise, its
crossing-over the ensuing Peierls-Nabarro barriers is boosted
by thermal fluctuations. The soliton crosses a barrier whenever
the amplitude of its thermal fluctuations exceeds the barrier-
specific threshold value.

At around the same time when the C-terminal coil forms, we
observe a turn deformation that forms and proceeds away from
the N-terminal, and then fluctuates thermally between residues
5 and 10. After around 20 ns (frame 1000) of simulation time,
there is a rapid extended turnlike fluctuation that connects the
N-terminal with a localized structure which is identified as
a short coil by do.dssp. This is an apparent DNLS soliton,
emerging at the end of the extended turnlike structure and
stabilizing around the residues 6–8 (residues 634–636 in the
PDB file). We observe initially relatively strong fluctuations in
the residues between the putative soliton and the N-terminal.
The amplitudes of these fluctuations become damped and after
around 50 ns (frame 2500) there are only minor fluctuations
in the soliton. There is a bend between the soliton and the
N terminus, which constitutes a Peierls-Nabarro barrier, high
enough to prevent the soliton from moving towards the N
terminal, stepwise by thermal fluctuations.

3. Backbone folding index

We proceed to analyze the dynamics quantitatively, and we
start with the backbone folding index (19). For this we have

FIG. 9. The folding index density (20) evaluated over two
segments of the 1AIK backbone: (a) the segment 4–11 (residues
632–639 in PDB), and (b) the segment 24–30 (residues 652–658 in
PDB).

divided the backbone into segments of varying length, and
computed the folding index over the segments during the 80-ns
time evolution. Examples of results are shown in Fig. 9, where
we plot the numerical values of the folding index density (20).

The first segment consists of the sites 4–11 corresponding to
residues 632–639 in PDB. This segment covers the N-terminal
soliton structure (see Fig. 8). The second segment consists of
the sites 24–30 (652–658 in PDB). This covers the segment
where the C-terminal coil initially appears in Fig. 8. We
observe the following.

See, Fig. 9(a). Initially, the folding index of the segment
4–11 vanishes, but in the vicinity of frame 1000, coinciding
with the formation of the N-terminal coil/soliton in Fig. 8, the
folding index starts fluctuating between the values Indf = ±1
and Indf = −2. We note how the pattern of the oscillations
reflects the structural changes in the region between the coil
and the N-terminal, shown in Fig. 8: there are first fluctuations
between turn and bend, during frames 1000–1500. When the
oscillations in the values of the folding index diminish and
vanish near the frame 1500, we observe a formation of helical
structure between the coil and the N-terminal in Fig. 8. The
folding index then starts oscillating between the values Indf =
0,2, and this corresponds to a frame segment where the helix
converts into a turn in the Fig. 8. At around the frame 2500,
the folding index finally stabilizes to the final value Indf = +
1. This stabilization concurs with the formation of a bend
between the coil and the N terminal, in Fig. 8.

See, Fig. 9(b). We observe the increase of folding index
from Indf = 0 to Indf = +1 near frame 200, and subsequent
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FIG. 10. The folding index density (20) evaluated over the entire
backbone for all 4000 frames.

decrease back to Indf = 0 near frame 1300. According to
Fig. 8, these transitions coincide with the appearance of the
C-terminal soliton, and its subsequent propagation towards the
C terminal, away from the segment 24–30.

Accordingly, we have found that the variations in the
values of the folding index, in particular in the case of the
N-terminal soliton, coincide with the structural deformations
that take place along the backbone segment which is located
between the soliton and the N terminal. In particular, the final
stabilisation of the folding index concurs with the crossing
over the Peierls-Nabarro barrier and subsequent stabilisation
of the soliton, according to Fig. 8. Moreover, the C-terminal
soliton emerges with Indf = +1 and remains stable until the
Peierls-Nabarro barrier crossing takes place. The evolution of
the ensuing folding index is also fully in line with the results
that we deduce from do.dssp. We conclude that the behavior
in the backbone segment, surrounding the soliton, directly
correlates with the topological character of the soliton, in both
cases.

