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Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information
about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent
articles that these experiments can be used to determine the shape of closed pores averaged over a volume of
interest, it is still an open question how much information can be gained in open well-connected systems. In this
theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To
this end, the so-called “SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals” (SERPENT)
sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two
two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal
lattice of cylinders and a rectangular lattice of isosceles triangles.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) diffusion experiments
are widely performed to investigate structural barriers hin-
dering the diffusive motion of spin-bearing particles [1,2].
For example, in biomedical imaging, the diffusion coefficient
is measured in the context of stroke diagnosis and charac-
terization of tumor tissue [3–7]. More advanced techniques
assess additional parameters related to the occurring diffusion
restrictions [8–12] or to investigate perfusion effects in the
capillary bed [13–17]. Additionally, the course of white matter
tracts in biomedical imaging can be reconstructed in great
detail, enabling researchers to gain information about the
connectivity of different brain regions [18–23]. The structural
information can also be used in surgery planning, as surgeons
may be able to save important white matter tracts, e.g., the
optic radiation [24]. Apart from medical imaging applications,
NMR-diffusion experiments are widely performed in porous
media research [25–34], because they yield information about
the pore shape such as, for example, the typical diameter of
pores [35,36]. This information is crucial to characterize the
physical properties of many porous media such as concrete or
oil-containing rocks.

How much information about the shape of closed pores can
be obtained with NMR-based diffusion experiments [37] has
been a long-standing question. Indeed, several recent papers
have shown the possibility to measure the exact pore shape
[38–48]. These findings are, however, only applicable to closed
pores, while many porous media have interconnected cavities.
It is still an open question if the structure of these connected
open porous media can be detected unambiguously with NMR-
based diffusion experiments.

In this article, an approach is proposed to extract this
information for connected periodic domains. To this end, the
“SEquential Rephasing by Pulsed field-gradient Encoding N
Time intervals” (SERPENT) sequence is used, which was
originally introduced by Stapf et al. as a tool to investigate
fluid transport [49], and which is a multiple diffusion encoding
sequence [50]. It is shown in simulations that it is possible
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to detect the structure of connected periodic domains based
on data acquired with this sequence. In close analogy to
x-ray diffraction experiments of periodic crystals, it is a
well-known result in the field of NMR diffusion that two
short gradient pulses applied to a periodic lattice allow for
the determination of the magnitude of diffraction peaks [1].
Here it is demonstrated that—unlike in x-ray scattering—the
phase of the diffraction peaks can be directly obtained from
additional NMR measurements employing three diffusion
weighting gradient pulses. Thus the full spectral information
can be obtained, which allows an immediate reconstruction of
the shape of the lattice.

II. THEORY

A. Units

The free diffusion coefficient in units of m2/s is denoted by
Ddim. The lattice spacing in the x direction in units of meters
is denoted by Ldim, and the time in units of seconds is denoted
by Tdim. Dimensionless units are used in the remainder of
the manuscript and are defined as follows. The dimensionless
time is defined by T = Ddim TdimL−2

dim. Quantities of length
and inverse length are defined relative to Ldim.

B. Definition of the used gradient profiles

The proposed approach is a generalization of double diffu-
sion encoding measurements [50,51] that were shown to yield
the shape of arbitrarily shaped closed pores [42]. Recalling
that the Larmor frequency is ω = −γB with the gyromagnetic
ratio γ and the magnetic field B = B0 + G(t)x(t) consisting of
the static field B0 and the gradient field G(t), it follows that the
phase acquired by a random walker following the path x(t) is

ϕ = −γ

∫ T

0
G(t)x(t)dt, (1)

in a reference frame rotating with ω0 = −γB0. It is assumed
that diffusion weightings are performed by means of the
temporal gradient profiles depicted in Fig. 1. In Fig. 1(a), the
so-called q-space imaging gradient profile is shown, which can
be used to determine the voxel-averaged diffusion propagator
[52–55]. Two gradient pulses of duration δs and amplitude
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FIG. 1. The gradient profiles used in this manuscript. (a) Classical
q-space gradients. (b) The SERPENT sequence with three gradient
pulses. Note that the definition of the timing parameter is different
from the one in the original SERPENT publication [49].

G are employed generating the wave vector q = γ Gδs.
Throughout the manuscript, the narrow pulse approximation,
δs → 0, is used, such that this gradient profile is

Gq,−q(t) = γ −1q[δ(t) − δ(t − T )], (2)

with the Dirac delta function δ(t). The gradient profile in
Fig. 1(b) uses three short gradient pulses and is given by

Gq1,q2,q3 (t) = γ −1

[
q1δ(t) + q2δ

(
t − T

2

)
+ q3δ(t − T )

]
.

(3)

q1, q2, and q3 do not have to be parallel, but it is
required that q1 + q2 + q3 = 0 to guarantee that the rephasing
condition ∫ T

0
G(t)dt = 0 (4)

holds true so that particles at rest do not acquire a phase
[compare to Eq. (1)]. Furthermore, conventional magnetic
resonance phase encoding imaging gradients are considered:

Gk(t) = γ −1kδ(t). (5)

In Eq. (5), the more usual label k was used for γ Gδs. In
conventional magnetic resonance imaging, acquiring the NMR

signal for a rectangular grid in the so-called k space using the
gradients Gk(t) can be used to image the measurement object
(see, e.g., Chap. 3 of [1]).

C. Signal attenuations

Suppose that a periodic porous material is under investiga-
tion and that an NMR-visible medium (e.g., water) diffuses
around a solid matrix that is NMR invisible (e.g., rock). A
pore space function χ (x) is introduced, which shall be 1 in the
diffusing medium and 0 in the solid matrix.

