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Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs
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Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models
are sufficient for describing state transitions in a reaction where coherences between different states do not arise,
in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing
coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction
operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the
well-known concept of quantum walks from quantum information theory is a natural and apt framework for
describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show
how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair
reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn
model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in
contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)].
The standard radical-pair reaction has conventionally been described by either a normalized density operator
incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only
the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states.
Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.
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I. INTRODUCTION

It is known that many animal and insect species are capable
of sensing extremely weak magnetic fields. Of particular inter-
est among biologists, chemists, and physicists is the problem
of how migrating species of birds use the earth’s magnetic
field for navigation [1]. The mechanism granting birds the
ability to use the geomagnetic field for guidance is known as
the avian compass and there is now substantial evidence that
certain species (e.g., the European robin) do indeed possess
this compass. To date, the most promising model of the
avian compass is known as the radical-pair mechanism [2–6],
a chemical reaction that takes place inside a photoreceptor
molecule in the bird’s eye known as cryptochrome [7–12].
The radical-pair model has been a platform on which many
interesting theoretical investigations have been carried out
since it was first proposed as a candidate explanation for the
avian compass [13,14]. One interesting problem, which has
also been the subject of recent debate, is the form of its reaction
operator. We will use quantum walks, which is essentially an
elaborate theory of Kraus maps [15,16], to shed some light
on this topic. This illustrates that quantum walks is a suitable
framework for describing coherent chemical kinetics.

The description of radical-pair reactions has conventionally
been that of Haberkorn [17]. This approach is phenomenolog-
ical and based on arguing which of two existing differential
equations for the radical-pair state should be preferred. The
first is proposed by Johnson and Merrifield [18] and Evans
et al. [19]:

ρ̇(t) = LJEρ(t)

≡ −1

2
kS[Q̂Sρ(t) + ρ(t)Q̂S]

− 1

2
kT[Q̂Tρ(t) + ρ(t)Q̂T], (1)

where kS and kT are transition rates out of the singlet and triplet
states with the corresponding projectors

Q̂S ≡ |S〉〈S|, Q̂T = |T〉〈T|. (2)

We have ignored the commutator between ρ(t) and the system
Hamiltonian in (1) as this term is always the same and the focus
here will only be on the incoherent, or dissipative, part of the
radical-pair evolution as shown in (1). The commutator term
gives rise to the coherent evolution described in the caption of
Fig. 1. We will have more to say about radical-pair reactions
in Sec. II A; for now it suffices for the reader to see the
form of LJE. Note that (1) generalizes Eq. (2a) of Ref. [17]
to allow for the formation of triplet products. Equation (2a)
of Ref. [17] can be obtained from (1) by setting kT = 0. The
second and competing model for the radical-pair reaction is
due to Pedersen and Freed [20]. This is given by

ρ̇(t) = LPFρ(t)

≡ −kSQ̂Sρ(t)Q̂S − kTQ̂Tρ(t)Q̂T. (3)

Haberkorn chose (1) instead of (3) by showing that LPF leads
to negative eigenvalues for the radical-pair state, whereas LJE
does not. Both differential equations for the radical-pair state
can now be seen to contain terms making up what is known
as the Lindblad form of master equations [21,22], though
neither is actually in Lindblad form. Haberkorn’s solution
was to simply consider what the system state would look like
if propagated using the two proposed state derivatives. The
nontriviality in distinguishing the two types of state evolution
lies in the fact that it is not immediately obvious how to
interpret the proposed state derivatives as opposed to the state
itself. In more general and formal language, Haberkorn made
his argument by referring to the map K(t), which takes a
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FIG. 1. Standard radical-pair reaction. The spin state of the
radical pair oscillates coherently between singlet and triplet states
under the hyperfine interaction with neighboring nuclei spins. This
oscillation can be modulated by an external magnetic field and shown
to be sensitive to the magnetic field’s direction. This effectively
modulates the amount of time the radical pair spends in the singlet
state versus the triplet. Since each spin state decays to its own
unique product, information about the magnetic-field direction is
then encoded in the concentrations of the singlet and triplet products.

system state from ρ(0) to ρ(t), rather than the map’s generator
L, which is related to the map by K(t) = exp(Lt). Hence the
generator defines the derivative of the state, i.e., ρ̇(t) = Lρ(t).
In the context of chemical kinetics, the superoperator L is
referred to as the reaction operator. Of course, today, the
Lindblad form is well understood (at least in the quantum
optics and quantum information community), so Haberkorn’s
discovery of (3) leading to an unphysical state may not be
perceived by some to be significant. However, there is still
something to be learned from Haberkorn’s work, which is that
when considering nonunitary evolution the map K(t) may be
a more intuitive quantity to consider than the state derivative
L because ρ(t) is given explicitly by K(t) but only implicitly
by L. One could in fact argue that this is also the reason
why Lindblad’s result on the form of master equations is
nontrivial [21,22]. This motivates us to use K(t) instead of
L in this paper.

Haberkorn’s preferred reaction operator went unchallenged
until recently [23], bringing the debate about its form into
the limelight again [23–30]. This has resulted in one side
arguing in defense of Haberkorn and is now referred to as
the conventional, phenomenological, or Haberkorn approach
to radical-pair reactions [24–26]. A separate camp, called the
quantum-measurement approach to radical pairs has proposed
two new reaction operators, due separately to Kominis [23] and
Jones and Hore [27]. Of particular interest to us is the paper by
Jones and Hore [27], who derived their reaction operator using
Kraus maps [16]. The Jones-Hore equation predicts a different
singlet-triplet dephasing rate to the conventional approach of
Haberkorn’s and has been the subject of a recent experiment
aimed at discriminating the two models [31]. This experiment
showed the Jones-Hore equation to be inconsistent with the
measured dephasing rate. In this paper we also use Kraus maps
to describe the radical-pair kinetics, but we obtain a dephasing
rate that is consistent with Refs. [17,31]. A key factor in our
approach is the recognition that any intermediate transition in a
multistate reaction involves only two states at once. Although
this seems trivial, it is what separates our paper from the work
of Jones and Hore because it implies that one can derive the

map for a multistate reaction by composing two-state maps
only. Maps for multistate reactions derived in this way will thus
be correct by virtue of the method (provided that we have the
correct two-state maps). Two-state transitions are particularly
well understood in quantum information theory since qubits,
which are essentially two-state systems, are the central object
of study. The toolbox provided by quantum information theory
allows us to construct maps for multistate reactions that are
robust to modeling errors.

Our approach to the radical-pair reaction kinetics views
the reaction as simply a system evolving between a dis-
crete set of states in a probabilistic manner. Since such
systems are analogous to random walks, our approach to
the problem is one of quantum walks. We review quantum
walks below and point out the sense in which our version
of quantum walks differs from those in the quantum-walk
literature.

The quantum walk was first introduced by Aharanov
et al. [32]. They sought to generalize the idea of a classical
walker who can only move left or right in discrete units along
one spatial dimension to the quantum case. They managed to
define a quantum walk as the analog of a classical random walk
by correlating the system’s spatial coordinate to its internal
degree of freedom such as spin, generically called a coin.
The coin’s ability to be in a superposition of states can be
seen to give rise to quantum walks, although the use of a
coin is actually not necessary [33]. Since then quantum walks
have proven to be useful in quantum information [34], where
they have found a variety of algorithmic applications [35]
in hitting [36,37] and searching [38,39]. Quantum walks
were first introduced for closed systems that follow unitary
evolution, but have recently been generalized to open sys-
tems that follow nonunitary evolution, called open quantum
walks [40,41]. Such evolution is described by a map that
is completely positive and trace preserving [15] and like
their unitary counterpart, the maps defined in Refs. [40,41]
include changes in the internal degrees of freedom of the
open system. To model the radical-pair reaction we propose an
evolution map that makes no reference to any internal degrees
of freedom. In this sense our model of the radical-pair reaction
is similar to Ref. [33] with the exception that we allow for
nonunitary evolution.

The rest of the paper is organized as follows. In Sec. II
we define the standard radical-pair reaction and review the
different reaction operators that have so far been proposed.
These results form the backdrop against which our approach to
radical-pair kinetics should be considered. We then introduce
Kraus maps in Sec. III, which writes maps in a particular form
known as the operator-sum representation [15]. Here maps
describing processes known as amplitude damping, dephasing,
and unitary evolution are explained. We give a detailed
exposition of the amplitude-damping map in Appendix A
to illustrate how the operator-sum representation provides
insight to the process that would not have come by so easily
if the process was described using a Lindblad-form master
equation. This forms our toolbox for describing radical-pair
kinetics and is used in Secs. IV and V to derive a reaction
operator for the standard radical-pair reaction. In Sec. IV we
focus on reaction operators that can be described with only
amplitude-damping maps. This corresponds to the reaction
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operators reviewed in Sec. II where only recombination
processes are assumed to occur. An interesting result here
is the radical-pair density operator obtained from a partial
trace over the chemical products. Whereas previous models
in which the radical-pair state is normalized have all included
the products, e.g., Refs. [42,43], the partial trace excludes
the products and still gives a normalized radical-pair state. In
Sec. V we generalize the results of Sec. IV to include dephasing
and unitary dynamics and comment on the relation between
our quantum-walk approach and previous work. Finally, we
summarize our results in Sec. VI and discuss its connection
with the following paper and other relevant literature.

II. REACTION OPERATORS IN THE LITERATURE

A. Standard radical-pair reaction

The body of literature discussed here refers to the standard
radical-pair reaction shown in Fig. 1. This is often referred
to as a spin-selective recombination reaction [6]. It is spin
selective because the reaction product depends on the spin
state of the reactants, i.e., the radical pair, while the term
recombination refers to the physical process by which the
chemical products are obtained: The radical pair is typically
formed through the transfer of an electron from one molecule,
called the donor, to another molecule, the acceptor, creating a
spatially separated pair of entangled spins. The formation of
the chemical products usually involves a back transfer of this
electron from the acceptor to the donor; a recombination of the
electron with the vacancy left on the donor molecule (see, e.g.,
Refs. [6,44,45] for a more complete account of the radical-pair
mechanism).

In line with previous works [17,27,28], we assume a
minimal basis {|S〉,|T〉} for the reaction where |S〉 denotes
the singlet state and |T〉 the triplet state with zero magnetic
quantum number. Physically this corresponds to the high-field
limit where the triplet states with nonzero total spin are
sufficiently far away in energy so that they can be safely
neglected. We label the singlet and triplet product states as
|PS〉 and |PT〉. The |S〉 → |PS〉 and |T〉 → |PT〉 transitions are
then characterized by the respective rates kS and kT. We have
circled the singlet and triplet states in Fig. 1 with a dashed line
to emphasize that the system comprises of only the |S〉 and
|T〉 states. The green dashed boundary in Fig. 1 then serves
to remind us that in the present discussion, Q̂S and Q̂T sum
to the identity, i.e., Q̂S + Q̂T = 1̂. This may be useful to keep
in mind for later as our approach extends the system Hilbert
space to include the product states so that |S〉 and |T〉 no longer
form a complete set.