Finally, in Fig. 10, we show the folding index density (20)
over the entire backbone and for all 4000 frames.

We observe that (1) initially, the folding index vanishes.
This is consistent with the α-helical structure of the 1AIK
subchain. Then a sudden initial transition to value Indf =
+1 takes place, presumably reflecting the initial stages of C-
terminal soliton formation.

(2) Up until the frame ∼2700 the folding index tends to
vanish. However, there are fluctuations, mainly between values
±2, which reflect the various processes that take place near the
terminals.

(3) In the vicinity of frame 2700 there is a transition, and the
value of the folding index starts stabilising toward the value
Indf = +1. This stabilization concurs with the stabilisation of
the N-terminal soliton, and the final departure of the C-terminal
soliton. The fluctuations also shift, oscillating between Indf =
+3 and Indf = +1 and this shift is identified by the yellow
arrows in the figure.

In Fig. 11, we show a close-up to the last 50 frames in
Fig. 10. It confirms the stabilization of the folding index
towards the value Indf = +1, with occasional fluctuations
where Indf = +3 or Indf = −1. In Fig. 12, following
Fig. 3(a), we show the full trajectory for the entire final
frame 4000. The trajectory starts from the N-terminal, which

FIG. 11. The close-up of segments 3050-4000 in the folding
index density of Fig. 10.

is located in the β-stranded region of Fig. 2. It moves over
to the α-helical region, then return to the β-stranded region
to encircle the north pole. Finally, the trajectory merges and
ends with the α-helical region. The trajectory confirms that the
final structure at frame 4000 indeed does support a twisting
�τ = +π and that the twisting is furthermore located at the
N-terminal soliton.

The stabilisation of the folding index to the value Indf =
+1 confirms the global character of the remaining N-teminal
soliton structure; there is a total twisting by �τ = +π along
the final backbone, in comparison to the initial configuration
and including the terminal residues, and this twisting is
localized on the N-terminal soliton. Moreover, we observe
that the N-terminal residues are in a β-stranded position while
the C-terminal residues are in the α-helical position.

4. Side-chain analysis

Figure 4 shows the landscape of the ground-state (crystal-
lographic structure) Cβ atom directions in the Cα centered
discrete Frenet frames. Figure 13 shows how the directions of
the Cβ evolve during our entire GROMOS53a6 simulation.

We find remarkable how similar the dynamical landscape
of Fig. 13 is with the static ground-state landscape shown

FIG. 12. The trajectory of the frame 4000 on the (κ,τ ) landscape
of Fig. 2, following Fig. 3(a). Note that after residue 6, the remaining
residues are all located closely, in the α-helical region.
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FIG. 13. The dynamical landscape of all the Cβ atoms during
the entire 80-ns GROMOS53a6 simulation. A comparison with Fig. 4
establishes the presence of strong correlations between the backbone
Cα and the side chain Cβ geometries during the entire process.

in Fig. 4: the direction of Cβ nutates tightly around its
static ground-state landscape. Clearly, there must be strong
correlations between the backbone Cα and side chain Cβ,
during the entire dynamics. Accordingly, the information
content in the angles ηi in (16) and (17) should correlate
strongly with the Cα geometry changes during the dynamical
process. More generally, we expect that the various backbone
and side chain spin models that we have introduced are all in
the same dynamical universality class.

Figure 14 shows the residuewise accumulated distribution
of all the individual angles ηi in (16), i.e., the ensuing landscape
of the individual ηi during the entire 80-ns GROMOS53a6
simulation. The conclusions that can be deduced from this
figure are in line with those in Fig. 8. In particular, we observe
the presence of the N-terminal soliton, being centered around
residues 5 and 6. We also observe that the residues between
sites 6–27 are in a helical position during the entire time
evolution. We also observe the merging of the C-terminal
soliton with the fluctuations of the C terminal.