The diffusion weighting induces a signal attenuation,

E = 〈exp (iϕ)〉, (6)

where the brackets denote the averaging over all possible
random trajectories. Using the gradient profile Gq,−q(t), the
phase that a particle obtains is

ϕ = −q · (x1 − x2), (7)

where x1 and x2 denote the particle positions at the time of the
two gradient pulses. The signal attenuation in the long-time
limit is (for details see Sec. 7.4 of [1])

E2(q) = 1

V

∫∫
dx1dx2 χ (x1)e−iq·x1P (x2,x1,T )eiq·x2

long T→ χ̃0(q)[f̃Gauß(q,T ) ∗ χ̃ (−q)], (8)

with the Fourier transform χ̃(q) of χ (x), the diffu-
sion propagator P (x2,x1,T ), and the volume V of the
NMR-visible medium. In the second line of Eq. (8),
where the star denotes a convolution, it is assumed
that a Gaussian envelope model [56,57] as described in
more detail in Appendix A is appropriate to describe
the particle displacement, i.e., that P (x2,x1,T → large) ≈
χ (x1)χ (x2)fGauß(x2 − x1,T ). The physical reasoning behind
this ansatz is twofold. First, particles are never allowed to
start or to end up in the solid matrix, which is ensured by the
first two terms, χ (x1) and χ (x2). Second, in the long-time
limit, when particles have traveled distances much larger
than the lattice spacing, one can interpret the hopping from
one unit cell to the adjacent one as being a diffusion step
of a large-scale diffusion process with a reduced effective
diffusion coefficient. This large-scale diffusion process can
be considered to be free as no large-scale boundaries exist,
and thus the corresponding propagator is a Gaussian function
according to the central limit theorem. This behavior is
described by the term fGauß(x2 − x1,T ), which is a properly
normalized Gaussian function. The pore space function of the
unit cell is labeled χ0(x1), which is identical to χ (x1) in the
initial unit cell and zero elsewhere. The functions χ̃0(q), χ̃ (q),
and f̃Gauß(q,T ) are the Fourier transforms of the functions
χ0(x), χ (x), and fGauß(x,T ) with respect to x. At T → ∞,
fGauß(x2 − x1,T ) becomes very broad and f̃Gauß(q,T ) narrows
down, so that E2(q) is essentially equal to |χ̃(q)|2.

Owing to the periodicity of χ (x), χ̃ (q) is related to the
structure factor S(q) known from crystallography,

χ̃(q) = V −1
Z S(q) = V −1

Z ·
{∑

l

fl(GR) exp (−iGR · r l) if q = GR

∼ 0 otherwise
, (9)
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where GR is a vector of the reciprocal lattice and VZ the volume
of the NMR-visible medium in one unit cell. In close analogy
to crystallography, fl(q) = ∫

cell ρl(r ′) exp(−iq · r ′)d r ′ are the
form factors of the “atoms” with density ρl(r) residing at
positions r l within the Wigner-Seitz cell. In connected open
systems, it usually makes sense to consider the basis to be
“single atomic”, a case for which Eq. (9) may be restated as

χ̃ (q) =
{
χ̃0(q) if q = GR

∼ 0 otherwise , (10)

where χ̃0(q) = V −1
Z

∫
cell χ (r) exp(−iq · r ′)d r ′. Thus, for an

infinite, perfect lattice, signal peaks arise at certain points of the
reciprocal lattice and the signal attenuation E2(q) consists of
Bragg’s peaks as in crystallography, where q would correspond
to the difference of wave vectors of incoming and outgoing
wave (kout − kin). As mentioned, the peaks are broadened by
a Gaussian envelope at finite diffusion times, which originates
from the Gaussian envelope of the diffusion propagator (see
Appendix A and Eq. (7.33) of [1]), but not from the lattice size
as in crystallography.

A crucial difference between q-space imaging and crys-
tallography is the reason for the disappearance of the phase
information. In crystallography, the detector is insensitive to
the phase. But in q-space imaging, the signal is phaseless and
thus the phase-sensitive detector cannot resolve it.

This difference opens the door for alterations of the
experiment that preserve the phase information, e.g., by
using Gq1,q2,q3 (t) instead of Gq,−q(t). In this case, the signal
attenuation can be expressed by (see also [50])

E3(q1,q2,q3) = χ̃ (q1)χ̃ (q2)χ̃ (q3) = V −3
Z S(q1)S(q2)S(q3).

(11)
Again, at finite diffusion times, the peaks are broadened by a

Gaussian envelope, whose width decreases with increasing dif-
fusion time (see Appendix A). Nonzero values of E3(q1,q2,q3)
can only arise if the three vectors q1, q2, and q3 are vectors of
the reciprocal lattice.

D. Determination of the pore space function

The experimental aim is to measure χ̃(q) and to determine
χ (x) therewith. The magnitude of χ̃ (q) and the position of
the peaks can be obtained by measurements with Gq,−q(t)
and setting |χ̃ (q)| = |E2(q)|1/2. The problem of how to
determine the phase of χ̃(q) in diffusion MR has, however,
been unresolved so far.

1. Connection between the phases of the peaks

According to Eq. (11), the relationship between the phases
ψ(q1,q2,q3) = arg[E3(q1,q2,q3)] and φ(q) = arg[χ̃ (q)] is

ψ(q1,q2,q3) = φ(q1) + φ(q2) + φ(q3). (12)

The phase ψ(q1,q2,q3) is obtainable from measurements,
but the phases φ(qi) of χ̃ (qi) are only accessible as sums
corresponding to three reciprocal lattice points at which the
structure factor is not equal to zero. In matrix notation, this
relation can be stated as

ψ = Aφ, (13)

with the following definitions. The nth triple of probed q-
vectors, which shall be labeled with the natural number indices
un, vn, and wn, is qun

, qvn
, and qwn

. Using the short-hand
notation φ(qm) = φm and ψ(qun

,qvn
,qwn

) = ψn, the elements
of φ are φm, the elements of ψ are ψn, and the elements of the
matrix A are An,m = δm,un

+ δm,vn
+ δm,wn

. It should be noted
that A must fulfill the demand that the system of equations
defined by Eq. (13) must be uniquely solvable (except for
lattice shifts; see Sec. II D2), which is, figuratively, equivalent
to the demand that no disconnected set of q-vectors qun

, qvn
,

and qwn
exist. Otherwise the proposed approach cannot be

used.
The task is to invert this system of equations and to

determine φ.