The problem is to determine the appropriate reaction
operator that describes the changes brought upon ρ(t) due
solely to the spin-selective recombination taking the spin states
to product states. In particular, this recombination contributes
to the singlet-triplet dephasing and we would like to determine
what exactly this contribution is. All other effects such as
spin relaxation or effects of molecular motion are ignored.
Spin-dependent interactions such as the Zeeman, hyperfine,
exchange, or dipolar are also ignored. Including additional
processes other than the spin-selective recombination will tend
to increase the dephasing rate. This will be assumed in all of the

reaction operators that are reviewed next, which all describe
Fig. 1 but without the coherent evolution.

B. Proposed reaction operators of the standard
radical-pair reaction

1. Theoretical models

Beginning with Haberkorn, the reaction operator preferred
by his positivity-preserving argument for the radical-pair state
is given by

ρ̇(t) = LHρ(t)

≡ −1

2
kS[Q̂Sρ(t) + ρ(t)Q̂S] − 1

2
kT[Q̂Tρ(t) + ρ(t)Q̂T].

(4)

Note that this is a non-trace-preserving equation for ρ(t), the
effect of which is to describe leakage of the singlet and triplet
populations over time at the rates kS and kT, respectively.
Equation (4) also predicts a damping of the singlet-triplet
coherence at the rate of (kS + kT)/2. This can be seen by
calculating the time derivative of the off-diagonal elements of
ρ(t):

ρ̇ST(t) = −1

2
(kS + kT)ρST(t), (5)

where ρST(t) = 〈S|ρ(t)|T〉. This reaction operator was first
questioned by Kominis [23], who argued that the radical-
pair reaction is analogous to two coupled quantum dots
under continuous measurement by a point contact. Kominis
then derived a reaction operator using similar methods as
Refs. [46–48], which gives

ρ̇(t) = LKρ(t)

≡ LHρ(t) + kSQ̂Sρ(t)Q̂S + kTQ̂Tρ(t)Q̂T. (6)

We have written LK in terms of LH to emphasize that the
difference between (4) and (6) lies in the terms Q̂Sρ(t)Q̂S

and Q̂Tρ(t)Q̂T. The addition of these terms puts Kominis’s
result in Linblad form making the evolution trace preserving.
This means that LK does not describe the loss of singlet
or triplet populations as in (4). Kominis therefore augments
his description of the radical-pair kinetics by an additional
equation in which the radical-pair population is given by

N (t + dt) = N (t)[1 − pS(t) − pT(t)], (7)

where

pS(t) = kSTr[Q̂Sρ(t)]dt, pT = kTTr[Q̂Tρ(t)]dt (8)

are the respective probabilities of a transition from either |S〉 to
|PS〉 or |T〉 to |PT〉 in the infinitesimal interval dt . Equation (6)
does however predict the same dephasing rate as (4). This
is obvious from (6) since Q̂Sρ(t)Q̂S and Q̂Tρ(t)Q̂T do not
contribute anything to 〈S|ρ̇(t)|T〉 due to the orthogonality of
|S〉 and |T〉.

Spurred on by the measurement analogy made by Kominis,
Jones and Hore [27] attempted a derivation of the radical-pair
reaction operator using the operator-sum representation (see
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Sec. III). Their result is given by

ρ̇(t) = LJHρ(t)

≡ −(kS + kT)ρ(t) + kSQ̂Tρ(t)Q̂T + kTQ̂Sρ(t)Q̂S. (9)

Similar to the phenomenological approach given by (4), this
equation also does not preserve the trace of ρ(t). As already
mentioned, this is attributed to the loss of the singlet and
triplet populations to the reaction products. It can be seen
that (9) gives this loss rate at kS and kT for the singlet and
triplet states, respectively, as expected. However, the Jones-
Hore reaction operator LJH gives a dephasing rate that is the
sum of the recombination rates, i.e., kS + kT, rather than the
average predicted by LH (or LK). Despite being perceived by
Jones and Hore to be too small a difference to be detectable
in an experiment [27], Maeda et al. have recently managed to
place the two models under experimental scrutiny [31] using
pulsed electron paramagnetic resonance spectroscopy [49]. We
briefly review some key elements of this experiment below.

2. Experimental discrimination

The experiment reported in Ref. [31] uses radical pairs
in a modified version of the carotenoid-porphyrin-fullerene
triad molecule of Ref. [4]. This system has previously been
demonstrated to exhibit the anisotropic chemical response to
earth-strength magnetic fields required for the avian com-
pass [4,50]. This model system also minimizes the singlet-
triplet dephasing due to processes other than recombination
and has a kT much smaller than kS for some temperatures
(between 200 and 240 K). This means that the dephasing rate in
this temperature regime is approximately kS/2 according toLH

and kS according toLJH. The dephasing rate was then measured
directly for this temperature range. For convenience we label
the dephasing rate obtained from a direct measurement as
T −1

2 . The recombination rate kS was also measured so a
comparison with T −1

2 could be made. It was shown that for
certain temperatures (a range of about 30 K), the dephasing rate
from the Jones-Hore model lay above T −1

2 while the rate from
Haberkorn’s model always remained below. In practice there
will be other uncontrollable processes that tend to increase the
dephasing rate so the value of T −1

2 will not come solely from
the |S〉 → |PS〉 recombination. This means that any reaction
operator must produce a dephasing rate that is less than T −1

2
for all temperatures and therefore suggests the recombination
kinetics according to LJH to be incorrect. In the next section
we show how the idea of quantum walks can be used to derive
a reaction operator with a dephasing rate consistent with the
experimental data of Ref. [31].

III. OPERATOR-SUM REPRESENTATION

Kraus published his theory of general state changes in
quantum mechanics [16] in which he asked what form must
a superoperator G take if it is to map a physically valid state
ρ to another physically valid state ρ ′. Note that we have not
actually mentioned time so ρ ′ can be the state of a quantum
system after some abstract operation, not necessarily a state at
a particular instant in the future of ρ (although we will use it to
propagate the system in time). The answer to the question just
posed is that Gρ must be of the Kraus form, also known as the

operator-sum representation of Gρ. Kraus’s result therefore
has the power to describe a large class of state transitions
without referring to the underlying physics that makes the
theory operational. This is what gives the Kraus formalism its
versatility. To describe time evolution we simply associate ρ

with the system state at some arbitrary time t and ρ ′ at some
later time t + �t . The operator-sum representation can then
be stated as

ρ(t + �t) = G(�t)ρ(t)

=
N∑

n=1

K̂ (n)(�t)ρ(t)[K̂ (n)(�t)]†, (10)

where the set of Kraus operators {K̂ (n)(�t)}n satisfies the
condition

N∑
n=1

[K̂ (n)(�t)]†K̂ (n)(�t) = 1̂. (11)

The theory also gives a prescription for calculating the
probability that event n is observed, given by

℘n(�t) = Tr{[K̂ (n)(�t)]†K̂ (n)(�t)ρ(t)}. (12)

The sum in (10) can be understood to be over states conditioned
on events (indexed by n) that may be observed in an interval
�t and hence its connection to measurements. Condition (11)
is then equivalent to the conservation of probability expressed
by

N∑
n=1

℘n(�t) = 1. (13)

Note that (12) is simply the norm of the postmeasurement state
so that (10) may also be written as an average over normalized
conditioned states

ρ(t + �t) =
N∑

n=1

℘(n)(�t)ρ(n)(t + �t), (14)

where

ρ(n)(t + �t) = K̂ (n)(�t)ρ(t)[K̂ (n)(�t)]†/℘(n)(�t). (15)

A. Amplitude damping

The first idea that we will borrow from quantum information
theory to describe the radical-pair reaction is the amplitude-
damping Kraus map. A derivation of this map can be found
in Ref. [15] but is given in terms of a photon incident on a
beam splitter. This is an example of a process that can be
described by the amplitude-damping map, but we believe an
explanation involving only ideas from probability theory and
basic quantum mechanics to be more direct and fitting for
developing the reaction operator. We have thus included such
a detailed exposition in Appendix A and provide only a sketch
of the amplitude-damping map below.

Assume first for simplicity that we have a two-dimensional
system described by |ψ1〉 and |ψ2〉. Aside from its Hilbert space
dimension, the system is otherwise general and the states |ψ1〉
and |ψ2〉 are arbitrary. We now wish to describe the change
in the system state over some time interval �t , say, from t to
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FIG. 2. (a) Amplitude damping from |ψ1〉 to |ψ2〉. This map
transfers population from one state to another. (b) Dephasing between
|ψ1〉 and |ψ2〉. The map tends to localize the random walker onto |ψ1〉
or |ψ2〉 (i.e., turn a superposition of |ψ1〉 and |ψ2〉 into a mixture).
The triangle can be thought of as a wedge driven into a line that
connects the two states being dephased. (c) Coherent oscillations
between states |ψ1〉 and |ψ2〉. The interconversion rate between states
|ψ1〉 and |ψ2〉 is given by 2ζ21 [see (44)].

t + �t , allowing for the possibility that a transition from |ψ1〉
to |ψ2〉 may occur during this interval. This is schematically
shown in Fig. 2(a).

We can think of Fig. 2(a) as describing a possible change
of state for a single molecule out of an ensemble of n identical
molecules. Thus some fraction of the molecules will jump from
state |ψ1〉 to |ψ2〉 over some finite time interval. By regarding
the transition as a random event we can characterize the process
by a probability γ21(�t) for a given molecule to go from state
|ψ1〉 to |ψ2〉 in time �t . If we prepare all n molecules in state
|ψ1〉 and observe them for a time of �t , then the fraction of
molecules that make the transition to state |ψ2〉 is given by
γ21(�t). We should then expect that the longer we observe the
process the greater the number of molecules to jump to state
|ψ2〉. In the long-time limit, all n molecules end up in state
|ψ2〉, so we expect γ21(�t) → 1 as �t → ∞. Conversely, if
the process is only observed for a very short interval then we
would not expect many molecules to have jumped to state |ψ2〉.
We thus expect γ21(�t) → 0 for �t → 0. We denote the map
describing such a process byM21(�t). It has the operator-sum
representation with two Kraus operators

ρ(t + �t) = M21(�t)ρ(t)

= M̂
(1)
21 (�t)ρ(t)

[
M̂

(1)
21 (�t)

]†
+ M̂

(2)
21 (�t)ρ(t)

[
M̂

(2)
21 (�t)

]†
, (16)

where

M̂
(1)
21 (�t) =

√
γ21(�t) |ψ2〉〈ψ1|, (17)

M̂
(2)
21 (�t) = |ψ2〉〈ψ2| +

√
1 − γ21(�t) |ψ1〉〈ψ1|. (18)

Its effect on an arbitrary state can be seen most directly
by calculating the matrix representation of (16) in the basis

{|ψ1〉,|ψ2〉}. This gives the 2×2 matrix

ρ(t + �t)

=
(

ρ11(t) − γ21(�t)ρ11(t)
√

1 − γ21(�t) ρ12(t)√
1 − γ21(�t) ρ21(t) ρ22(t) + γ21(�t)ρ11(t)

)
,

(19)

where we have defined ρjk = 〈ψj |ρ|ψk〉. The population
transfer from state |ψ1〉 to |ψ2〉 is apparent on the diagonal
terms1 in (19): A fraction γ21(�t) has been subtracted from
ρ11(t) and added to ρ22(t). Note that the off-diagonal terms of
ρ(t) are also affected by this process. Unless γ21(�t) = 0 the
population transfer will simultaneously reduce the coherence
between |ψ1〉 and |ψ2〉. This can be seen from Appendix A,
where we argued about the form of (17) and (18) without
ever referring to the system coherences. The decay of the
off-diagonal elements in (19) should thus be taken as a
consequence of the population transfer. This is a crucial
difference between our formulation of the reaction operator
and that of Ref. [27], where the decay of coherences was put
into the system evolution by hand. When |ψ1〉 represents a
state of higher energy than |ψ2〉, (19) is said to describe a
dissipative process (hence the name amplitude damping). In
this case (19) captures the well-known idea from open-system
theory that dissipation implies decoherence [51].