Figure 15 shows the time-resolved landscape of all the ηi

angles. There is a remarkable similarity between this figure,
and the figure obtained from the do.dssp backbone analysis
shown in Fig. 8. In particular, the formation and stabilisation
of the N-terminal soliton around sites 5 and 6 is clearly visible.
The appearance of the C-terminal soliton and its subsequent

FIG. 14. The residuewise distribution of the angles ηi in (16),
during the entire GROMOS53a6 80-ns run. The horizontal axis labels
the residues and the vertical axis is the value of the angle η in radians.

FIG. 15. The time-resolved evolution of all the individual angles
ηi . Note the similarity with Fig. 8.

evolution is similarly visible: we observe how this soliton is
formed at around frame 200, and then propagates towards the
C-terminal in a stepwise manner, crossing over the various
Peierls-Nabarro barriers and eventually merging with the C-
terminal thermal fluctuations. Finally, we note the apparent
similarities between the structure of the landscape in Fig. 15
and the behavior of the folding index density in Fig. 10.

B. Details

We proceed to analyze the detailed properties of soliton
structure and formation. Our main focus will be on the N-
terminal soliton structure. We are particularly interested in the
phenomena that take place when the soliton is formed, i.e., the
vicinity of the frame ∼1000, and when the soliton moves over
to a Peierls-Nabarro barrier and stabilizes, i.e., the vicinity of
the frame ∼2500.

1. C-terminal side chain soliton

We start with a closeup of the C-terminal part in Fig. 15,
shown in Fig. 16. We observe how, in terms of the side chain ηi

angles, the soliton structure which forms with center at residue
28 subsequently propagates back-and forth, in a stepwise
manner, towards the C terminal. Eventually, it merges with the
terminal, and dissolves into its fluctuations. The soliton motion
is fully in line with Fig. 8, and the initial motion is consistent
with the folding index analysis in Fig. 9(b). In particular, the
stepwise propagation of the soliton is fully consistent and

FIG. 16. A close-up of the time-resolved evolution of the indi-
vidual angles ηi , in the case of the C-terminal soliton structure; only
the last 9 residues along the backbone are shown.
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FIG. 17. The time-resolved evolution of the individual angles ηi ,
for the N-terminal soliton structure. The two figures show the same
data, but from different perspectives, for the first ten residues.

in line with the presence of Peierls-Nabarro barriers. These
barriers are high enough to trap the soliton momentarily, but
low enough for the soliton to eventually cross over them when
its thermal excitation energy fluctuates to high enough value.

We remind that the present simulations have been per-
formed at 290 K. We have chosen this relatively low tempera-
ture value, from the in vivo perspective, in order to restrain the
soliton mobility and to dampen noisy thermal fluctuations.

2. N-terminal side-chain soliton

Figure 17 shows a close-up of the N-terminal part in Fig. 15,
from two complementary perspectives. The soliton appears
in the vicinity of frame 1000. It subsequently translates one
residue towards the N terminal, in the vicinity of frame 2500.
This is an apparent crossing over a Peierls-Nabarro barrier by
thermal fluctuation, and it is followed by a stabilisation of the
soliton at the final position. Note the correlation between the
soliton motion and the extent of the N-terminal fluctuations.

Figure 18 shows the evolution of the individual ηi angles
in (21), in the case of the N-terminal soliton structure. The
panels display the deviation of ηi from the initial average
value for residues i = 2,5,6, which we have found to be those
of primary interest. For i = 3,4 and for i = 7 and larger, the
deviations from the initial average value fluctuate around zero.

In Fig. 19, we scrutinize those segments of Fig. 18, where
the mod(2π ) branch of the angle needs to be carefully resolved.

In each of the panels in Fig. 19, we display the data in
Fig. 18, over a subset of frames and now evaluated around the
value π/2.

