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Outbreaks in susceptible-infected-removed epidemics with multiple seeds
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We study a susceptible-infected-removed (SIR) model with multiple seeds on a regular random graph. Many
researchers have studied the epidemic threshold of epidemic models above which a global outbreak can occur,
starting from an infinitesimal fraction of seeds. However, there have been few studies of epidemic models with
finite fractions of seeds. The aim of this paper is to clarify what happens in phase transitions in such cases. The
SIR model in networks exhibits two percolation transitions. We derive the percolation transition points for the
SIR model with multiple seeds to show that as the infection rate increases epidemic clusters generated from each
seed percolate before a single seed can induce a global outbreak.
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I. INTRODUCTION

The threat of infectious disease is becoming increasingly
conspicuous for modern society, wherein there is a large
amount of international travel all over the world. Understand-
ing how infectious diseases spread in our society is crucial to
the development of strategies for disease control. A mathemati-
cal model of infectious disease, called the susceptible-infected-
removed (SIR) model, was first applied with the assumption of
a well-mixed population for computation of the final numbers
of infected and eventually removed (or recovered) individuals
[1]. So far, many mathematical models of infectious diseases
have been proposed for understanding the spread of epidemics
and proposing strategies for disease control [2].

In recent years, many studies have been devoted to epidemic
models with a network structure of people [3]. Diseases spread
over the networks of physical contacts between individuals,
and the structure of real networks [4–7] has crucial effects on
this spread. For example, Moreno et al. [8] studied the SIR
model in a scale-free network having a degree distribution of
pk ∝ k−γ using a degree-based mean-field approach. Their
approximation clarified that epidemics can spread over the
network for any infection rate if γ � 3. In addition, many
analytical approaches for epidemic models with network
structures, such as the approximation onto a bond percolation
problem [9,10], the edge-based compartment model [11], the
effective degree approach [12], and the pair approximation
[13,14], have been proposed and have succeeded in describing
epidemic dynamics. Numerical simulations have revealed how
epidemics spread in more realistic situations. Also, several
strategies for disease control have been proposed on the
basis of the knowledge of epidemics on networks, e.g., target
immunization [15,16], acquaintance immunization [16–19],
and graph-partitioning immunization [20].

Most previous studies using SIR-type epidemic models
have assumed that the fraction of infection seeds is infinites-
imally small. In contrast, there have been few studies on
epidemic models with finite fractions of seeds. Miller [21]
considered the SIR model in networks with large initial
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conditions to resolve an apparent paradox in works assuming
an infinitesimal fraction of seeds. Hu et al. [22] numerically
studied how the positions of multiple seeds in a network
affect spreading behavior. Ji et al. [23] identified multiple
influential spreaders in real networks by ranking nodes in
disintegrated networks after random bond removals. What we
discuss here is a more fundamental, but almost overlooked
problem: How do epidemic models with finite fractions of
seeds undergo phase transitions? For SIR-type epidemics,
each infection seed creates an epidemic cluster of infected
individuals. Epidemic clusters generated by multiple seeds
will have global connectivity in some parameter regions even
though each seed may not have the potential to induce a global
outbreak there.

In this paper, we consider the SIR model in networks with
multiple seeds. In this case, the SIR model exhibits a kind
of percolation transition. An epidemic cluster grows from
each of multiple seeds. We regard the clusters so generated
as supernodes and study the percolation problem of these
supernodes. Indeed, we can analytically and numerically
obtain the percolation transition point of supernodes to show a
gap between this transition point and the epidemic threshold.
The existence of this gap indicates that the percolation
transition of epidemic clusters occurs before a single seed can
induce a global outbreak. Our result also shows the sensitivity
of the seed fraction on percolation transition points, i.e., that
a small seed fraction drastically reduces the critical infection
rate for the emergence of the infinite epidemic cluster.

II. MODEL

Let us give a brief review of the SIR model in a given
static network. Each node in the network takes one of three
states: susceptible, infected, and removed. The system evolves
as a continuous-time Markov process. As an initial-state
configuration, a fraction, ρ, of the nodes is randomly chosen
to be seeds and is initially infected, while other nodes are
susceptible. The infection rate is denoted by λ. When an
infected node is adjacent to a susceptible node, this susceptible
node gets infected with probability λ�t within a short time,
�t . Note that this probability is independently given by each of
the infected nodes so that the total infection rate at a node is just
proportional to the number of infected neighbors. An infected
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node becomes removed at a rate μ, i.e., with probability μ�t

within a short time �t , irrespective of the neighbors’ states.
Without loss of generality, we set μ = 1 unless otherwise
specified. The dynamics stops when no infected nodes exist in
the network.