2. Fixing of phases of initial peaks

Equation (13) does not uniquely define the reconstructed
lattice image, since the experimental information is obtained
by means of a diffusion experiment, which detects displace-
ments, but is blind to absolute positions. Consequently, the
actual position of the lattice cannot be determined and one
must restrain oneself to reconstruct an image of undefined
absolute position. This freedom in shifting the reconstructed
image along one direction is equivalent to the freedom of
adding an arbitrary linear phase in q-space. Thus, when solving
Eq. (13), an additional modulation by an arbitrary linear phase
may be chosen along each axis of q space, i.e., for example,
along q1, q2 in two dimensions; and along q1, q2, q3 in three
dimensions with linearly independent q-vectors. Therefore,
in two dimensions, the phases of χ̃ (q) at the central peak at
q1 = 0 and at two further peaks at q2 and q3, with q2 not
parallel to q3, can be chosen arbitrarily, since setting these
phases merely corresponds to shifting the reconstructed image.
Accordingly, in three dimensions, the phases of χ̃(q) at the
central peak at q1 = 0 and of three further peaks at q2, q3,
and q4 can be chosen arbitrarily. A straightforward approach
is to set these phases to zero, i.e., φ1 = φ2 = φ3 = 0 in two
dimensions. In this article, it is assumed that χ (x) is real and
hence χ̃ (−q) = χ̃∗(q). Accordingly, the phases φ at −q2 and
−q3 are equal to zero as well.

3. Determination of the peak phases

A complication in inverting Eq. (13) arises from the fact
that phases are only detectable for modulus 2π , such that a
straightforward inversion, e.g., by means of the pseudoinverse
of A, is in general not successful. An alternative straightfor-
ward approach to solve Eq. (13) is to minimize

arg(exp(i(ψ − Aφ)))2. (14)

4. k-Space lattice imaging

Using the gradient profile Gk(t), the phase that a particle
resting at position x obtains is ϕ = −k · x. Diffusion is
irrelevant here, since it is assumed that only one gradient pulse
of infinitesimal duration is applied when using Gk(t). The
corresponding signal attenuation is E1(k) = exp(−ik · x) =
χ̃ (k). E1(k) is only unequal to zero at the reciprocal lattice
points, for which χ̃(k) is unequal to zero. Thus, for a perfect
lattice, χ̃ (k) can be directly obtained by applying k-vectors that
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hit the Bragg peaks. This approach can be considered to be a
special version of conventional magnetic resonance imaging,
where the spacing between the sampled k-vectors is adapted to
the sample. This adaption makes the therefrom resulting field
of view equal to the spacing of the lattice cells. An alternative
interpretation of this experiment in position space is that the
field of view is adapted such that the wrapping artifacts of
conventional magnetic resonance imaging phase encoding are
adjusted such that the images of all neighboring unit cells add
up coherently.

If lattice defects are present, the global nature of this
approach obscures the information about χ̃(k). Say that
dislocations are present introducing N shifts xshift,n with n ∈
{1, . . . , N} of different subparts of the lattice. Then the signal
attenuation becomes E1(k) = ∑N

n=1 χ̃n(k) exp(−ik · xshift,n)
with χ̃n(k) corresponding to the Fourier transform of
the nth lattice subpart χn(x). The exponential factors
exp(−ik · xshift,n) eventually can lead to a complete vanishing
of E1(k) at k 
= 0 and then this direct imaging approach
becomes unfeasible.

Diffusion lattice imaging tends to behave differently in this
situation, because particles will usually only explore the nearby
unit cells, but not the complete lattice. In this case, the particles
will at most traverse a few dislocations. Relative to the unit
cell, where the considered particle starts, the dislocation xshift,n

can therefore be assumed to be small. Otherwise the initial
assumption that one deals with continuous lattices would not
be valid. In this case, exp(−ik · xshift,n) ≈ 1 and hence the
approach as described in Secs. II D1–II D3 can still be applied
with expectedly reasonable accuracy.

III. METHODS

A. Monte Carlo simulations

Monte Carlo simulations were performed using in-house
developed Monte Carlo code, which was implemented in
MATLAB (MathWorks, Natick, MA).

A random walk in two two-dimensional periodic lattices
was simulated. The lattices were a hexagonal lattice of
cylinders [Fig. 2(a)] and a rectangular lattice of triangles
[Fig. 2(b)], which resembles a saw tooth function in the x

and y directions. The NMR-visible medium was assumed to
be diffusing between the cylinders or triangles, which form the
solid matrix inaccessible to the diffusing particles. The separa-
tion of adjacent unit cells was Lx + dLx in the x direction and
Ly + dLy in the y direction. For the rectangular lattice, Lx = 1
and Ly = 1. For the hexagonal lattice Lx = 1 and Ly = √

3.
dLx and dLy are random variables distributed according to a
Gaussian function with widths σLx

and σLy
. Two cases were

considered: firstly, a perfect lattice with σLx
= σLy

= 0 and,
secondly, an imperfect lattice with σLx

= 0.1 and σLy
= 0.1.

An array of 105 × 105 cylinders or triangles was generated
once and then used for all random walkers. The initial particle
position was generated randomly, but had to stay 50 cylinders
or triangles apart from the boundary to avoid particles leaving
the defined lattice during the random walk. The radius of the
cylinders was 0.48. The length of the short triangle edges is
0.96. Thus, there is a separation between the restricting barriers
so that the spins can diffuse in the whole lattice.

(a)

(b)

FIG. 2. The lattices used in the Monte Carlo simulations. (a) A
hexagonal lattice of solid cylinders. The particles may only reside in
the white region, and not within the cylinders. (b) A rectangular lattice
of isosceles triangles. As for the cylinders, the random walkers can
only access the area between the triangles. For the nonperfect lattice,
dLxi and dLyi are obtained from the Mersenne random number
generator to vary the locations of the diffusion restrictions.

Each random step is simulated as follows. A random dis-
placement distributed equally in the interval [−√

3dr;
√

3dr],
which results in an average square root displacement for one
step of dr , is generated with a Mersenne random number
generator [58] in the x and in y directions, respectively. The
random step is only accepted if the particle does not end up in
the solid matrix. Otherwise new random steps are generated
until the particle ends up in the space that is not covered by
the solid matrix.