By combining Figs. 18 and 19, we conclude that there
are two major transitions, around frames 1000 and 2500,

FIG. 18. Fluctuations in the values of the ηi angle during the
entire dynamical process, around the average initial value evaluated
from the original PDB structure. (a)–(c) correspond to residues i =
2,5,6, respectively. Note that the values are in the range [−π,π ]
mod(2π ).

respectively. These transitions are concurrent with the major
transitions in Figs. 8, 15, 17 and, in particular, Fig. 9. The first
transition corresponds to the creation of the N-terminal soliton,
and the second one to its translation, by one site towards the
N terminal, and subsequent stabilisation. We also observe the
presence of an extended transition process, visible in Fig. 18(b)
between frames 1100–1500. In summary, we conclude from
these figures that (1) in the vicinity of the frame 1000, when the
N-terminal soliton structure forms, there is an initial twisting
of the i = 5 dihedral, which is close to +π and a twisting of
the i = 6 dihedral by an approximatively equal amount but in
the opposite direction. Thus, at this point, the total twisting
which is produced along the side chain segment vanishes. We
note that the presence of two twists by an equal amount but
opposite in direction, is the hallmark of a Bloch domain wall
pair production. However, we recall that the backbone folding
index detects only a single soliton, as shown in Fig. 9(a).
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FIG. 19. Details of the corresponding panels in Fig. 18, where a
careful scrutiny is needed due to the multivaluedness of the angle. For
this, we display the fluctuations of the ensuing angle around the value
π/2 as follows: in (a), we have details of Fig. 18(a) over the frames
1500–2500, in (b), we have details of Fig. 18(b) over the frames
2000–3000, and in (c), we have details of Fig. 18 c over the frames
500–1500.

(2) After the initial Bloch wall pair formation, the i = 5
dihedral becomes slowly twisted back to the original value
between frames 1200–1600, so that after frame 1600 we are
left with a total of ∼ −π twist. This process leaves us with a
single soliton along the chain segment, with a total twisting
around −π .

(3) Finally, in the vicinity of frames 2100–2200, we observe
a rapid twisting of the i = 2 dihedral by an amount close to ≈
−π . This is followed, in the vicinity of the frame 2400–2500,
by a twisting of the i = 5 dihedral by an approximatively
equal amount. There is an accompanying twist of the i = 6
dihedral by an amount somewhat less than −π/2, over the
same frames. These two twistings at i = 5,6 accompany
the Peierls-Nabarro barrier crossing, as can be deduced by
comparison with Figs. 15 and 17.

(4) When the soliton stabilizes, after frame 3000, we
conclude that there is a total twisting in the side chain structure
which is close to ≈ −3π , and carried by the final soliton
configuration. Thus we assign to the final soliton the value
Indm = −3 of the index (22).

Note that there is also certain (small) spillage of the η

values, which is distributed among the nearby residues.
In summary, the side chain analysis shows that at the level

of the XY spin chain analysis, the N-terminal soliton structure
forms by an initial rapid formation of a Bloch domain wall,
i.e., soliton-antisoliton pair, followed by a slow twisting that
apparently removes one of the two Bloch wall solitons. This
is then followed by a rapid transition, in combination with
a Peierls-Nabarro barrier crossing, that forms the final stable
soliton structure. Accordingly, we may characterize the final
soliton as a configuration with the Cα backbone folding index
Indf = −1 and the side chain XY folding index Indm = −3.

3. Backbone

Figure 13 revels the presence of strong correlations between
backbone and side chain dynamics. In particular, any formation
of side chain soliton structure should correlate with the
formation of corresponding backbone soliton. Accordingly,
we proceed to construct explicitly the backbone soliton that
accompanies the N-terminal side chain soliton. We shall find
that the backbone soliton can be modeled by a solution of the
discrete nonlinear Schrödinger equation (34) [(35)], with very
high sub-atomic precision.