Let us consider the limit ρ → 0. The SIR model exhibits
a phase transition at the epidemic threshold λ = λSIR

c when
λ increases from 0. Above λSIR

c , a single seed can induce
global outbreaks. In a global outbreak, a nonzero fraction of
nodes become infected and eventually removed. Below λSIR

c ,
the number of removed nodes is always negligible compared
with the total number of nodes. As already mentioned, we have
several approaches for obtaining λSIR

c (see the recent review
[3]); Newman approximated the SIR model in uncorrelated
networks by mapping onto a bond percolation problem (which
is called the SIR model with transmissibility) [10] and derived
λSIR

c as

λSIR
c = 〈k〉

〈k2〉 − 2〈k〉 , (1)

where 〈k〉 and 〈k2〉 are the first and the second moments
of the degree distribution, pk , respectively [24]. This result
indicates that, for a fat-tailed scale-free network whose degree
distribution obeys pk ∝ k−γ with γ � 3, a global outbreak
starting from an infinitesimal fraction of seeds occurs even for
an infinitesimal infection rate. As indicated in [25], mapping
onto a bond percolation problem does not give the exact
outbreak size or probability, but it does predict exactly the
epidemic threshold. Lindquist et al. [12] proposed an effective
degree approach for describing the time evolution of the
SIR dynamics using numerous ordinary differential equations
and derived the same epidemic threshold, (1). Miller [11]
introduced another approach by means of the edge-based
compartment model to enable accurate descriptions of the SIR
dynamics accurately with a few rate equations.

We can also describe the phase transition of the present
model in terms of percolation. In any final state, each node
takes either a susceptible or a removed state. We call the
connected components of removed nodes and susceptible
nodes the R components and the S components, respectively.
For the SIR model in networks with ρ � 0, we have two
percolation transition points, λc1 and λc2. When the number
of nodes, N , is much greater than 1, the mean fraction of the
largest R component, rmax(N ) = Rmax(N )/N , where Rmax(N )
is the mean size of the largest R component, changes from
0 to a nonzero value at the former point λc1. Note that
λc1 corresponds to λSIR

c in the limit ρ → 0 by definition.
Percolation analysis of an epidemic cluster starting from a
single seed has been used for numerical computations of
the epidemic threshold and critical properties [26,27]. The
latter point, λc2, is on the percolation of the S component
(also called the residual graph [28,29]) and is usually larger
than λc1. Above λc2, the network remaining after removal of
the R components is disintegrated such that the sizes of all
remaining components are finite. In other words, the mean
fraction of the largest S component, smax(N ) = Smax(N )/N ,
where Smax(N ) is the mean largest S-component size, is 0
(nonzero) for λ > λc2 (λ < λc2) when N � 1. Whether the
susceptible nodes are globally connected is important because

a second epidemic spread may occur in the remaining network
[28,30]. In [28], Newman analyzed this second transition
point of the SIR model with transmissibility in uncorrelated
networks with ρ → 0 to show that the transition point is
positive even when γ � 3. Valdez et al. [31] proposed a
new strategy for suppressing epidemics by regarding this
second transition point as a measure of the efficiency of a
mitigation or control strategy. If we regard the present model
as showing the propagation of an attack against a network,
such as a computer virus, λc2 is a measure of the robustness of
networks against such attacks [32,33]. Konno and the authors
numerically studied λc2 for correlated networks to show that
any positive or negative degree correlation makes networks
more robust [33].

To summarize, the system with a given value of ρ has
the following three regions: (i) the S-dominant phase, where
rmax = 0 and smax > 0 for λ < λc1; (ii) the coexisting phase,
where rmax > 0 and smax > 0 for λc1 < λ < λc2; and (iii) the
R-dominant phase, where rmax > 0 and smax = 0 for λ > λc2.
To investigate in detail the phase transitions of the SIR model
with a finite fraction of seeds, we focus on the z-regular random
graph (RRG). Our formulations discussed below are for the
RRG. The extension to degree-uncorrelated networks having
degree distribution p(k) may be straightforward, although
its execution will be cumbersome. At any rate, our findings
obtained from the RRG probably will be in common with other
networks. In Sec. IV D, we numerically study the outbreaks
induced by multiple seeds in finite-dimensional Euclidean
lattices.