We now generalize the amplitude-damping map to a system
with N states. By essentially the same argument as in
Appendix A, the map describing a transition from state |ψk〉
to |ψj 〉 is simply given by

Mjk(�t)ρ(t) = M̂
(1)
jk (�t)ρ(t)

[
M̂

(1)
jk (�t)

]†
+ M̂

(2)
jk (�t)ρ(t)

[
M̂

(2)
jk (�t)

]†
, (20)

with the Kraus operators

M̂
(1)
jk (�t) = √

γjk(�t)Q̂jk, (21)

M̂
(2)
jk (�t) = P̂k + √

1 − γjk(�t)Q̂k, (22)

where γjk(�t) ∈ [0,1] for all j , k, and �t . For ease of writing
we have defined

Q̂jk = |ψj 〉〈ψk|, (23)

Q̂k = |ψk〉〈ψk|, P̂k = 1̂ − Q̂k. (24)

Since {|ψk〉}Nk=1 is assumed to form a complete set for an
arbitrary N , the identity operator may be written as

1̂N =
N∑

k=1

Q̂k. (25)

Note that the order of subscripts in (20)–(22) is important.
Reversing the order of the subscripts reverses the direction

1The diagonal elements of ρ(t) represent the occupation probabili-
ties to be in each of the basis states. The actual number of molecules
occupying state |ψk〉 at time t is given by nk(t) = nρkk(t). Assuming
the total number of molecules to be conserved, nk(t) and ρkk(t) differ
only by a factor of n.
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of the process. It can be verified that (19) is reproduced by
taking j = 2, k = 1, and N = 2 in (20)–(25). Although we
have parametrized the amplitude-damping map Mij (�t) by
the probability γij (�t), it is usually the rate kij at which the
transition occurs that is measured or estimated. It is also a more
useful quantity to use when expressing the amplitude-damping
map in differential form. If we let kij be the fraction of particles
that jump from |ψj 〉 to |ψi〉 in one second, then the fraction of
particles that make the transition in time �t is simply given
by

γij (�t) = kij�t. (26)

It will be useful to express (20) in differential form.
The two-dimensional case studied in Appendix A can be
generalized to the case of N states [see (A15)]. The differential
form of Mij (t) is given by

dρ

dt
= Lij ρ(t)

≡ kij

[
Q̂ijρ(t)Q̂†

ij − 1

2
Q̂jρ(t) − 1

2
ρ(t)Q̂j

]
. (27)

This can be written in the Lindblad form if preferred by noting
that Q̂j = Q̂jiQ̂ij = Q̂

†
ij Q̂ij . We can formally express the

amplitude-damping map as

Mij (t) = eLij t , (28)

whereLij is said to be the generator ofMij (t). The reader may
proceed directly to Sec. IV at this point if one wishes as the
results there only require knowledge of the amplitude-damping
map. We will introduce the maps for dephasing and coherent
evolution next, but they will not appear until Sec. V and hence
can be read then. Finally, note that we have suppressed the
dependence of superoperators (either maps or generators) on
the transition rates (or probabilities). This is because here
we are thinking of the transition rate as a fixed number, a
parameter that defines the system as opposed to time, which is
an independent variable. In order to keep our notation simple
we will continue to suppress parameter dependences unless
otherwise stated.

B. Dephasing

We saw in (19) that population decay in one of the states
led to decoherence. However, decoherence may also occur
without population decay and this is known as dephasing, or
phase damping in analogy to amplitude damping (so-called
because it results from a loss of information about the relative
phases between the different basis states |ψk〉). This process
is represented by the symbols shown in Fig. 2(b). The system
evolution under dephasing over a time of �t can be represented
simply by a 2×2 matrix for a two-state system as

ρ(t + �t)

= V21(�t)ρ(t)

=
(

ρ11(t)
√

1 − μ21(�t) ρ12(t)
√

1 − μ21(�t) ρ21(t) ρ22(t)

)
, (29)

where μ21(�t) ∈ [0,1]. Note that only the coherences (the
off-diagonal terms in ρ) are damped. The generalization to a

system with N states can be stated simply in Kraus form as

Vjk(�t)ρ(t) = V̂
(1)
jk (�t)ρ(t)

[
V̂

(1)
jk (�t)

]†
+ V̂

(2)
jk (�t)ρ(t)

[
V̂

(2)
jk (�t)

]†
, (30)

where

V̂
(1)
jk (�t) = √

μjk(�t)Q̂k, (31)

V̂
(2)
jk (�t) = P̂k + √

1 − μjk(�t)Q̂k. (32)

As with amplitude damping, we can work with the rate of
dephasing rather than with μjk(�t). Denoting the rate of
dephasing between states |ψj 〉 and |ψk〉 as qjk , we can write

μjk(�t) = qjk�t. (33)

The evolution under the dephasing map Vjk(t) can then be
expressed by the differential equation

dρ

dt
= Sjkρ(t)

≡ qjk

[
Q̂kρ(t)Q̂†

k − 1

2
Q̂kρ(t) − 1

2
ρ(t)Q̂k

]
, (34)

which defines the generator for Vjk(t):

Vjk(t) = eSjk t . (35)

C. Coherent evolution

The map (30) describes pure decoherence and is useful
for modeling processes that counteract any coherent evolution
of the system that may occur in the basis {|ψk〉}Nk=1. The
singlet-triplet interconversion in the radical-pair mechanism is
one such process. We depict coherent evolution between two
states graphically by using a green two-way arrow as shown in
Fig. 2(c). In general, coherent oscillations between states |ψj 〉
and |ψk〉 can be generated by a Hamiltonian of the form (for
j 
= k)

Ĥjk = ωjQ̂j + ωkQ̂k + 	jk(Q̂jk + Q̂kj ), (36)

where ωk ≡ 〈ψk|Ĥjk|ψk〉 is the expectation value of Ĥjk in
the state |ψk〉. The coupling between states |ψj 〉 and |ψk〉 is
denoted by 	jk . Note that for Ĥjk to be Hermitian 	jk must
be real and symmetric with respect to its indices, i.e.,

	jk = 	∗
jk = 	kj . (37)

Unitary evolution can be understood as a special case of the
Kraus decomposition (10) with only one Kraus operator

Ûjk(�t) = e−iĤjk�t , (38)

where we have set � = 1 for convenience. The actual evolution
over a time of �t is then effected by the map

Ujk(�t)ρ(t) = Ûjk(�t)ρ(t)Û †
jk(�t). (39)

The differential form of Ujk(t) has the familiar commutator
form

dρ

dt
= Rjkρ(t) ≡ −i[Ĥjk,ρ(t)]. (40)
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We can also express (39) in terms of Rjk as

Ujk(t) = eRjk t . (41)

Just as we parametrized the amplitude-damping and de-
phasing maps by their probability of occurrence, we can
similarly parametrize unitary evolution by

αjk(�t) ≡ ∣∣〈ψj |Ûjk(�t)|ψk〉
∣∣2

. (42)

This is the probability of making a transition to |ψj 〉 after time
�t assuming the system was initially in |ψk〉. If we wish to
relate αjk(�t) to the transition rate under unitary evolution
then an explicit expression for (42) is required. This can be
shown to be

αjk(�t) = 	2
jk

2ζ 2
jk

[1 − cos(2ζjk�t)], (43)

where we have defined

ζjk = 1

2

√
(ωk − ωj )2 + 4	2

jk . (44)

Equation (43) tells us that 2ζjk can be defined as the frequency
at which the system oscillates between states |ψj 〉 and |ψk〉.
Note that this depends on both the coupling between |ψj 〉 and
|ψk〉 (i.e., 	jk) as well as their separation (given by |ωk −
ωj |). We can also see from (42) that increasing |ωj − ωk|
lowers the peak of the transition probability between |ψj 〉 and
|ψk〉. The proof of (44) [and hence (42)] will be presented in
the following paper, where it is actually used to simulate an
example quantum walk. Here it is sufficient to see how αjk is
related to the rate of the process and the effect of varying ωk

and 	jk .

IV. RADICAL-PAIR RECOMBINATION REACTION
AS A QUANTUM WALK

A. Reaction operator

The quantum-walk formalism visualizes state transitions in
a quantum system as a network of nodes (representing states)
connected by edges (representing transitions), called graphs.
Such models have a wide applicability because the nodes
can represent abstract degrees of freedom, such as a spatial
coordinate, or in our case, the state of a molecule. We therefore
begin our quantum-walk model of the reaction outlined in
Fig. 1 by simply representing the different radical-pair and
product states as nodes on a graph labeled according to

|S〉 ≡ |ψ1〉, |T〉 ≡ |ψ3〉, (45)

|PS〉 ≡ |ψ2〉, |PT〉 ≡ |ψ4〉, (46)

while the rates are taken as

kS ≡ k21, kT ≡ k43. (47)

The states in (45) and (46) are assumed to represent
distinct stages of the radical-pair reaction, therefore we take
{|ψk〉}4

k=1 to be an orthonormal basis. This is shown in Fig. 3.
As explained in Sec. II, here we concentrate only on the
recombination processes that take the system from the singlet
to singlet product (|ψ1〉 → |ψ2〉) and from the triplet to the

FIG. 3. Standard radical-pair reaction without coherent evolution
represented as a graph. Black arrows represent population transfer,
which here is associated with the recombination reaction of the radical
pair.

triplet product (|ψ3〉 → |ψ4〉). Extensions to include dephasing
and coherent evolution will be covered in Sec. V.

Our goal is to derive a reaction operator L. This means that
we should express the evolution of ρ(t) in differential form. As
before, we can simply obtain such an equation by propagating
ρ(t) over an infinitesimal interval dt , except now there is more
than one process happening at a time. This can easily be dealt
with by using a single map KQW(dt) composed from a series
of maps. Each map in KQW(dt) represents a particular process
in the system. Attributing each recombination process to an
amplitude-damping map, we describe the evolution of ρ(t) by

ρ(t + dt) = KQW(dt)ρ(t) ≡ M43(dt)M21(dt)ρ(t), (48)

where on using (28) we have

KQW(dt) = eL43dt eL21dt = e(L43+L21)dt . (49)

Note the second equality follows because dt is infinitesimal.
This can be seen by expanding the exponentials and neglecting
terms on the order of dt2. This also means that reversing
the order of exp(L43dt) and exp(L21dt) does not change the
second equality of (49). Since L21 and L43 are independent of
time, (49) shows that L43 + L21 is the generator of KQW(t) for
any finite t [otherwise it is only the generator of KQW(dt)].
This is simply equivalent to

dρ

dt
= LQWρ(t) ≡ (L21 + L43)ρ(t). (50)

We can now apply (27) to (50) to obtain

LQWρ(t) ≡ k21

[
Q̂21ρ(t)Q̂†

21 − 1

2
Q̂1ρ(t) − 1

2
ρ(t)Q̂1

]
+ k43

[
Q̂43ρ(t)Q̂†

43 − 1

2
Q̂3ρ(t) − 1

2
ρ(t)Q̂3

]
.