As an example, we consider the profile of the N-terminal
soliton structure at two different frames. Other frames, and
the C-terminal soliton structure, can be analyzed similarly.
We select residues 4–11 (PDB numbering 632–639) for our
analysis: residues 0–3 are subject to fluctuations, and beyond
residue 11, there is only a monotonic α helix.

We start with the frame 2000, which is located in the regime
where the side chain structure of the soliton has stabilized
according to Fig. 18(b) and the backbone folding index of
the segment shown in Fig. 9(a) has the value Indf = +1; the
side chain index over this segment is Indm = −1, according to
Figs. 18 and 19.

FIG. 20. The Z2 gauge-transformed bond angles κi (red) and
torsion angles (black) for the segment 4–11 (PDB index 632–639) in
frame 2000. Note that bond angle takes three residues, and torsion
angle takes four residues to compute.
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FIG. 21. TheZ2 gauge-transformed all-atom bond angles κi (top)
and torsion angles (bottom) for the segment 632–639 in frame 2000,
compared with the corresponding DNLS soliton, Eqs. (34) and (35).

In Fig. 20, we show the profile of the bond angle and the
torsion angle over the segment 4-11 (sites 632-639 in the PDB
file) in the frame 2000, after we have implemented the Z2

FIG. 22. (Top) The residuewise distance between Cα backbone
of the MD simulated soliton at frame 2000, and the DNSL soliton
solution; the grey strip represents the estimated 0.2-Å quantum
mechanical fluctuation band. (Bottom) The 3D superimposition of
the all-atom structure (grey) with the DNLS soliton (in red).

FIG. 23. (Top) The loop trajectories of Fig. 3(a) in the case of (a)
the all-atom frame 2000 segment 632–639 and (b) the corresponding
DNLS soliton.

gauge transformation (11) to identify the soliton profile. Note
that in order to compute a single bond angle, we need to
know three residues, while the evaluation of a torsion angle
consumes four residues. Thus, despite the smaller number of
data points in the figure, the ensuing configuration engages
eight residues.

We observe that the bond angle has the profile of a single
domain wall soliton of the DNLS equation, approximated
by (31). We use the software package PROPRO that has
been described at http://www.protein-folding.org to
numerically construct the ensuing soliton solution of the DNLS
equation.

In Fig. 21(a), we compare the profile of the bond and torsion
angles in Fig. 20 with the profile of the soliton solution of (34)
and (35).

In Fig. 22 (top), we compare the residuewise distance
between the all-atom configuration of frame 2000, and the
DNLS solution. The average Cα RMSD between the two
configurations is less than 0.1 Å, and at no residue is the
distance between the Cα-atoms more than 0.2 Å: the difference
is truly negligible. The grey strip around the DNLS soliton is a
0.2 Å (quantum mechanical) fluctuation band [25]. Figure 22
(bottom) shows the 3D overlay of the ensuing Cα backbones,
for all practical purposes they are the same.
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FIG. 24. A close-up of Fig. 17, around the frame 2000. The α-
helical structure between the soliton and the C-terminal displays only
very slight fluctuations, while the fluctuations between the soliton
and the N-terminal are more profound.

In Fig. 23, we show the loop trajectories of the all-atom
configuration of frame 2000, and the corresponding DNLS
soliton, on the stereographically projected two-sphere of
Figs. 2 and 3. Note that for both of these two loop trajectories
the folding index, as defined in (19) is vanishing, in that the
trajectory does not encircle the north pole (center of the disk).
A very short change either in the position of the residue labeled
B or in the position of the residue labeled C in Fig. 23(a), can
shift the trajectory so that the line connecting them moves
over to the other side of the north pole and the folding index
becomes Indf = +2. This is consistent with the result shown
in Fig. 9 that the folding index fluctuates between the values
Indf = 0 and Indf = +2, around the frame 2000, with the
posture shown in Fig. 23 being the more stable one.