III. TOTAL DENSITIES OF SUSCEPTIBLE
AND REMOVED NODES

To evaluate the time evolution of the SIR dynamics and the
total densities of the susceptible and removed nodes in the final
states, we consider the approximate master equations (AMEs)
[12,14]. Let sl,m(t), il,m(t), and rl,m(t) be the fractions of nodes
that are susceptible, infected, and removed, respectively, at
time t and have l susceptible and m infected neighbors. The
AMEs for the evolution of these variables are as follows (see
[12] for details):

ṡl,m = −λmsl,m + βsi
s [(l + 1)sl+1,m−1 − lsl,m]

+βir
s [(m + 1)sl,m+1 − msl,m], (2)

i̇l,m = λmsl,m − μil,m + βsi
i [(l + 1)il+1,m−1 − lil,m]

+βir
i [(m + 1)il,m+1 − mil,m], (3)

ṙl,m = μil,m + βsi
r [(l + 1)rl+1,m−1 − lrl,m]

+βir
r [(m + 1)rl,m+1 − mrl,m]. (4)

The transition rates of neighboring nodes are approximated as

βsi
s = λ

∑
l,m lmsl,m∑
l,m lsl,m

, βir
s = μ

∑
l,m lil,m∑
l,m lil,m

= μ, (5)

βsi
i = λ

∑
l,m m2sl,m∑
l,m msl,m

, βir
i = μ

∑
l,m mil,m∑
l,m mil,m

= μ, (6)
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(a) (b)

FIG. 1. Numerical results for the SIR model with ρ = 0.01 on the RRG: (a) total densities of the removed nodes r (open symbols) and
of the susceptible nodes s (filled symbols) and (b) susceptibility of the R components χR (open symbols) and of the S components χS (filled
symbols). The dashed and solid lines in (a) are drawn from the AMEs. In (b), the dotted vertical line represents λSIR

c , and the two dashed vertical
lines represent λc1 = 0.148 and λc2 = 0.615, which are given in Sec. IV.

βsi
r = λ

∑
l,m(k − l − m)msl,m∑
l,m(k − l − m)sl,m

, βir
r = μ, (7)

where the summations run over all 0 � l + m � k. To describe
the SIR dynamics with ρ > 0, we set the initial condition as

sl,m(0) = δk,l+m(1 − ρ)

(
k

l

)
(1 − ρ)lρm, (8)

il,m(0) = δk,l+mρ

(
k

l

)
(1 − ρ)lρm, (9)

rl,m(0) = 0. (10)

By numerical evaluation of the above equations, we obtain
the total densities

s(t) =
∑
l,m

sl,m(t), i(t) =
∑
l,m

il,m(t), r(t) =
∑
l,m

rl,m(t),

(11)

which satisfy the conservation law,

s(t) + i(t) + r(t) = 1, (12)

at any time t . Note that all variables other than sl,0 and rl,0

vanish in the limit t → ∞, and therefore i(∞) = 0.
To check the accuracy of the AME, we perform Monte

Carlo simulations for the SIR model on the RRG with z = 6.
In our simulations, we set μ = 1 and ρ = 0.01. The numbers
of nodes are N = 64 000, 128 000, 256 000, and 512 000.
The number of graph realizations is 100, and the number
of trials on each graph is 500. Figure 1(a) shows the AME
result (line) and the Monte Carlo result (symbols) of the total
densities of susceptible and removed nodes, s and r , in the
final states. We find that data from the AMEs wholly coincide
with those from the Monte Carlo simulations.