(51)

A few remarks can be made about our result directly from
the form of (51), but it will be easier to refer to its matrix
representation in the site basis. This is a set of rate equations
that includes the coherences between sites as well. We follow
the standard convention of writing matrices where ρ̇mn =
〈ψm|ρ̇|ψn〉 denotes the element at the mth row and nth column
of ρ̇. The matrix form of (51) can then be easily verified to be
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given by

dρ

dt
=

⎛⎜⎜⎜⎜⎝
−k21ρ11 − 1

2k21ρ12 − 1
2 (k21 + k43)ρ13 − 1

2k21ρ14

− 1
2k21ρ21 k21ρ11 − 1

2k43ρ23 0

− 1
2 (k21 + k43)ρ31 − 1

2k43ρ32 −k43ρ33 − 1
2k43ρ34

− 1
2k21ρ41 0 − 1

2k43ρ43 k43ρ33

⎞⎟⎟⎟⎟⎠. (52)

It is obvious from the matrix form of LQWρ that the
spin-selective recombination reduces all coherences except
for the coherences of the two product states, given by ρ̇24 and
ρ̇42 to be zero [recall (45) and (46)]. Of special importance
is the decay of the singlet-triplet coherence. This is given
by ρ̇13 in (52), which can be seen to be consistent with the
experiment of Ref. [31]. Note that because ρ is Hermitian
it follows that ρ̇ is also Hermitian, so referring to ρ̇13 is the
same as referring to ρ̇31.

Adding the diagonal elements of (52), we see that (51) is
trace preserving. In particular we see that

−dρ11

dt
= dρ22

dt
= k21ρ11, −dρ33

dt
= dρ44

dt
= k43ρ33. (53)

That is to say, the rate at which singlet-state radical pairs are
lost due to recombination is exactly balanced by the rate of
increase of the singlet product. Recall from Sec. II B that
previous treatments on the radical-pair kinetics use trace-
decreasing reaction operators, which refer only to |ψ1〉 and
|ψ3〉 [see (4) and (9)]. It has been noted in Ref. [27] that such
reaction operators produce singlet and triplet populations that
satisfy (53) and thus pose no problem. However, a description
in the minimal basis {|ψ1〉,|ψ3〉} still fails to account for
coherences between the radical pair and product states. Jones
and Hore have argued that such coherent superpositions
between the radical pair and products decohere very quickly
and is therefore consistent with a model in which these
coherences are neglected.2 However, on accepting (52), we
see that coherences between the radical pair and products in
fact decay at a rate less than the radical-pair dephasing (e.g.,
ρ̇21 compared with ρ̇31), so the remark by Jones and Hore
is not actually correct. Nevertheless, a model in which the
product states are neglected is still permissible so long as
the radical-pair populations and coherences do not depend
on the populations and coherences of the products. This is
clearly true from the matrix form of LQW, so we can write
down such a reaction operator directly. For ease of comparison
with previous results, we express this reaction operator in the
notation of Sec. II B [recall (2), (45), and (47)]:

L̄QWρ(t) = ρ̇SS(t)|S〉〈S| + ρ̇ST(t)|S〉〈T|
+ ρ̇TS(t)|T〉〈S| + ρ̇TT(t)|T〉〈T|. (54)

We have used an overbar on LQW to indicate that it is no
longer trace preserving. We can simply read off ρ̇SS, ρ̇TT, and
ρ̇ST from (52) to get

L̄QWρ(t) = −kSQ̂Sρ(t)Q̂S − 1

2
(kS + kT)Q̂Sρ(t)Q̂T

− 1

2
(kS + kT)Q̂Tρ(t)Q̂S − kTQ̂Tρ(t)Q̂T. (55)

2See the final paragraph of Sec. 2 on p. 91 of Ref. [27].

The reader may have already noticed that ρ̇SS, ρ̇TT, and ρ̇ST
are in fact the same as those given by the Haberkorn reaction
operator LH given in (4), which means that (55) and (4) should
in fact be the same. This can be shown by collecting terms
proportional to kS as one group and terms proportional to kT
as one group in (55):

L̄QWρ(t) = −kS

[
Q̂Sρ(t)Q̂S + 1

2
Q̂Sρ(t)Q̂T + 1

2
Q̂Tρ(t)Q̂S

]
− kT

[
Q̂Tρ(t)Q̂T + 1

2
Q̂Tρ(t)Q̂S + 1

2
Q̂Sρ(t)Q̂T

]
(56)

= −1

2
kS[Q̂Sρ(t) + ρ(t)Q̂S]

− 1

2
kT[Q̂Tρ(t) + ρ(t)Q̂T]. (57)

The second equality is obtained by using Q̂T = 1̂2 − Q̂S

and Q̂S = 1̂2 − Q̂T in the terms proportional to kS and kT,
respectively, in (56). Note that the identity operator carries a
subscript 2 because it is now only an identity on the subspace
spanned by the singlet and triplet states. The resolution of the
full identity operator 1̂4 requires all four states of the radical
pair and products. This is why we have circled the singlet and
triplet states in Fig. 1 in Sec. II A. We have thus derived the
conventional spin-selective recombination operator using the
operational and systematic treatment of quantum walks.

Writing (55) in the form of (56) also makes the comparison
with the Jones-Hore reaction operator easier. This is because,
as argued by Jones and Hore, an alternative derivation of their
result given by (9) begins with

LJHρ(t) = −kS[Q̂Sρ(t)Q̂S + Q̂Sρ(t)Q̂T + Q̂Tρ(t)Q̂S]

− kT[Q̂Tρ(t)Q̂T + Q̂Tρ(t)Q̂S + Q̂Sρ(t)Q̂T].

(58)

The difference between (56) and (58) can thus be seen in the
coefficient of the cross terms [i.e., Q̂Sρ(t)Q̂T and Q̂Tρ(t)Q̂S].
The singlet-triplet dephasing rate was thus incorrectly posited
at the outset in their argument. Alternatively, this can also be
attributed to an incorrect formulation of the Kraus operators
in the minimal basis. Our approach, on the other hand, begins
with all four states of the radical pair and products. This allows
us to focus on describing the |S〉 → |PS〉 and |T〉 → |PT〉
transitions with the dephasing between |S〉 and |T〉 occurring
as a consequence. Since the |T〉 → |PT〉 and |S〉 → |PS〉
transitions are identical, we in fact only have to find the correct
operator-sum representation for one of them and apply it twice
to ρ(t) to obtain the map for the full reaction as explained
in (48)–(50). This makes our quantum-walk approach less
prone to modeling errors. Next we illustrate this point further
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FIG. 4. Simplified graph sufficient for deriving the Kraus operator
corresponding to a trace-decreasing reaction operator. Due to the
decoupling of the matrix elements in (90), this graph can in fact
be used to simulate the partial trace provided that we ignore
the coherences between the product and radical pair and that we
understand the distinction between |P〉 and |n1 = 0, n3 = 0〉 [see
Sec. IV B 2, especially the discussion between (90) and (91)].

by using the quantum-walk idea to obtain the appropriate map
in the minimal basis by ignoring the chemical products.

B. Ignoring chemical products

If we are interested in deriving the Kraus map for only
the radical-pair state then we need some way of capturing the
effect of the decay from the radical pair to the products but
without including the products in ρ(t). The above treatment
of first deriving (52) and then reading off the equations of
motion for the radical pair provides one way of achieving
this result. Here we show an alternative method that is also
based on quantum walks. The approach here is to find the
operator-sum representation for the radical-pair state with the
chemical products ignored.

Although it may sound contradictory, we will begin by
including the product states in ρ(t). However, we will lump
the states |PS〉 and |PT〉 into a single state, which we denote by
|P〉. This is shown in Fig. 4. The singlet and triplet states are
defined as before in (45), but instead of (46) and (47) we now
have

|P〉 ≡ |ψ2〉, (59)

kS ≡ k21, kT ≡ k23. (60)

The reason for introducing Fig. 4 is twofold. First, it is
easier to consider Kraus operators for a trace-preserving map.
The evolution corresponding to (57) can then be extracted
by using just one of the Kraus operators and hence will be
trace decreasing. For this purpose it is sufficient to introduce
only one additional state. This will then allow us to use the
quantum-walk approach by composing two trace-preserving
maps corresponding to the transitions shown in Fig. 4. The
second reason for introducing Fig. 4 has to do with what is
meant by “ignoring the products.” In the language of quantum
probability, any unobserved degrees of freedom in a system can
be traced over to give a so-called reduced state. This procedure
is called a partial trace and is known to be a trace-preserving
operation. We will find that this gives a reduced state for
the radical pair that seems equivalent to Fig. 4 but is in fact
subtly different. It will thus be convenient to refer to Fig. 4 for
comparison. We discuss these two ideas below.

1. Evolution from discarding products

The operator-sum representation of (57) can be derived by
considering the quantum walk shown in Fig. 4, which can
easily be described by

ρ(t + dt) = M(dt)ρ(t) ≡ M23(dt)M21(dt)ρ(t). (61)

It can be shown in general that a composition of two Kraus
maps is another Kraus map. This means that we can define
the Kraus operators for the total map M(dt) by substituting
the operator-sum representation of M23(dt) and M21(dt)
into (61). This gives us

M(dt)ρ(t) =
3∑

n=0

M̂ (n)(dt)ρ(t)[M̂ (n)(dt)]†, (62)

where we have defined

M̂ (0)(dt) ≡ M̂
(1)
23 (dt)M̂ (1)

21 (dt), (63)

M̂ (1)(dt) ≡ M̂
(1)
23 (dt)M̂ (2)

21 (dt), (64)

M̂ (2)(dt) ≡ M̂
(2)
23 (dt)M̂ (1)

21 (dt), (65)

M̂ (3)(dt) ≡ M̂
(2)
23 (dt)M̂ (2)

21 (dt). (66)

Using (21) and (22) we find that

M̂ (0)(dt) = 0, (67)

which means that it is redundant and we need only three Kraus
operators to describe Fig. 4. Using (26) and the binomial
expansion to first order in dt in (64)–(66) [see (A12)] we
find

M̂ (1)(dt) =
√

k21dt Q̂21, (68)

M̂ (2)(dt) =
√

k23dt Q̂23, (69)

M̂ (3)(dt) = 1̂ − k21

2
Q̂1dt − k23

2
Q̂3dt. (70)

We should note that (68)–(70) could have also been obtained
by generalizing the argument in Appendix A to three states.
In this case we would actually just write down three Kraus
operators directly. It is simple to check that (68)–(70) satisfy
the condition to be a valid set of Kraus operators [see (10)–(15)
from Sec. III]

3∑
n=1

[M̂ (n)(dt)]†M̂ (n)(dt) = 1̂. (71)