The following parameters were used: 5 × 106 random
walkers, T = 3, number of time steps Nstep = 2.4 × 105 per
time unit, step duration τ ≈ 4.2 × 10−6, and step length
dr = √

2τ ≈ 2.9 × 10−3.
The particle positions at times 0, T/2, and T were stored

in a data file. The particle positions were used to calculate the
signal attenuations E1(q), E2(q), and E3(q1,q2,q3) at T = 3
in MATLAB. Code that reproduces the figures is provided as
Supplemental Material [59].

B. Reconstruction of the lattice images

Figure 3 shows the reciprocal lattice points that were used
for the reconstruction for the cylinder lattice [Fig. 3(a), 31
points] and for the triangle lattice [Fig. 3(b), 13 points]. Here,
it is assumed that the position of the peaks is known a priori.
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(a)

(b)

FIG. 3. Points of the reciprocal lattice that were used in the
reconstruction for (a) the cylinder lattice and (b) the triangle lattice.
In (a), the spacing between points is 2π ≈ 6.28 along the x direction
and 4π/

√
3 ≈ 7.26 along the y direction. In (b), the spacing is 2π

along both directions.

In experiments, one would determine the position of the peaks
by measurements of E2(q).

For the cylinder lattice, the phases φ at the peaks 16, 20,
and 21 were set to zero, which inflicts that the phases φ

at the peaks 11 and 12 are also zero due to the condition
χ̃(q) = χ̃∗(−q). For the triangle lattice, the phases φ at the
peaks 7, 8, and 10 were set to zero, which inflicts that also the
phases φ at the peaks 4 and 6 equal zero. The indices un, vn,
and wn of the q-vector triples qun

, qvn
, and qwn

used for the
reconstruction are stated in Table I for the cylinder lattice and in
Table II for the triangle lattice. These q-vector triples represent
one particular example and other combinations are possible.
φ was determined using the simulation data by minimizing
arg(exp(i(ψ − Aφ)))2 + φ2

0 with the Quasi-Newton method
in MATLAB and φ = 1 and φ0 = 0 were set as initial values for
both lattices. φ0 is a vector containing the phases of the peaks
that shall have zero phase, i.e., φ0 = (φ11,φ12,φ16,φ20,φ21)T

and φ0 = (φ4,φ6,φ7,φ8,φ10)T for the cylinder lattice and
triangle lattice, respectively.

Images I (x) of the lattices were reconstructed with an
image matrix of 300 × 300 and image dimensions of 3 × 3 by
computing I (x) = ∑

n |E2(qn)|1/2exp(iφn) exp(ix · qn) with

TABLE I. Indices of sampled q-vector triples for the cylinder
lattice.

n = un vn wn

1 26 26
2 21 26
3 20 26
4 22 22
5 22 21
6 20 21
7 19 20
8 19 19
9 17 22
10 17 21
11 17 20
12 15 21
13 20 15
14 19 15
15 12 21
17 11 20
18 13 17
19 12 17
20 11 17
21 15 12
22 11 15
23 10 15
24 13 13
25 12 13
26 11 12
27 10 11
28 10 10
29 12 6
30 6 11
31 6 6

n ranging from 1 to 31 for the cylinder lattice, and n

ranging from 1 to 13 for the triangle lattice. For compari-
son, a k-space-based image was computed by Ik−space(x) =∑

n E1(qn) exp(ix · qn).

IV. RESULTS OF SIMULATIONS

A. Scatter plots

Figure 4 visualizes the particle distributions at time T = 0
[Figs. 4(a) and 4(b)] and T = 3 [Figs. 4(c) and 4(d)] that

TABLE II. Indices of sampled q-vector triples for the triangle
lattice.

n un vn wn

1 12 4 4
2 2 10 10
3 5 8 8
4 9 6 6
5 13 3 3
6 1 11 11
7 11 4 6
8 3 10 8
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(a) (b)

(c) (d)

FIG. 4. Particle distributions. Left column: hexagonal lattice
of solid cylinders. Right column: rectangular lattice of isosceles
triangles. (a,b) Starting positions in initial unit cell. (c,d) Particle
positions at T = 3. Five thousand of the 5 × 106 particles are shown;
σLx

and σLy
are zero.

were obtained by the Monte Carlo simulations. The particle
positions (xi, yi) in their initial unit cell are shown in Figs. 4(a)
and 4(b). Owing to the diffusion process, they distribute over
the lattice; in Figs. 4(c) and 4(d), the final particle positions
(xf, yf ) with respect to their initial unit cell are plotted.

B. q-Space spectra

Figure 5 shows |E2(q)|1/2 for the hexagonal cylinder array
[Fig. 5(a)] and the rectangular array of triangles [Fig. 5(b)]
obtained using the Monte Carlo simulations. Due to the
periodicity of χ (x), χ̃ (q) is zero except for certain q values,
where Dirac delta function peaks arise, which are visible in
Fig. 5, and which are broadened due to the finite diffusion time
(see Appendix A).

FIG. 5. |E2(q)|1/2 for the hexagonal cylinder lattice (a) and the
rectangular lattice of triangles (b) for |qx | � 10π and |qy | � 10π ,
where the x direction is left-right in the image and σLx and σLy are
zero. Owing to the periodicity of the lattice, signal peaks arise at
certain q values, which is analogous to diffraction experiments.

(a) (b)

(c) (d)

FIG. 6. Reconstructed lattice images. (a,b) Perfect lattice with
σLx = 0 and σLy = 0. (c,d) Imperfect lattice with σLx = 0.1 and
σLy = 0.1. (a,c) The images are reconstructed with conventional
magnetic resonance imaging. (b,d) The images are reconstructed with
the diffusion lattice imaging approach. The structural information
in (c) is lost, because the signal at the peaks vanishes at k 
= 0 as
described in Sec. II D4 and only the signal peak at k = 0 survives. The
image in (c) is thus essentially the Fourier transform of δ(x), which
equals unity. This results in a white area with very faint structures,
which are not related to the matrix structure.

Figure 6 shows the magnitude of the reconstructed images
for the hexagonal cylinder array.