Equations (2)–(11) do not predict any transition point for
ρ > 0 because r(∞) � ρ > 0, although it is possible to derive
the epidemic threshold λSIR

c = μ/(z − 2) for the RRG with de-
gree z [12] by considering the limit ρ → 0 (see Appendix A).
In contrast, the Monte Carlo simulations suggest that the model
actually exhibits phase transitions. In Fig. 1(b), we plot the

R and S susceptibilities (which we call the susceptibility by
analogy with the magnetic susceptibility in spin systems) χR

and χS. Here, χR (χS) is defined as the mean size of all R
components (S components) except the largest one [34]. We
find that χR and χS have peaks at λc1 and λc2, respectively,
implying two phase transitions. Moreover, these points are
clearly different from λSIR

c . In particular, the gap between
λc1 and λSIR

c indicates that as the infection rate increases,
the epidemic clusters generated from each seed percolate
before a single seed can induce a global outbreak. In the
next section, we derive these percolation transition points for
0 < ρ < 1.

IV. PERCOLATION TRANSITIONS OF THE SIR
DYNAMICS WITH MULTIPLE SEEDS

A. Derivation of λc2

To derive λc2, we consider the percolation of the S
components. In [28], Newman analyzed the percolation of the
S components using generating functions. His method gives
λc2 for the SIR model in uncorrelated networks but assumes a
single seed. By combining the AMEs and Newman’s method,
we obtain smax and λc2 for the case with 0 < ρ < 1.

Let us consider the S components in a typical final state for
the SIR model on an infinitely large RRG with ρ > 0. In the
previous section, we already have the probability sl,0(∞) that
a randomly chosen node is susceptible and has l susceptible
neighbors [sl,m(∞) = 0 for m �= 0]. Using sl,0(∞), we obtain
the degree distribution of the S components as

ps
l = 1

s
sl,0(∞), (13)

where the denominator s = ∑k
l=0 sl,0 is the prior probability

of being susceptible. The corresponding generating function,
F s

0 (x), is given by

F s
0 (x) =

k∑
l=0

ps
l x

l. (14)

Here we assume that this subnetwork is degree uncorrelated.
We consider the excess degree, which is the degree of the
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(a) (b)
(c)

FIG. 2. (a) Fraction of the largest S component, smax, as a function of λ. Symbols were obtained from Monte Carlo simulations. The solid
line was drawn by evaluating Eq. (17). (b) Numerical results of the fractal exponent of the largest S component, ψS. Data with several values
of N have a crossing point at λc2 	 0.615 and ψc

S 	 2/3. (c) Finite-size scaling for Smax around λc2. Here we set ψc
S = 2/3 and β = 1, which

means that the transition at λc2 belongs to the mean-field universality class.

node reached by following a randomly chosen link minus
1 [5]. The excess degree distribution, qs

l , which is the
probability that a randomly chosen link from S components
points to a (susceptible) node with excess degree l, is
(l + 1)ps

l+1/
∑

l′(l
′ + 1)ps

l′+1. Then the generating function for
the excess degree distribution of the S components is

F s
1 (x) = F s

0
′(x)

F s
0

′(1)
, (15)

and the mean excess degree is given by F s
1

′(1). By arguing
the emergence of an infinitely connected component of this
subnetwork (similar to [5]), we easily find that there is an
infinite S component if F s

1
′(1) > 1, and thus, the percolation

transition point of the S component, λc2, satisfies

F s
1

′(1) = 1. (16)

Following [28], we also have the mean fraction of the largest
S component, smax, as

smax = s
[
1 − F s

0 (v)
]
, (17)

where v is the solution of

v = F s
1 (v). (18)

We check these estimates using Monte Carlo simulations.
Figure 2(a) shows the order parameter, i.e., the fraction of
the largest S component, smax(N ), for RRGs with several N ’s.
We find that the numerical results coincide with the analytical
line below λc2 and tend to 0 with increasing N above λc2. To
numerically obtain the transition point, λc2, we introduce the
fractal exponent [35]. The fractal exponent of the largest S
component is defined and approximated as

ψS = d ln Smax(N )

d ln N
≈ ln Smax(N ) − ln Smax(N/2)

ln N − ln(N/2)
. (19)

In the limit N → ∞, ψS = 1 for λ < λc2 and ψS = 0 for
λ > λc2, because the largest S-component size should be
proportional to N for λ < λc2 and finite for λ > λc2. As shown
in Fig. 2(b), numerical results for ψS approach ψS = 1(ψS =
0) for λ < λc2 (λ > λc2) as N increases and have a crossing
point at λc2. From numerical data, we have ψc

S ≡ ψS(λc2) 	
2/3 at λc2 	 0.615, which coincides well with our analytical
estimate (vertical line in Fig. 2).