The advantage of using (62) is that it decomposes ρ(t + dt)
into a sum of states

ρ̄(n)(t + dt) ≡ M̂ (n)(dt)ρ(t)[M̂ (n)(dt)]†, (72)

conditioned on the outcome n of a measurement performed at
time t . The measurement is devised to give us information
about the transitions occurring in the system so that we
associate the n = 1 outcome with the |ψ1〉 → |ψ2〉 transition,
n = 2 with |ψ3〉 → |ψ2〉, and n = 3 with no transitions. It is
easy to see that (68) describes a jump from state |ψ1〉 to |ψ2〉
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giving the conditional state

ρ̄(1)(t + dt) = k21Q̂21ρ(t)Q̂†
21dt

= γ21(dt)ρ11(t)|ψ2〉〈ψ2|. (73)

Note that γ21(dt)ρ11(t) is the trace of ρ̄(1)(t + dt) so that
upon normalization the evolved state is simply |ψ2〉. Similarly
applying (69) we get

ρ̄(2)(t + dt) = k23Q̂23ρ(t)Q̂†
23dt

= γ23(dt)ρ33(t)|ψ2〉〈ψ2|, (74)

which is seen to describe a jump from state |ψ3〉 to |ψ2〉. This
leaves (70), which gives

ρ̄(3)(t + dt) = ρ(t) − 1

2
k21[Q̂1ρ(t) + ρ(t)Q̂1]dt

− 1

2
k23[Q̂3ρ(t) + ρ(t)Q̂3]dt. (75)

Note that this is the evolution given by Haberkorn’s equation.
The effect of (75) can be seen directly by applying it to different
initial states. Setting ρ(t) = |ψ1〉〈ψ1| we find

ρ̄(3)(t + dt) = (1 − k21dt)|ψ1〉〈ψ1|, (76)

where 1 − k21dt is the trace of ρ̄(3)(t + dt). A similar result
can also be seen by setting ρ(t) = |ψ3〉〈ψ3|. If the system is
in the product state then we expect it to remain in the product
state forever since there is no process to take the system out of
|ψ2〉. Indeed, setting ρ(t) = |ψ2〉〈ψ2| we find

ρ̄(3)(t + dt) = |ψ2〉〈ψ2|. (77)

The evolution described by (75) is thus conditioned on the
absence of recombinations. That (70) describes radical-pair
evolution conditioned on no recombinations is not surprising
in view of Appendix A, where it can be seen to be so
by construction. The Kraus operator consistent with the
conventional description of radical-pair kinetics in the minimal
basis is thus given by (70) and is the measurement approach
that Jones and Hore sought in Ref. [27]. That such an
evolution equation is given by conditioning on unrecombined
radical pairs has also been noted in Ref. [52], but with the
operator-sum formalism incorrectly applied, as the experiment
of Ref. [31] has now shown.

2. Evolution from tracing out products

Here we would like to derive an equation of motion for
the radical pair from tracing over the products in (51). The
partial trace is a formal procedure for obtaining a density
operator with the products ignored and is quite different to
simply discarding the products. Note that the partial trace is
not simply the sum 〈ψ2|ρ̇(t)|ψ2〉 + 〈ψ4|ρ̇(t)|ψ4〉, but rather

an operation defined only on systems with a tensor product
structure. As such, we require that the Hilbert space H of ρ(t)
in (51) be of the form

H = HR ⊗ HP, (78)

where HR is the Hilbert space for the radical pair and HP is
the space for the products. We can then derive the state of the
radical pair with the products ignored from

ρR(t) = TrP[ρ(t)] ≡
∑

k

〈χk|ρ(t)|χk〉, (79)

where {|χk〉}k is any basis of HP.
For this reason, we will represent each site with a

two-dimensional Hilbert space Hk (k = 1,2,3,4) with basis
{|nk = 0〉,|nk = 1〉} indicating the presence (nk = 1) or ab-
sence (nk = 0) of a random walker. Since |ψk〉 denotes a
random walker at site k, we can write the site basis as

|ψ1〉 = |n1 = 1〉 ⊗ |n2 = 0〉 ⊗ |n3 = 0〉 ⊗ |n4 = 0〉, (80)

|ψ2〉 = |n1 = 0〉 ⊗ |n2 = 1〉 ⊗ |n3 = 0〉 ⊗ |n4 = 0〉, (81)

|ψ3〉 = |n1 = 0〉 ⊗ |n2 = 0〉 ⊗ |n3 = 1〉 ⊗ |n4 = 0〉, (82)

|ψ4〉 = |n1 = 0〉 ⊗ |n2 = 0〉 ⊗ |n3 = 0〉 ⊗ |n4 = 1〉. (83)

This method of defining sites can be viewed as defining a
four-mode state in quantum optics with each mode containing
at most one photon (or equivalently a four-mode fermionic
state). Note that this expresses H in the form of (78) with

HR = H1 ⊗ H3, HP = H2 ⊗ H4. (84)

It will be convenient to introduce shorthand notation in which
the tensor product is omitted. In general, we will write

|nj ,nk〉 ≡ |nj 〉 ⊗ |nk〉. (85)

The partial trace of (51) over sites 2 and 4 is then given by

ρ̇R(t) =
1∑

m=0

1∑
m′=0

〈n2 =m,n4 =m′|ρ̇(t)|n2 =m,n4 =m′〉 (86)

= 〈n2 = 0,n4 = 0|ρ̇(t)|n2 = 0,n4 = 0〉
+ 〈n2 = 0,n4 = 1|ρ̇(t)|n2 = 0,n4 = 1〉
+ 〈n2 = 1,n4 = 0|ρ̇(t)|n2 = 1,n4 = 0〉. (87)

We have noted the expectation of ρ̇(t) with respect to the state
|n2 = 1,n4 = 1〉 is identically zero since there can be at most
one particle (or walker) in the system. The calculation of (87)
is a little bit involved so we leave the details to Appendix B.
The result is however simple to state. Noting that ρR now
refers only to {|n1,n3〉}n1,n3 , we will simply denote a state with
n1 = 0 and n3 = 1 by |0,1〉 and write

ρ̇R(t) = L̃QWρR(t) ≡ [k21ρ11(t) + k43ρ33(t)]|0,0〉〈0,0| − k43ρ33(t)|0,1〉〈0,1| − k21ρ11(t)|1,0〉〈1,0|
− 1

2
(k21 + k43)ρ13(t)|1,0〉〈0,1| − 1

2
(k21 + k43)ρ31(t)|0,1〉〈1,0|. (88)

As before, this equation is perhaps easier to read from its matrix representation, given by

ρ̇R =

⎛⎜⎝k21ρ11 + k23ρ33 0 0

0 −k23ρ33 − 1
2 (k21 + k23)ρ31

0 − 1
2 (k21 + k23)ρ13 −k21ρ11

⎞⎟⎠ ≡
⎛⎝〈0,0|ρ̇R|0,0〉 〈0,0|ρ̇R|0,1〉 〈0,0|ρ̇R|1,0〉

〈0,1|ρ̇R|0,0〉 〈0,1|ρ̇R|0,1〉 〈0,1|ρ̇R|1,0〉
〈1,0|ρ̇R|0,0〉 〈1,0|ρ̇R|0,1〉 〈1,0|ρ̇R|1,0〉

⎞⎠. (89)
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This gives the correct rates for dephasing and population
transfer for the radical pair except now we have one additional
state |0,0〉 whose effect is to drain the populations out of
|0,1〉 and |1,0〉. It would be tempting to compare the dynamics
given by (89) to the graph of Fig. 4 and define |S〉 ≡ |0,1〉,

|T〉 ≡ |1,0〉, and |P〉 ≡ |0,0〉. However, the partial trace does
not correspond to this identification because, as we have
just shown above, the evolution defined by Fig. 4 is given
by (61) [or equivalently by (62)–(70)], which has the matrix
representation

ρ̇ =

⎛⎜⎝k21ρ11 + k23ρ33 − 1
2k23ρ23 − 1

2k21ρ21

− 1
2k23ρ32 −k23ρ33 − 1

2 (k21 + k23)ρ31

− 1
2k21ρ12 − 1

2 (k21 + k23)ρ13 −k21ρ11

⎞⎟⎠ ≡

⎛⎜⎝〈P|ρ̇|P〉 〈P|ρ̇|T〉 〈P|ρ̇|S〉
〈T|ρ̇|P〉 〈T|ρ̇|T〉 〈T|ρ̇|S〉
〈S|ρ̇|P〉 〈S|ρ̇|T〉 〈S|ρ̇|S〉

⎞⎟⎠. (90)

Note that we have used (45) and (59) and reordered
the matrix elements for ease of comparison with (89). The
difference between (89) and (90) is clear. Equation (90)
has coherences between the product and radical-pair states,
whereas (89) does not. The two matrices do not even refer
to the same basis: We are correct to equate |1,0〉 to |S〉 and
|0,1〉 to |T〉 in (89), but we would be mistaken to identify
|0,0〉 with |P〉. The reason is because |0,0〉 conveys no other
information except the absence of the random walker from
sites 1 and 3. It does not say where the walker is. Thus |0,0〉
should be regarded as a radical-pair state because it gives us
only information about the radical pair, namely, that it is in
neither the singlet nor triplet state, consistent with the fact that
we have traced over the products in (90). In contrast, |P〉 says
exactly which site the random walker is at. It is represented
by a node on the graph in Fig. 4, whereas |0,0〉 is not. For
notational consistency we will write

|N〉 ≡ |0,0〉, (91)

where N may stand for neither, none, or null. This distinction
between |0,0〉 and |P〉 is an important and interesting one
because it suggests that |N〉 is another radical-pair state that
we should consider and therefore extend the minimal basis
from {|S〉,|T〉} to {|S〉,|T〉,|N〉}. Previous treatments on the
radical-pair reaction operator have been to use either a trace-
decreasing ρ(t) without products or a trace-preserving ρ(t)
with products. The partial trace has the advantage that it is both
trace preserving and excludes the products. It achieves this by
regarding |N〉 as just another radical-pair state, which has not
been considered (or taken seriously) before. We summarize
the previous approaches to radical-pair kinetics alongside the
partial-trace method schematically in Fig. 5.

Finally, we make a couple of observations of the model
defined by (88) and (89).

(i) We first note some similarities and differences between
the partial-trace approach and the conventional Haberkorn
model. The model obtained from a partial trace over the
products uses a 3×3 matrix with unit trace, whereas the
conventional model uses a 2×2 matrix plus one scalar equation

ρSS(t) + ρTT(t) = −kS

∫ t

0
dt ′ρSS(t ′) − kT

∫ t

0
dt ′ρTT(t ′).

(92)

We have used (53) to express the product populations on the
right-hand side in terms of ρSS(t) and ρTT(t). However, the
right-hand side of (92) explicitly refers to product populations,

whereas the trace of ρR does not. This is because |N〉 is a
radical-pair state so that Tr[ρR] is interpreted as the probability
of finding the radical pair to be either a singlet, triplet, or
neither. Equation (92) provides more detail by saying the
probability of finding the system in either the singlet, triplet,
singlet product, or triplet product states must be one. Naturally,
the probability of not being in the singlet or triplet state must
be equal to the probability of being in the product states.