In the top row [Figs. 6(a) and 6(b)], the lattice was “perfect”
with σLx and σLy set to zero. Then, the k-space-based images
reconstructed from E1(k) [Fig. 6(a)] and those reconstructed
using diffusion lattice imaging [Fig. 6(b)] yield identical
results. In both cases, the structure of the lattice is clearly
appreciable, although smearing effects are visible owing to
the low number of used signal peaks. In the bottom row
[Figs. 6(c) and 6(d)], the lattice is nonperfect with σLx =
0.1 and σLy = 0.1. In this case, the k-space-based image
reconstruction cannot resolve the lattice [Fig. 6(c)], while
diffusion lattice imaging still yields an image of decent quality
with a slightly increased smearing [Fig. 6(d)]. In Fig. 6(c), the
reconstructed image has an almost constant intensity. Here,
all peaks except for the central peak vanish due to dephasing
caused by the nonperfect lattice (see Sec. II D4). Hence the
image is essentially the Fourier transform of δ(x), which equals
unity. In real experiments, the lattice is presumably not perfect
and thus only diffusion lattice imaging can resolve it. Figure 7
shows the corresponding images for the rectangular lattice of
triangles, where the same effects as in Fig. 6 are visible.

V. DISCUSSION

In this work, an approach was introduced that enables the
unambiguous reconstruction of periodic lattices with NMR-
based diffusion experiments. It has been well known since the
early 1990s [1,52–54,60] that the magnitude spectrum E2(q),
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(a) (b)

(c) (d)

FIG. 7. Reconstructed lattice images. (a,b) Perfect lattice with
σLx = 0 and σLy = 0. (c,d) Imperfect lattice with σLx = 0.1 and
σLy = 0.1. (a,c) The images are reconstructed with conventional
magnetic resonance imaging. (b,d) The images are reconstructed
with the diffusion lattice imaging approach. As in Fig. 6, the matrix
structure cannot be recovered in (c) due to the variations of the lattice
spacing resulting in a mainly white image.

and thus |χ̃ (q)|, could be obtained for these structures, but how
to obtain the phase information was elusive.

This problem is closely related to the question of whether
NMR-based diffusion experiments might be suited to uniquely
reconstruct closed pores hindering the diffusion process. As
for open periodic lattices, it had been known for a long
time that |χ (q)| could be obtained [1,52–54,60] but, again,
it had not been clear how to extract the phase information.
For closed pores, this problem was solved in a recent series
of articles, where two distinct approaches were presented
that are based on two different classes of temporal gradient
profiles. Firstly, the class of long-narrow gradient profiles can
be used [38,39,44,45]. Using these profiles, the obtained signal
becomes the Fourier transform of the pore space function
of the average pore in the sample, thus allowing one to
reconstruct pore shape distributions. Secondly, an iterative
approach was introduced using the class of narrow-only
gradient profiles, which consist only of short gradient pulses
[40–43,49–51,61]. This narrow-only class provides better
convergence properties to the long-time limit, but if the sample
contains a distribution of pore shapes, it cannot be applied
straightforwardly [41,43,48].

The work at hand generalizes the latter approach of
narrow-only gradient profiles, so that it becomes applicable to
open periodic lattices. The application to lattices comes with
certain complications, which are not present for closed pores.
In particular, χ̃(q) and the resulting NMR signal of closed
pores are continuous, while both have discrete peaks at certain
q vectors for connected periodic lattices. This entails that the
q vectors have to be adjusted properly for periodic lattices to
hit the peaks, especially for the three-gradient measurement to
obtain the phases. The experimental application of the correct
q vectors and the reconstruction thus may become rather

cumbersome, but we are not aware of a more direct or general
approach. For example, the long-narrow gradient profile,
which is so successful in unveiling closed pore shapes, does
not yield the necessary information to reconstruct connected
lattices (see Appendix B).

The phase problem is ubiquitously present in physics, and in
particular in x-ray crystallography, where several approaches
have been developed to solve it (see, e.g., the reviews [62–64]).
On the one hand, techniques like molecular replacement,
isomorphous replacement, anomalous dispersion, and multiple
wavelength anomalous diffraction make use of physical prop-
erties of the sample, e.g., by using K edges or by investigating
physically altered crystals. On the other hand, direct methods
like the “Shake-and-Bake” algorithm aim at resolving the
crystal structure directly. For structures containing as many
as 1000 nonproton atoms, these direct methods work well
such that the phase problem can mainly be regarded as solved
in this regime. Another interesting approach is the multibeam
diffraction technique [65], where peaks of different beams are
superimposed yielding information about their relative phase
information similarly to Eq. (12). As in NMR-based diffusion
lattice imaging, the coincidence of peaks must be properly
adjusted following this approach.

Concerning the practical impact of NMR-based diffusion
lattice imaging, one must admit that, unlike in crystallography,
there are few real systems that are connected, periodic, and
of major interest to researchers relying on NMR-diffusion
experiments. One important aspect is that one is restricted
to length scales in the micrometer range for water diffusion,
because the gradient coils available nowadays do not permit
the application of stronger gradients and thus of higher q

values, which would correspond to shorter length scales.
Thus diffusion lattice imaging of molecular crystals is not
feasible. Nonetheless, there are numerous publications dealing
with NMR-based diffusion experiments in periodic domains
(e.g. [60,66–71]), because these systems are rather easy to
handle mathematically while they can still provide physical
insights. Thus, we consider the findings presented here to be
foremost of theoretical interest, which, however—as it is often
in physics—may pave the way to applications to more complex
systems.

The open question at this point is how much information
can be obtained in nonperiodic open domains. Any advance in
this regard would be highly valuable. One might ask a general
question: If the domain is random, is it still useful to think
about acquiring NMR-based diffusion images of any kind?
Definitely, one can construct domains that are “too random,”
but there is a large class of domains that might have reasonable
properties in this regard. Regarding impermeable domains,
consider, for example, the following setup. A domain is open,
but many solid grains are present, which may be of equal or of
varying shape, and which reside at random positions. Diffusion
tensor fiber phantoms as described, e.g., in [71–74] are an
example for such domains. It would be interesting to acquire
an image of these grains. However, if the lattice periodicity is
lost, the signal peaks tend to vanish, and it is unclear at this
stage how an image of the grains can be retrieved. Moreover,
it has been recently pointed out that diffusion pore imaging
techniques that rely on short gradient pulses do not yield
the arithmetically averaged pore image, because the average
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of the product is not equal to the product of the averages
[41,43,48]. The same holds true for diffusion lattice imaging.
Even if the grains are aligned perfectly periodically, one cannot
straightforwardly measure an average grain if the grains are
shaped differently. One presumably must restrict oneself to
measuring “average structure factors” (see p. 336 of [55]).