In Fig. 24, we show a close-up to the frame segment 2475–
2525 around the soliton 2000, in terms of the side chain angles
η. The close-up reveals the presence of fluctuations between
the soliton and the N terminal, while the helix between the
soliton and the C terminal displays very small fluctuations.
Thus the fluctuations in the folding index around the frame
2000 are most likely due to shifts in the position of the residue
labeled B in Fig. 23(a).

Figures 25–28 show the same analyses for the conformation
in frame 3500. We find that the DNLS soliton describes the
domain wall soliton that we have constructed by all-atom
simulations, with a very high sub-atomic precision. We note
that the soliton in frame 3500 is a configuration that connects
between the β-stranded region of Fig. 2 to the α-helical region,

FIG. 25. Same as in Fig. 20, for the frame 3500.

FIG. 26. Same as in Fig. 21, for the frame 3500.

while in the case of the soliton at frame 2500 the initial residue
is located in a sparsely populated region of the landscape in
Fig. 2.

The major qualitative difference between frames 2000 and
3500 is between Figs. 23 and 28. The soliton in frame 3500
is relatively stable. In particular, as shown in Fig. 9, its
folding index Indf = +1. We can understand the stability of
the folding index by comparing Fig. 23(a) with Fig. 28(a).
In the latter, the residues have assumed positions where the
connecting arrows are stabilized against small perturbations,

FIG. 27. Same as in Fig. 22, for the frame 3500.
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FIG. 28. Same as in Fig. 23, for the frame 3500.

they are protected from crossing over the north pole in a manner
that causes fluctuations in the value of the folding index.

Finally, we compare the structure of the solitons at frames
2500 and 3500. From Figs. 20 and 25, we observe that in
terms of the bond angles the soliton 3500 has indeed moved
one site towards the N terminal, from the position of soliton
2500. In Fig. 29, we overlay their 3D structures. For this, we
first translate the soliton in frame 3500 one residue away from
the N terminal, so that the two have the same location along

FIG. 29. Comparison of the solitons at frame 2500 (red) and 3500
(blue), after the second has been translated back to the location of the
first one. The RMDS is 2.0 Å.

the backbone. The figure shows the ensuing 3D interlaced Cα

backbones, in a relative position where the RMSD is minimal.
There is a visible difference, and the minimal RMSD is 2.0 Å;
the soliton has clearly become deformed.

IV. SUMMARY

Molecular dynamics enables the scrutiny of protein folding,
at the level of individual atoms and over very short time
intervals. However, it can leave us with the conceptual
challenge to understand, how the individual atoms cooperate
to produce the kind of large scale organization that appears to
be prevalent among crystallographic protein structures.

We have performed detailed molecular dynamics simu-
lations, with the aim to find out how organized structure
emerges when a protein folds. We have first compared three
different force fields using the GROMACS 4.6.3. package, to
select the proper tools. We have chosen a C-chain subunit
from HIV envelope glycoprotein with PDB code 1AIK as a
concrete example, partly due to its biomedical relevance even
though this is an issue which has not been addressed by us.
We have introduced and further developed various tools of
modern theoretical physics, to systematize and analyze the
data. These include topological tools, conceptual analogies
drawn from the notion of spin chains, the notion of Wilsonian
universality, and methods based on the analytical structure of
the discrete nonlinear Schrödinger equation. In this manner,
we have arrived at the conclusion that the protein folding
is a process that relates intimately to the emergence and
interactions of solitons. In particular, a configuration such
as the Bloch domain wall along a spin chain appears to be
most useful in comprehending how structure emerges and
self-organizes when a protein folds.

We have inspected both the static and dynamic properties
of domain wall solitons and observed that concepts which
are familiar from the study of lattice systems, such as the
Peierls-Nabarro barrier, also appear along protein backbones
lattices, and in fact assume a central role in dictating how the
folding proceeds. We hope that our observations help to pave
a way for the powerful analytical and topological tools and
techniques that have been introduced and developed in the
context of integrable spin chains and related solvable models,
to become part of the arsenal used to describe the emergence
of structure and organisation in the case of proteins and other
biological macromolecules.
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