(ii) We mentioned that the random walk of Fig. 4 is not
the same as the partial trace because (89) and (90) are not
equivalent. However, if we note that coherences between the
radical pair and products in (90) are decoupled from the
rest of the matrix, then the random walk of Fig. 4 can be
used to simulate the partial trace by first defining |ψ1〉 = |S〉,
|ψ2〉 = |N〉, and |ψ3〉 = |T〉 and then setting 〈ψ1|ρ(t)|ψ2〉 =
〈ψ3|ρ(t)|ψ2〉 = 0 in the end. This defines the partial trace over
products in terms of a random walk.

V. EXTENSION TO MORE GENERAL CASES

Not all processes in a chemical reaction can be repre-
sented by amplitude damping. In this section we consider
reactions where coherent oscillations and additional dephasing
can occur. This is the case with the radical-pair reaction
where magnetic interactions give rise to coherent oscillations
between the singlet and triplet states. It should be clear
that (48)–(50) can be generalized to any concatenation of
maps describing amplitude damping, dephasing, or unitary
evolution. More precisely, a graph defined by

K ≡ (Ugh · · ·UcdUab)(Vxy · · ·VrsVpq)(Mmn · · ·MklMij )

(93)

can be written as K(t) = exp(Gt), with

G = (Rgh + · · · + Rcd + Rab) + (Sxy + · · · + Srs + Spq)

+ (Lmn + · · · + Lkl + Lij ). (94)

We have omitted the time argument in (93) for clarity and
used (34), (35), (40), and (41) to obtain (94).

A. Application to experiment

The experiment of Sec. II B 2 is an example where a model
in the form of (93) and (94) would be directly applicable.
Recall from Sec. II B 2 that the measured dephasing rate does
not correspond to the dephasing caused by the recombination
processes alone. Although the experiment minimizes as many
decoherent processes as possible, not all such processes can
be made negligible. We therefore include an additional source
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PREVIOUS  
METHOD 2 

PREVIOUS  
METHOD 1 

PARTIAL 
TRACE 

FIG. 5. Depiction of the different approaches to the radical-pair reaction operator based on what states are included in the model. Each box
is color coded in accord with the color coding of Figs. 3 and 4. Each site will have either a closed dot or an open dot, representing, respectively,
the presence or absence of the random walker. (a) Conventional or Haberkorn model with the reaction operator referring to only the singlet and
triplet states of the radical pair. This does not preserve the norm of ρ(t) and can be derived from (b) by discarding |PS〉 and |PT〉. (b) Including
the reaction products in the reaction operator so that ρ(t) is normalized at all times. (c) Partial-trace method that expresses our ignorance of
the products. This gives rise to a state in which the radical pair is neither the singlet nor the triplet. We represent the ignorance of products by
question marks at the product sites.

of dephasing in our model. This gives the resultant graph in
Fig. 6 whose time evolution can be described by the map

KQW(dt) = V31(dt)U31(dt)M43(dt)M21(dt). (95)

Applying (93) and (94) gives the reaction operator

GQWρ(t) = −i[Ĥ31,ρ(t)]

+ k21

[
Q̂21ρ(t)Q̂†

21 − 1

2
Q̂1ρ(t) − 1

2
ρ(t)Q̂1

]
+ k43

[
Q̂43ρ(t)Q̂†

43 − 1

2
Q̂3ρ(t) − 1

2
ρ(t)Q̂3

]
+ q31

[
Q̂1ρ(t)Q̂1 − 1

2
Q̂1ρ(t) − 1

2
ρ(t)Q̂1

]
. (96)

The last line in (96) models any additional dephasing occurring
on top of the recombination without contributing to population
transfer (recall Sec. III B). Maeda et al. have suggested such
a process [31]. An order-of-magnitude estimate suggests that
the additional dephasing observed in their experiment can be
accounted for by the anisotropy associated with the electron
gyromagnetic ratio for one of the radicals (also referred to as
g anisotropy in electron paramagnetic resonance) [31]. Their
order-of-magnitude estimate for the rate of dephasing due to
g anisotropy could in principle be used in (96) for q31. We
will study the effect of a nonzero q31 in the following paper,

where a toy model is used to simulate radical-pair reactions in
plant cryptochromes [53]. However, there we allow q31 to be
a free parameter so the dependence of the reaction kinetics on
additional dephasing can be seen [54].

We noted earlier in Sec. III A that the order of subscripts in
the amplitude damping map is important as this determines
the direction of the process. This is also the case for the
dephasing map and is obviously true from (34) as its generator
is determined solely by the projector corresponding to the first
index (counting from right to left). If we include products into
our reaction operator then the form of (34) will not only affect
the singlet-triplet coherence of the radical pair, but also the
coherences between the radical pair and products. The ordering
of the indices then determines which coherences between the
radical pair and product are affected. Take the four-state graph
in Fig. 6 for example, the contribution to the reaction operator
given by V31(dt) is

S31(q31)ρ

=

⎛⎜⎜⎜⎝
0 − 1

2q31ρ12 − 1
2q31ρ13 − 1

2q31ρ14

− 1
2q31ρ21 0 0 0

− 1
2q31ρ31 0 0 0

− 1
2q31ρ41 0 0 0

⎞⎟⎟⎟⎠,

(97)
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FIG. 6. Quantum walk involving all three processes described in
Sec. III. Coherent evolution is represented by a green two-way arrow
and parametrized by α31 (recall that the actual rate of oscillation is
given by 2ζ31). This models the effect of the magnetic interactions
such as the Zeeman or hyperfine. Any extra dephasing (i.e., not caused
by recombination) can be effectively described by the dephasing
map. If applied to the experiment of Ref. [31] this would model the
g anisotropy for one of the radicals.

whereas the contribution from V13(dt) is

S13(q13)ρ

=

⎛⎜⎜⎜⎝
0 0 − 1

2q13ρ13 0

0 0 − 1
2q13ρ23 0

− 1
2q13ρ31 − 1

2q13ρ32 0 − 1
2q13ρ34

0 0 − 1
2q13ρ43 0

⎞⎟⎟⎟⎠.

(98)

Note that we have explicitly written out the dependence on
the dephasing rate in the generators to be clear. This therefore
raises the question as to whether a dephasing map with a
particular ordering of indices should be preferred over another,
e.g., V31(dt) as opposed to V13(dt) in (96). It turns out that this
asymmetry is usually not a problem for describing radical-pair
reactions because the radical pair is usually created in either
the singlet or the triplet state. More generally, the asymmetry
in the dephasing map is irrelevant for any initially mixed state
of the form

ρ(0) =
N∑

k=1

℘k|ψk〉〈ψk|. (99)

This is the case with the experiment of Sec. II B 2, where
the radical pair begins in the singlet state, which corresponds
to (99) with N = 4, ℘1 = 1, and ℘2 = ℘3 = ℘4 = 0. This of
course assumes that there are no other processes present that
create coherences between the radical pair and products. We
comment further on the asymmetry of the dephasing map and
its use in deriving reaction operators below.3

3There is an exception to this asymmetry when the graph has only
two states. This can already be seen in (29) provided we set equal
dephasing rates when reversing the order of indices. The two-state
case is also equivalent to setting ρmn = 0 except for ρ13 in (97)
and (98). We can then make S31(q31) = S13(q13) by setting q31 = q13.

FIG. 7. We represent two applications of the dephasing map by
using multiple triangles with a single line. This gives an overall map
that is symmetric in the decoherence rates when the rates for each
direction are set equal. This is also the Kominis model with the
dephasing rates replaced by the recombination rates.

B. Variant models

1. Symmetric dephasing

If one insists that a symmetric dephasing model be used
then this can be accomplished by two applications of the
dephasing map. We represent such an operation by Fig. 7.
Since we associate an upward-pointing triangle with the map
V31(q31; dt) it makes sense to use a downward-pointing triangle
for V13(q13; dt). We thus define the direction of dephasing
by the direction in which the triangle points. A symmetric
dephasing map may then be defined by

W31(q; dt) ≡ V31(q31 := q; dt)V13(q13 := q; dt). (100)

The generator corresponding to this is simply given by the sum
of (97) and (98) with q31 = q13 ≡ q:

X31(q)ρ ≡ [S13(q) + S31(q)]ρ

=

⎛⎜⎜⎜⎝
0 − 1

2qρ12 −qρ13 − 1
2qρ14

− 1
2qρ21 0 − 1

2qρ23 0

−qρ31 − 1
2qρ32 0 − 1

2qρ34

− 1
2qρ41 0 − 1

2qρ43 0

⎞⎟⎟⎟⎠.

(101)

We can also provide a model of dephasing in which only
the radical pair is referred to by using the partial trace defined
earlier in Sec. IV B 2. Since the partial trace of a sum is the sum
of partial traces we can simply take the partial trace of (101)
and add it to the generator for other processes. We can use
exactly the same procedure as before to calculate the partial
trace of (101), but it should be intuitive that the result is given
by

ρ̇R =

⎛⎜⎝0 0 0

0 0 −qρ31

0 −qρ13 0

⎞⎟⎠, (102)

where (102) is expressed in the {|n1,n3〉}n1,n3 basis and the or-
dering of the matrix elements is the same as (89). Adding (102)
to (89) thus gives a model for the recombination process with
added dephasing in the radical-pair basis {|S〉,|T〉,|N〉}.

2. Relation to Kominis’s reaction operator

This asymmetry in the dephasing map can be used to obtain
Kominis’s model operationally. Recall from Sec. II B 1 that his
reaction operator is given by (6) and is trace preserving, with
the radical-pair population evolved using a separate equation,
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given by (7). This model can be seen as two applications of
the dephasing map in opposite directions:

ρ(t+dt)=V31(q31 := kS; dt)V13(q13 := kT; dt)ρ(t). (103)

Using (45), this is equivalent to

dρ

dt
= S31(q31 := kS)S13(q13 := kT)ρ(t)

= kS

[
Q̂Sρ(t)Q̂S − 1

2
Q̂Sρ(t) − 1

2
ρ(t)Q̂S

]
+ kT

[
Q̂Tρ(t)Q̂T − 1

2
Q̂Tρ(t) − 1

2
ρ(t)Q̂T

]
= LKρ(t). (104)

We can now understand why Kominis had to introduce an
ad hoc method for describing population loss in the radical-
pair reaction, namely, that (104) only describes the loss of
coherences. Of course, we have not analyzed the physics
of Kominis’s model. All we have done is point out that
whatever physics and assumptions go into Kominis’s model,
they amount to dephasing for the radical pair. This should be
compared with the quantum-walk model used here in which
the radical-pair dephasing is seen explicitly as a consequence
of the decay out of |ψ1〉 and |ψ3〉 to products. If we want to
describe population loss in the minimal basis {|S〉,|T〉} then
it makes more sense to use the conventional model given by
LHρ (or equivalently L̄QWρ). We can of course also tack on
LHρ to (104) to arrive at a model where there is population
loss and additional dephasing in the minimal basis:

dρ

dt
= (LK + LH)ρ(t). (105)

The graph corresponding to Kominis’s model is also given
by Fig. 7 when the dephasing rates are set equal to the
recombination rates.