For permeable boundaries, the task is even harder. Consider,
for example, the typical setup found in tissue. The cell
membrane is very thin, and it seems unfeasible to treat the
membrane as a solid matrix and make an image of this
matrix. Thus peaks, as they appear in Fig. 5, cannot be
present, as they basically describe the void spaces of the
pore space function. Thus one must rely on the restricting
properties of the membrane. As the diffusion pore imaging
and lattice imaging approaches presented so far all require
that the diffusion process is in the long-time limit, intra- and
extracellular compartments are mixed up and are not separable
any more. It is challenging to retrieve the information about
the cell shape in this scenario.

In principle, periodic lattices can be imaged with con-
ventional MR imaging as described in Sec. II D4. Slight
imperfections of the lattice prevent this approach, however,
from being successful. Diffusion lattice imaging solves this
problem for a wide range of crystal imperfections such as
random translations. One must, however, be aware of the
fact that lattice imperfections that produce global rotations
are not intrinsically compensated by diffusion lattice imaging
and thus the reconstruction becomes difficult for such lattice
imperfections.

In conclusion, an approach has been proposed to reconstruct
the shape of periodic lattices with NMR-based diffusion
experiments. This is a report on an unambiguous structure
determination with this technique for domains that are not
completely closed.
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APPENDIX A: GAUSSIAN ENVELOPE MODEL
AND LINEWIDTH

One reasonable approach to describe the particle distribu-
tion at large but finite diffusion times is to use a Gaussian
envelope model [56,57]:

P (x2,x1,T → large) ≈ χ (x1)χ (x2)fGauß(x2 − x1,T ).
(A1)

In two dimensions, the elements of the covariance matrix
 associated to fGauß(x2 − x1,T ) are labeled as

 =
(

σ 2
xx σ 2

xy

σ 2
xy σ 2

yy

)
. (A2)

The simulated covariance matrices at T = 3 were

O =
(

2.714 0.005
0.005 2.685

)
(A3)

for the hexagonal array of cylinders, and

� =
(

2.264 0.646
0.646 2.264

)
(A4)

for the rectangular lattice of triangles (see also Appendix C).
Using the Gaussian envelope approach, Eq. (11) becomes

E3(q1,q2,q3) ≈
∫ ∫ ∫

dx1dx2dx3
χ (x1)

V
e−iq1·x1

×χ (x2)fGauß(x2 − x1,T /2)e−iq2·x2

×χ (x3)fGauß(x3 − x2,T /2) e−iq3·x3 , (A5)

with the integrals ranging over the whole lattice. It is assumed
that one can distinguish three distinct length scales. One scale
is defined by the lattice spacing. A larger scale is defined
by the size of the Gaussian envelope, which should span
many lattice cells and is responsible for the broadening of
the peaks of E2 and E3. An even larger scale corresponds to
the overall sample size. In real systems, this scale is assumed
to be unreachable for diffusing molecules. Thus, although the
sample or crystallite size defines the width of the Bragg’s
peak in x-ray diffraction experiments, it is assumed to be
irrelevant here. The peak width is determined by the size of
the Gaussian envelope of the diffusion propagator as shown
below. It should be noted that the process is assumed to be
time invariant; i.e., fGauß(x2 − x1,T /2) is the same function
as fGauß(x3 − x2,T /2).

Assume that all particles start in the same initial unit cell of
a periodic open domain. This unit cell shall contain the origin
x = 0 of the coordinate system. The pore space function of
the unit cell shall be labeled χ0(x1), which is identical to
χ (x1) in the initial unit cell and zero elsewhere. The resulting
signal attenuation is the same as for arbitrary starting points
distributed in the whole lattice, since ϕ is invariant under
translation owing to the rephasing condition. Therefore, in
the integration in Eq. (A5), χ (x1) can be replaced by χ0(x1).
Then, the integrand only yields nonzero contributions for
the case if |x1| is smaller than the size of the unit cell.
Since, for sufficiently long T , fGauß(x2 − x1,T ) describes a
relatively broad particle distribution over many unit cells,
fGauß(x2 − x1,T ) ≈ fGauß(x2,T ), and one can approximate
Eq. (A5) by

E3(q1,q2,q3) ≈ χ̃0(q1)
∫∫

dx2dx3χ (x2)fGauß(x2,T /2)

×e−iq2·x2χ (x3)fGauß(x3 − x2,T /2) e−iq3·x3 ,

(A6)

where χ̃0(q) is the Fourier transform of χ0(x). One can express
Eq. (A6) as

E3(q1,q2,q3) ≈ χ̃0(q1)
∫∫

dx2dx3χ (x2)H (x2,x3,T /2)

×e−iq2·x2χ (x3)e−iq3·x3 , (A7)

with

H (x2,x3,T ) = fGauß(x2,T )fGauß(x3 − x2,T ). (A8)
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(a) (b)

(c) (d)

FIG. 8. Line broadening caused by finite diffusion time (T = 3) for the hexagonal lattice of cylinders [left column (a,c)] and for the cubic
lattice of triangles [right column (b,d)]. The peak at q = 0 is displayed. Simulated values (dots) are well approximated by the Gaussian envelope
model (line).