VI. SUMMARY AND DISCUSSION

We have shown that quantum walks provide the same level
of treatment for coherent chemical kinetics that rate-equation
models do for classical chemical kinetics by applying it to
the radical-pair reaction of the avian compass. However, the
quantum walk considered here is not the same as those in the
quantum-walk literature where an additional system degree
of freedom is used as a coin [40,41]. The simplicity of our
approach lies in the decomposition of a multisite reaction into
two-site processes. If multiple processes occur between two
sites then we can also consider these processes separately. This
gives a systematic method of deriving reaction operators. The
breakdown into two-site processes also makes our approach
less prone to modeling errors since two-site processes are much
simpler to study; they are in fact well known in quantum
information theory. As we saw in Sec. IV, this allowed us to
obtain a recombination dephasing rate for the standard radical-
pair reaction that is consistent with experiments and that has
also been predicted by the conventional Haberkorn model. This
follows a line of thought similar to the Jones-Hore work except
they attempted a derivation in one go attempt. Section IV can
also be seen as a derivation of the Haberkorn reaction operator

using a theory of coherent chemical kinetics as argued. We
have also shown how the partial trace can be used to obtain a
model where the products are ignored but that still preserves
the normalization of the radical-pair state. This gives rise to
a third state that can be seen as a halfway approach to the
existing models (see Fig. 5). We have also considered more
general reactions in Sec. V where a model corresponding to the
experiment of Ref. [31] was introduced. We also considered
variant forms of dephasing and discussed its relevance to the
Kominis model.

Due to space we have not provided the details of how
additional dephasing, like the one in the model of (96), will
affect a coherent reaction. The effect of such decoherent
processes will ultimately depend on the actual values of
the intermediate transition rates. In the following paper we
further illustrate the use of quantum walks by simulating a toy
model for a radical-pair reaction in plant cryptochromes where
order-of-magnitude estimates for the intermediate transition
rates are available [53]. However, instead of using a particular
value of dephasing, we will vary the dephasing parameter
over its full range so as to study the deviation of a maximally
coherent reaction from one that is fully classical. For this
purpose we use a well-known quantity called the hitting time
from quantum walks. This measures how quickly the reaction
occurs as a function of the coherences in the reaction. The
following paper thus shows how the “full” machinery of
quantum walks can be applied, not just the idea of composing
maps presented in this paper. Such an application of coherent
chemical kinetics can then be used to argue if a quantum
description for the reaction being studied is necessary or if
simple classical rate equations will do.

Aside from the Jones-Hore work, the open-system approach
due to Tiersch et al. [29] also deserves some comment. There
is a sense in which our paper is similar to theirs and a sense
in which it is the complete opposite. Our work is similar
to Ref. [29] in that Tiersch et al. also use maps to describe
different sorts of evolution for the system (i.e., the radical
pair). Once the physics is seen clearly the system evolution
is then described by a master equation, derived by converting
the maps into differential form. However, whereas our goal is
to establish the systematic use of maps for deriving reaction
operators because of their operational nature, Tiersch et al.
use maps to suggest what underlying physics might give rise
to known reaction operators. More precisely, Tiersch et al.
treat the radical pair as an open system and ask what sort
of system-environment interactions can give rise to sensible
reaction operators. Their maps are thus different from ours in
that theirs act on the joint space of the system plus environment.
In contrast, our maps act directly on the system alone. One
can therefore say that our work and Ref. [29] are similar in
methodology due to the simplicity of maps, but quite different
in spirit.
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APPENDIX A: AMPLITUDE-DAMPING KRAUS MAP

1. Operator-sum form

For ease of reference we repeat the amplitude-damping map
here:

ρ(t + �t) = M21ρ(t)

= M̂
(1)
21 (�t)ρ(t)

[
M̂

(1)
21 (�t)

]†
+ M̂

(2)
21 (�t)ρ(t)

[
M̂

(2)
21 (�t)

]†
, (A1)

where the two Kraus operators are

M̂
(1)
21 (�t) =

√
γ21(�t) |ψ2〉〈ψ1|, (A2)

M̂
(2)
21 (�t) = |ψ2〉〈ψ2| +

√
1 − γ21(�t) |ψ1〉〈ψ1|. (A3)

The forms of M̂
(1)
21 (�t) and M̂

(2)
21 (�t) can be understood by first

noting that during �t we either observe a transition or we do
not (assuming of course that the system can be probed to give
us this information). Considering first the case of observing a
transition, the state is then

ρ(1)(t + �t) = M̂
(1)
21 (�t)ρ(t)

[
M̂

(1)
21 (�t)

]†
/℘1(�t). (A4)

The probability of observing the transition is simply given by

℘1(�t) = γ21(�t)ρ11(t), (A5)

where ρjj (t) = 〈ψj |ρ(t)|ψj 〉 is the probability of finding the
system to be in |ψj 〉 (j = 1,2) at time t . It should be clear
directly from the form of M̂

(1)
21 (�t) that it effects the required

conditional change as it is proportional to |ψ2〉〈ψ1|, whose
effect is to take a system in state |ψ1〉 to the state |ψ2〉. The
inclusion of

√
γ21(�t) then allows the correct probability of

observing a transition to be found according to the formalism.
Note that the expression for ℘1(�t) is exactly what one would
expect from classical probability theory. Considering now the
case when we do not observe a transition, the state is then
given by

ρ(2)(t + �t) = M̂
(2)
21 (�t)ρ(t)

[
M̂

(2)
21 (�t)

]†/
℘2(�t), (A6)

where

℘2(�t) = ρ22(t) + [1 − γ21(�t)]ρ11(t) (A7)

is the probability of not observing a transition. These results
can be understood by noting that two possible scenarios
contribute to a no-transition observation: Either the system
is already in state |ψ2〉 at time t , which occurs with probability
ρ22(t), or it is in state |ψ1〉 but has not yet jumped to
|ψ2〉, which occurs with probability [1 − γ21(�t)]ρ11(t). The
probability of not seeing a transition is therefore the sum of
the probabilities for each of these scenarios. That M̂

(2)
21 (�t)

describes a combination of these two scenarios can also be
seen from its form, which we can understand by a simple
analogy to M̂

(1)
21 (�t). Consider first the case where the system

is in state |ψ1〉 and remains in |ψ1〉. Instead of taking |ψ1〉 to
|ψ2〉 as in M̂ (1)(�t), we now take |ψ1〉 to itself. This means that
we simply replace the transition operator |ψ2〉〈ψ1| in M̂ (1)(�t)
by the projector |ψ1〉〈ψ1|. We would also have to replace the
γ21(�t) under the square root in M̂ (1)(�t) by 1 − γ21(�t) since
now we are concerned with the case where the system stays in
|ψ1〉. Doing so gives us M̂ (2)(�t) = √

1 − γ21(�t) |ψ1〉〈ψ1|,
but we know this is not the complete description yet as we
have not considered the contribution due to the system being
in |ψ2〉 and staying there. If the system is already in |ψ2〉, the
process should take |ψ2〉 to itself because no other processes
are present that can take the system out of |ψ2〉. The probability
that the system remains in |ψ2〉 given that it was in |ψ2〉 is thus
simply 1. Therefore, we simply add the projector |ψ2〉〈ψ2|
(with coefficient 1) to

√
1 − γ21(�t) |ψ1〉〈ψ1| to arrive at the

resultant form of M̂
(2)
21 (�t). It is trivial to show that M̂

(2)
21 (�t)

produces the correct state by letting ρ(t) be |ψ1〉〈ψ1| and
|ψ2〉〈ψ2| in turn.

For the mathematically inclined reader, we note that (A3)
can be derived directly by using (A2) and the constraint[

M̂
(1)
21 (�t)

]†
M̂

(1)
21 (�t) + [

M̂
(2)
21 (�t)

]†
M̂

(2)
21 (�t) = 1̂. (A8)

By resolving the identity on the right-hand side in the site
basis, (A8) gives[

M̂
(2)
21 (�t)

]†
M̂

(2)
21 (�t) = [1 − γ21(�t)]|ψ1〉〈ψ1| + |ψ2〉〈ψ2|.

(A9)

Note that M̂
(2)
21 (�t) is simply the operator square root of this

equation. Since (A9) is diagonal, we arrive at (A3) on taking
the square root of the coefficients of |ψ1〉〈ψ1| and |ψ2〉〈ψ2|.
This derivation of (A3) is simple but does not contain the
insight provided above.

Now that we have the necessary Kraus operators the
evolution of the system follows directly by forming the
sum (A1). Notice from the above that M̂

(1)
21 (�t) and M̂

(2)
21 (�t)

are essentially time-evolution operators but conditioned on
our knowledge of whether the system underwent a jump or
not. Equations (A4) and (A6) are in fact quantum analogs of
the classical Bayes rule [55]. Conditioning requires that we
monitor the system for the entire duration of �t . What the
operator-sum representation of ρ(t + �t) describes is how
the state should evolve without us having to monitor the
system continuously, or in the language of probability theory,
it describes the unconditioned state. This can be understood as
follows: If one does not monitor the system then all we can say
is that with probability ℘1(�t) the system will be in the state
ρ(1)(t + �t) and with probability ℘2(�t) the system will be in
the state ρ(2)(t + �t). From probability theory, we would say
that the state in the absence of such monitoring at time t + �t

(i.e., the unconditioned state) is therefore a weighted sum of
the conditioned states ρ(1)(t + �t) and ρ(2)(t + �t),

ρ(t+�t) = ℘1(�t)ρ(1)(t + �t) + ℘2(�t)ρ(2)(t+�t). (A10)

Substituting in (A4) and (A6), we obtain exactly the result of
Kraus. In practice, one often has an ensemble of particles and
all we know is the fraction of particles that underwent a state
transition during �t . In this case ℘1(�t) is simply the fraction
of particles that jumped and ℘2(�t) the fraction that did not.
Note also the difference between ℘1(�t) and γ21(�t): The
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former is the probability of observing a transition from t to
t + �t without assuming that we know which state the system
is in at time t , whereas the latter is the probability of jumping
conditioned on the system being in state |ψ1〉 at time t .

2. Differential form

We have now described a simple one-way population
transfer completely as a probabilistic process. Instead of
expressing the system evolution as a sum over conditioned
states we can express it in the form of a differential equation.
Such an equation can be derived by considering the evolution
of ρ(t) over an infinitesimal interval dt . In this case it is more
appropriate to refer to the rate at which the system jumps from
|ψ1〉 to |ψ2〉 over some interval �t rather than the probability
γ21(�t). If we denote the fraction of particles that jump from
|ψ1〉 to |ψ2〉 per second by k21, the probability γ21(�t) is
then related to k21 by γ21(�t) = k21�t . This means that the
probability of a jump in an infinitesimally small time interval
is also an infinitesimal. The evolution of the system state is
now given by

ρ(t + dt) = M̂
(1)
21 (dt)ρ(t)

[
M̂

(1)
21 (dt)

]†
+ M̂

(2)
21 (dt)ρ(t)

[
M̂

(2)
21 (dt)

]†
. (A11)

Using the binomial expansion, we have√
1 − γ21(dt) = 1 − k21

2
dt. (A12)

We can then write the Kraus operators for infinitesimal
evolution using Q̂21 = |ψ2〉〈ψ1| and Q̂1 = |ψ1〉〈ψ1| as

M̂
(1)
21 (dt) =

√
k21dt Q̂21, (A13)

M̂
(2)
21 (dt) = 1̂ − k21

2
Q̂1dt. (A14)

Substituting (A13) and (A14) into (A11) and neglecting terms
on the order of dt2, we arrive at

dρ

dt
= k21

[
Q̂21ρ(t)Q̂†

21 − 1
2Q̂1ρ(t) − 1

2ρ(t)Q̂1
]
. (A15)

This is the master equation corresponding to the amplitude
damping map and can be put in the Lindblad form if one wishes
by using the property Q̂1 = Q̂

†
21Q̂21. We have derived this

equation rather simply by applying the Kraus formalism, hence
it can be regarded as merely a restatement of the operator-
sum representation of ρ(t) in differential form. It is only a
matter of preference whether one wants to use a map or a
differential equation to simulate the system dynamics, but the
Kraus formalism provides a simple way to understand the
essential physics of the process by using only basic probability
ideas.

APPENDIX B: PARTIAL TRACE OVER
CHEMICAL PRODUCTS

Here we show how to obtain an equation of motion for the
radical pair where the products are ignored by using the partial
trace operation on (51). We have already argued in Sec. IV B 2

that this is given by

ρ̇R(t) = 〈n2 = 0,n4 = 0|ρ̇(t)|n2 = 0,n4 = 0〉
+ 〈n2 = 0,n4 = 1|ρ̇(t)|n2 = 0,n4 = 1〉
+ 〈n2 = 1,n4 = 0|ρ̇(t)|n2 = 1,n4 = 0〉, (B1)

where

ρ̇(t) = k21

[
Q̂21ρ(t)Q̂†

21 − 1

2
Q̂1ρ(t) − 1

2
ρ(t)Q̂1

]
+ k43

[
Q̂43ρ(t)Q̂†

43 − 1

2
Q̂3ρ(t) − 1

2
ρ(t)Q̂3

]
, (B2)

and we have written the site basis using |n1,n2,n3,n4〉 as
[recall (80)–(83) and (85)]

|ψ1〉 = |1,0,0,0〉, |ψ3〉 = |0,0,1,0〉, (B3)

|ψ2〉 = |0,1,0,0〉, |ψ4〉 = |0,0,0,1〉. (B4)

The sum (B1) is most easily calculated by first rewriting
(B2) as

ρ̇ = k21

(
ρ11|ψ2〉〈ψ2| − 1

2

4∑
m=1

ρ1m|ψ1〉〈ψm|

− 1

2

4∑
m=1

ρm1|ψm〉〈ψ1|
)

+ k43

(
ρ33|ψ4〉〈ψ4|

− 1

2

4∑
m=1

ρ3m|ψ3〉〈ψm| − 1

2

4∑
m=1

ρm3|ψm〉〈ψ3|
)

. (B5)

The following identities will therefore prove useful:

〈n2 = 0,n4 = 0|ψm〉
= (1 − δm2)(1 − δm4)|n1 = δm1,n3 = δm3〉, (B6)

〈n2 = 0,n4 = 1|ψm〉
= (1 − δm2)δm4|n1 = δm1,n3 = δm3〉, (B7)

〈n2 = 1,n4 = 0|ψm〉
= δm2(1 − δm4)|n1 = δm1,n3 = δm3〉. (B8)

We will also use the summation convention where a repeated
index is summed over. Using (B5), the first term in (B1) can
thus be calculated as follows:

〈n2 = 0,n4 = 0|ρ̇(t)|n2 = 0,n4 = 0〉
= −k21

2
(ρ1m〈n2 = 0,n4 = 0|ψ1〉〈ψm|n2 = 0,n4 = 0〉

+ ρm1〈n2 = 0,n4 = 0|ψm〉〈ψ1|n2 = 1,n4 = 0〉)
− k43

2
(ρ3m〈n2 = 0,n4 = 0|ψ3〉〈ψm|n2 = 0,n4 = 0〉

+ ρm3〈n2 = 0,n4 = 0|ψm〉〈ψ3|n2 = 0,n4 = 0〉), (B9)
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where we have noted on using (B6) that

〈n2 = 0,n4 = 0|ψ2〉 = 〈n2 = 0,n4 = 0|ψ4〉 = 0, (B10)

while the first term in (B9) is

ρ1m〈n2 = 0,n4 = 0|ψ1〉〈ψm|n2 = 0,n4 = 0〉
= ρ1m(1 − δm2)(1 − δm4)

× |n1 = 1,n3 = 0〉〈n1 = δm1,n3 = δm3|
= ρ1m(1 − δm4 − δm2 −���δm2δm4)

× |n1 = 1,n3 = 0〉〈n1 = δm1,n3 = δm3|
= |n1 = 1,n3 = 0〉(ρ1m〈n1 = δm1,n3 = δm3|

− δm4ρ1m〈n1 = δm1,n3 = δm3|
− δm2ρ1m〈n1 = δm1,n3 = δm3|)

= |n1 = 1,n3 = 0〉(ρ11〈n1 = 1,n3 = 0|
+���������

ρ12〈n1 = 0,n3 = 0| + ρ13〈n1 = 0,n3 = 1|
+���������

ρ14〈n1 = 0,n3 = 0| −���������
ρ14〈n1 = 0,n3 = 0|

−���������
ρ12〈n1 = 0,n3 = 0|)

= ρ11|n1 = 1,n3 = 0〉〈n1 = 1,n3 = 0|
− ρ13|n1 = 1,n3 = 0〉〈n1 = 0,n3 = 1|. (B11)

This also gives us the second term in (B9) since it is just the
Hermitian conjugate of (B11),

ρm1〈n2 = 0,n4 = 0|ψm〉〈ψ1|n2 = 0,n4 = 0〉
= (ρ1m〈n2 = 0,n4 = 0|ψ1〉〈ψm|n2 = 0,n4 = 0〉)†

= ρ11|n1 = 1,n3 = 0〉〈n1 = 1,n3 = 0|
− ρ31|n1 = 0,n3 = 1〉〈n1 = 1,n3 = 0|. (B12)

The third term in (B9) can be calculated in exactly the
same manner with ρ3m replacing ρ1m and |ψ3〉 replacing |ψ1〉.
By inspection of the above work we see that this amounts
to making the following replacements in (B11) (bras remain
unchanged):

ρ11 → ρ31, ρ13 → ρ33, (B13)

|n1 = 1,n3 = 0〉 → |n1 = 0,n3 = 1〉. (B14)

We thus obtain

ρ3m〈n2 = 0,n4 = 0|ψ3〉〈ψm|n2 = 0,n4 = 0〉
= ρ31|n1 = 0,n3 = 1〉〈n1 = 1,n3 = 0|

− ρ33|n1 = 0,n3 = 1〉〈n1 = 0,n3 = 1|, (B15)

and taking the Hermitian conjugate,

ρm3〈n2 = 0,n4 = 0|ψm〉〈ψ3|n2 = 0,n4 = 0〉
= (ρ3m〈n2 = 0,n4 = 0|ψ3〉〈ψm|n2 = 0,n4 = 0〉)†

= ρ13|n1 = 1,n3 = 0〉〈n1 = 0,n3 = 1|
− ρ33|n1 = 0,n3 = 1〉〈n1 = 0,n3 = 1|. (B16)

Substituting (B11), (B12), (B15), and (B16) into (B9) and
collecting like terms, we arrive at

〈n2 = 0,n4 = 0|ρ̇(t)|n2 = 0,n4 = 0〉
= −k21ρ11|n1 = 1,n3 = 0〉〈n1 = 1,n3 = 0|

− 1

2
(k21 + k43)ρ13|n1 = 1,n3 = 0〉〈n1 = 0,n3 = 1|

− 1

2
(k21 + k43)ρ31|n1 = 0,n3 = 1〉〈n1 = 1,n3 = 0|

− k43ρ33|n1 = 0,n3 = 1〉〈n1 = 0,n3 = 1|. (B17)

The remaining two terms in (87) are much easier to calculate
with the help of (B7) and (B8). The second term in (B1) is given
by

〈n2 = 0,n4 = 1|ρ̇(t)|n2 = 0,n4 = 1〉
= k43ρ33|n1 = 0,n3 = 0〉〈n1 = 0,n3 = 0|, (B18)

where we have noted from (B7) that

〈n2 = 0,n4 = 1|ψm〉 =
{|n1 = 0,n3 = 0〉 for m = 4

0 for m = 1,2,3
(B19)

and
〈n2 = 0,n4 = 1|ψ4〉 = |n1 = 0,n3 = 0〉. (B20)

Similarly, the third term in (B1) is
〈n2 = 1,n4 = 0|ρ̇(t)|n2 = 1,n4 = 0〉
= k21ρ11|n1 = 0,n3 = 0〉〈n1 = 0,n3 = 0|, (B21)

where we have noted from (B8) that

〈n2 = 1,n4 = 0|ψm〉 =
{|n1 = 0,n3 = 0〉 for m = 2

0 for m = 1,3,4.

(B22)

Collecting (B17), (B18), and (B21), we finally have the state
ρR, which has the products traced out. The final form of (B1)
is then

ρ̇R = (k21ρ11 + k43ρ33)|0,0〉〈0,0| − k43ρ33|0,1〉〈0,1|

− k21ρ11|1,0〉〈1,0| − 1

2
(k21 + k43)ρ13|1,0〉〈0,1|

− 1

2
(k21 + k43)ρ31|0,1〉〈1,0|, (B23)

where we have used the fact that ρR must be spanned by
{|n1,n3〉}n1,n3 to omit writing out n1 and n3 explicitly in (B23).

[1] T. Ritz, Proc. Chem. 3, 262 (2011).
[2] J. R. Woodward, C. R. Timmel, K. A. McLauchlan, and P. J.

Hore, Phys. Rev. Lett. 87, 077602 (2001).
[3] T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko,

Nature 429, 177 (2004).

[4] K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers,
P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature 453,
387 (2008).

[5] C. R. Timmel and K. B. Henbest, Philos. Trans. R. Soc. Lond.
A 362, 2573 (2004).

032407-17

http://dx.doi.org/10.1016/j.proche.2011.08.034
http://dx.doi.org/10.1016/j.proche.2011.08.034
http://dx.doi.org/10.1016/j.proche.2011.08.034
http://dx.doi.org/10.1016/j.proche.2011.08.034
http://dx.doi.org/10.1103/PhysRevLett.87.077602
http://dx.doi.org/10.1103/PhysRevLett.87.077602
http://dx.doi.org/10.1103/PhysRevLett.87.077602
http://dx.doi.org/10.1103/PhysRevLett.87.077602
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1098/rsta.2004.1459
http://dx.doi.org/10.1098/rsta.2004.1459
http://dx.doi.org/10.1098/rsta.2004.1459
http://dx.doi.org/10.1098/rsta.2004.1459


A. CHIA et al. PHYSICAL REVIEW E 93, 032407 (2016)

[6] C. T. Rodgers and P. J. Hore, Proc. Natl. Acad. Sci. USA 106,
353 (2009).

[7] M. Liedvogel, K. Maeda, K. Henbest, E. Schleicher, T. Simon,
C. R. Timmel, P. Hore, and H. Mouritsen, PLoS ONE 2, e1106
(2007).

[8] H. Mouritsen, U. Janssen-Bienhold, M. Liedvogel, G. Feenders,
J. Stalleicken, P. Dirks, and R. Weiler, Proc. Natl. Acad. Sci.
USA 101, 14294 (2004).
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