The Fourier transform of H (x2,x3,T ) is

H̃ (q2,q3,T ) = exp[−(q2 + q3)T

×(q2 + q3)/2 − qT
3 q3/2]. (A9)

Using the convolution theorem, the signal attenuation can
be written as

E3(q1,q2,q3) ≈ χ̃0(q1)χ̃ (q2)∗|q2
H̃ (q2,q3,T /2)∗|q3

χ̃ (q3),
(A10)

where ∗|q2 and ∗|q3 denote convolutions with respect to q2 and
q3, respectively. In the long-time limit, σ 2

xx and σ 2
yy become

large and H̃ (q2,q3,T /2) becomes narrow. Thus, the signal
attenuation is well approximated by

E3(q1,q2,q3) ≈ χ̃1(q1)χ̃(q2)χ̃(q3). (A11)

As for E3(q1,q2,q3), one finds the signal attenuation for
the two-gradient-pulse profile Gq,−q, (t):

E2(q) ≈ χ̃0(q)[f̃Gauß(q,T ) ∗ χ̃ (−q)], (A12)

where f̃Gauß(q,T ) = exp(−qT q/2) is the Fourier transform
of fGauß(x,T ). This equation differs slightly from the one given
by Callghan (Eq. (7.33) in [1] on page 392). In our notation,

Callaghan’s formula reads E2(q) ≈ |χ̃0(q)|2f̃Gauß(q − qpeak

T ), where qpeak denotes the peak position in q space. The
difference originates from the different use of the Gaussian
envelope model. Callaghan assumes that the hopping proba-
bility from pore to pore is Gaussian, while it is assumed here
that the particle displacement is Gaussian.

Now, an approximate formula for the line broadening at
q = 0 is provided. Using the definitions q1 = qv1, q2 = qv2,
and q3 = qv3 and using that χ̃0(q) ≈ 1 for small q, Eq. (A11)
becomes

E3(qv1,qv2,qv3) ≈ H̃ (qv2,qv3,T ) = exp

{
− q2

2

[
(v2 + v3)T

×(v2 + v3) + vT
3 v3

]}
. (A13)

Figure 8 visualizes the line broadening of the signal peak
at q = 0 for the two considered lattices. The line representing
the Gaussian envelope model and the simulated data (dots) are
in good agreement.

Interestingly, the line broadening of E3(q1,q2,q3) depends
on the time ordering of the peaks: For instance, the peak is
broader if the gradient pulse of double amplitude is applied in

032401-9
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(a) (b)

FIG. 9. Signal attenuation obtained with the long-narrow gradient
profile for the hexagonal cylinder lattice (a) and the rectangular lattice
of triangles (b) for |qx | � 10π and |qy | � 10π . σLx and σLy are zero
and the image matrix is of size 200 × 200.

between the two smaller gradient pulses compared to applying
it before or after them.

APPENDIX B: LONG-NARROW GRADIENTS

The long-narrow gradient profile Glong−narrow(t) =
γ −1q[T −1 − δ(t − T )], which is well suited to obtain diffu-
sion pore images of closed pores [38], cannot be used for
diffusion lattice imaging. This is visualized in Fig. 9, where
the long-narrow signal attenuation is plotted and where it is
apparent that peaks do not arise. Consequently, the lattice
cannot be reconstructed. This can be explained as follows.
During the first gradient, the particle obtains the phase that
corresponds to the phase of a particle that stays still at the
center of mass of the particle trajectory. The second gradient
yields a phase only depending on the trajectory end point.
In diffusion pore imaging, the center of mass of the first
trajectory converges towards the center of mass of the pore
thus enabling a sharp image reconstruction. In a connected
lattice, however, such a convergence does not take place; the
trajectory center of mass can be located anywhere, even inside
the solid matrix. Therefore, the distance between the center of
mass and the end point of the trajectory, which determines the
signal, is not directly related to the lattice structure. This broad
distribution of trajectory centers of mass leads to a large peak
broadening, which eventually obscures the peaks. Thus, for
open, well-connected pores, the approach’s success for closed
pores cannot be simply transferred, but new techniques have
to be employed.

FIG. 10. Long-time diffusion coeffiecient. The theoretical esti-
mate according to Eq. (C1) (lines) and Monte Carlo simulation results
(dots) are shown. The error bars at the dots are too small to be well
perceivable.

APPENDIX C: LONG-TIME DIFFUSION COEFFICIENT
IN THE HEXAGONAL ARRAY OF CYLINDERS

To estimate the linewidths for the cylinder lattice, the
classical findings of Lord Rayleigh for the rectangular array
of cylinders [75] can be extended to the case of a hexagonal
cylinder packing to find the effective diffusion coefficient D∞
in the long-time limit, which is related to  by  = 2D∞T in
the long-time limit:

D∞/D0 ≈ 1 − 2p
(
1 + p − 135

64
p6

π6 S
2
6

)−1

1 − p
, (C1)

where p is the packing density, i.e., the volume fraction of
the solid matrix, D0 is the free diffusion coefficient, and
Sn = ∑

m
=0,m′ 
=0 (m′ + im)−n, where the sum runs over all
cylinder positions for m and m′. For example, some possible
values for m and m′ are (1,0), (1,

√
3), (1/2,

√
3/2), and

(1/2, − √
3/2). Numerically we find S6 ≈ 5.8630. Figure 10

shows the long-time diffusion coefficients obtained with
Monte Carlo simulations and the prediction by Eq. (C1).
Although Eq. (C1) is a series expansion for small p, it is
remarkable that it is well valid for quite large packing densities.
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[4] K.-O. Lövblad, P. M. Jakob, Q. Chen, A. E. Baird, G. Schlaug,
S. Warach, and R. R. Edelman, Am. J. Neuroradiol. 19, 201
(1998).

[5] M. C. Roethke T. A. Kuder, T. H. Kuru, M. Fenchel, B. A.
Hadaschik, F. B. Laun, H.-P. Schlemmer, and B. Stieltjes, Invest.
Radiol. 50, 483 (2015).

[6] C. Lin, E. Itti, A. Luciani, C. Haioun, M. Meignan, and A.
Rahmouni, Cancer Imaging 10 (1A), S172 (2010).

[7] C. Lin, A. Luciani, E. Itti, T. El-Gnaoui, A. Vignaud, P.
Beaussart, S. J. Lin, K. Belhadj, P. Brugières, E. Evangelista, C.
Haioun, M. Meignan, and A. Rahmouni, Eur. Radiol. 20, 2027
(2010).

[8] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, K. Kaczynski,
Magn. Reson. Med. 53, 1432 (2005).

032401-10

http://www.ajnr.org/content/11/3/423.short
http://www.ajnr.org/content/19/2/201.full.pdf+html
http://dx.doi.org/10.1097/RLI.0000000000000155
http://dx.doi.org/10.1097/RLI.0000000000000155
http://dx.doi.org/10.1097/RLI.0000000000000155
http://dx.doi.org/10.1097/RLI.0000000000000155
http://dx.doi.org/10.1102/1470-7330.2010.9029
http://dx.doi.org/10.1102/1470-7330.2010.9029
http://dx.doi.org/10.1102/1470-7330.2010.9029
http://dx.doi.org/10.1102/1470-7330.2010.9029
http://dx.doi.org/10.1102/1470-7330.2010.9029
http://dx.doi.org/10.1007/s00330-010-1758-y
http://dx.doi.org/10.1007/s00330-010-1758-y
http://dx.doi.org/10.1007/s00330-010-1758-y
http://dx.doi.org/10.1007/s00330-010-1758-y
http://dx.doi.org/10.1002/mrm.20508
http://dx.doi.org/10.1002/mrm.20508
http://dx.doi.org/10.1002/mrm.20508
http://dx.doi.org/10.1002/mrm.20508


NMR-BASED DIFFUSION LATTICE IMAGING PHYSICAL REVIEW E 93, 032401 (2016)

[9] H. Lu, J. H. Jensen, A. Ramani, and J. A. Helpern, NMR Biomed.
19, 236 (2006).

[10] A. M. Marschar, T. A. Kuder, B. Stieltjes, A. M. Nagel, P.
Bachert, and F. B. Laun, J. Magn. Reson. Imaging 41, 1581
(2014).

[11] J. Veraart, D. H. J. Poot, W. Van Hecke, I. Blockx, A. Van der
Linden, M. Verhoye, and J. Sijbers, Magn. Reson. Med. 65, 138
(2011).

[12] T. A. Kuder, B. Stieltjes, P. Bachert, W. Semmler, and F. B.
Laun, Magn. Reson. Med. 67, 1401 (2012).

[13] D. Le Bihan, E. Breton, D. Lallemand, M. L. Aubin, J. Vignaud,
M. Laval-Jeantet, Radiology 168, 497 (1988).

[14] A. Luciani, A. Vignaud, M. Cavet, J. T. Nhieu, A. Mallat, L.
Ruel, A. Laurent, J. F. Deux, P. Brugieres, and A. Rahmouni,
Radiology 249, 891 (2008).

[15] A. Lemke, F. B. Laun, M. Klauss, T. J. Re, D. Simon, S.
Delorme, L. R. Schad, and B. Stieltjes, Invest. Radiol. 44, 769
(2009).

[16] A. Lemke, F. B. Laun, D. Simon, B. Stieltjes, and L. R. Schad,
Magn. Reson. Med. 64, 1580 (2010).

[17] A. Wetscherek, B. Stieltjes, and F. B. Laun, Magn. Reson. Med.
74, 410 (2015).

[18] S. Mori and P. C. van Zijl, NMR Biomed. 15, 468 (2002).
[19] R. Xue, P. C. van Zijl, B. J. Crain, M. Solaiyappan, and S. Mori.,

Magn. Reson. Med. 42, 1123 (1999).
[20] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi,

Magn. Reson. Med. 44, 625 (2000).
[21] B. Stieltjes, W. E.Kaufmann, P. C. van Zijl, K. Fredericksen, G.

D. Pearlson, M. Solaiyappan, and S. Mori, NeuroImage 14, 723
(2001).

[22] B. Stieltjes, R. M. Brunner, K. Fritzsche, and F. Laun, Diffusion
Tensor Imaging: Introduction and Atlas (Springer, Heidelberg,
Germany, 2012).

[23] P. F. Neher, F. B. Laun, B. Stieltjes, and K. H. Maier-Hein,
Magn. Reson. Med. 72, 1460 (2014).

[24] X. Chen, D. Weigel, O. Ganslandt, M. Buchfelder, and C.
Nimsky, NeuroImage 45, 286 (2009).

[25] J. Kärger, J. Caro, P. Cool, M. O. Coppens, D. Jones, F. Kapteijn,
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D’Asseler, J. Vlassenbroeck, K. Deblaere, E. Achten, and I.
Lemahieu, J. Magn. Reson. 190, 189 (2008).

[74] P. Pullens, A. Roebroeck, and R. Goebel, J. Magn. Reson.
Imaging 32, 482 (2010).

[75] L. Rayleigh, Philos. Mag., Ser. 5 34, 481 (1892).

032401-12

http://dx.doi.org/10.1103/PhysRevE.80.046701
http://dx.doi.org/10.1103/PhysRevE.80.046701
http://dx.doi.org/10.1103/PhysRevE.80.046701
http://dx.doi.org/10.1103/PhysRevE.80.046701
http://dx.doi.org/10.1016/j.mri.2008.08.011
http://dx.doi.org/10.1016/j.mri.2008.08.011
http://dx.doi.org/10.1016/j.mri.2008.08.011
http://dx.doi.org/10.1016/j.mri.2008.08.011
http://dx.doi.org/10.1002/mrm.22602
http://dx.doi.org/10.1002/mrm.22602
http://dx.doi.org/10.1002/mrm.22602
http://dx.doi.org/10.1002/mrm.22602
http://dx.doi.org/10.1016/j.jmr.2007.10.014
http://dx.doi.org/10.1016/j.jmr.2007.10.014
http://dx.doi.org/10.1016/j.jmr.2007.10.014
http://dx.doi.org/10.1016/j.jmr.2007.10.014
http://dx.doi.org/10.1002/jmri.22243
http://dx.doi.org/10.1002/jmri.22243
http://dx.doi.org/10.1002/jmri.22243
http://dx.doi.org/10.1002/jmri.22243
http://dx.doi.org/10.1080/14786449208620364
http://dx.doi.org/10.1080/14786449208620364
http://dx.doi.org/10.1080/14786449208620364
http://dx.doi.org/10.1080/14786449208620364