This observation is also confirmed by a finite-size scaling.
As in [35], we assume a scaling form for Smax(N ) as

Smax(λ,N ) = Nψc
S fs

[
N (�λ)β/(1−ψc

S)], (20)

where �λ = |λc2 − λ|, β is the critical exponent related to the
order parameter, smax ∝ �λβ , and

fs(x) ∝
{

const for x  1,

x1−ψc
S for x � 1.

(21)

In Fig. 2(c), our scaling shows a nice collapse with ψc
S = 2/3

and β = 1. Because ψc
S is related to another critical exponent

τ as ψc
S = (τ − 1)−1[35], where τ is associated with the

distribution function of S components nS(s) at the critical
point, nS(s) ∝ s−τ , these exponents mean that the percolation
transition of the S components actually occurs at λc2 and
belongs to the mean-field universality class such that β = 1
and τ = 5/2 [36].

B. Derivation of λc1

To derive λc1 for the SIR model with multiple seeds,
we need to calculate the connectivity of the R components
generated by each seed. We should note that a percolation
analysis, as in the previous subsection, using the degree
distribution of the R components r�,0/r is not applicable to
this case, because such an analysis ignores the condition that
each R component is connected. To consider the connectivity
of numerous R components, we use the following procedure:
(i) We first calculate the probability, Pn, that the size of the R
component generated by a single seed is n. (ii) For the case of
ρ > 0, the system has numerous R components proportional to
ρ. We regard each R component as a supernode. The number
of nodes confined in a supernode obeys the distribution
Pn, and its degree kn is given accordingly. (iii) Then we
consider a site percolation problem of supernodes. The
first percolation point, λc1, is given as the critical point
where the infinitely connected component of the supernodes
appears.

In Appendix B, we evaluate the mean size of the R
component starting from a single seed, 〈n〉(= ∑

n Pnn), and
the corresponding mean square size, 〈n2〉 = (

∑
n Pnn

2), by
using generating functions. Then we consider the case of
ρ > 0. Below λc1, we naturally assume that the mean size 〈n〉
is so small that each R component is a tree [37] and that any
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R-component

(a) (b)

supernode

FIG. 3. Example of (a) an R component and (b) the corresponding
supernode. In this example, the R component, of size n = 6 on a 3-
RRG, has n − 1 = 5 edges inside (solid lines) and zn − 2(n − 1) = 8
edges attached to susceptible nodes (dashed lines). Thus, the degree
of the supernode is kn = 8.

overlaps between the R components are negligible so that the
total fraction of the R components can be evaluated as ρ〈n〉
[38], which should necessarily be less than 1. Then we can
determine the creation process of the infinite R component
by regarding each R component of size n as a supernode
whose degree depends on n (see Fig. 3) and considering the
percolation problem of these supernodes.

The density of susceptible nodes, s, is just 1 minus the
density of the removed nodes, ρ〈n〉:

s = 1 − ρ〈n〉. (22)

Then the probability p̃ that the node reached by following a
randomly chosen link is a component of a supernode is

p̃ = ρ〈kn〉
ρ〈kn〉 + zs

, (23)

where kn is the number of external links of the R component
(the degree of the supernode) having size n and is given by

kn = (z − 2)n + 2. (24)

Equation (24) holds since each R component is a tree with
the number of edges equal to the number of nodes minus 1.
The mean branching ratio of supernodes, B, is evaluated by
multiplying p̃ by the mean excess degree of supernodes:

B = p̃
〈kn(kn − 1)〉

〈kn〉 = ρ〈kn(kn − 1)〉
ρ〈kn〉 + zs

. (25)

The percolation of supernodes takes place when B � 1, and
thus the transition point is given by B = 1. That is, λc1

satisfies
z

ρ
= 〈kn(kn − 2)〉 + z〈n〉

= z2
2〈n2〉 + (3z − 4)〈n〉, (26)

where 〈n〉 and 〈n2〉 are functions of λ.
We can show that these moments diverge as 〈n〉 ∼ (λSIR

c −
λ)−1 and 〈n2〉 ∼ (λSIR

c − λ)−3 when λ approaches λSIR
c from

below (see Appendix B), and therefore λc1 → λSIR
c as ρ → 0

like

λSIR
c − λc1 ∼ ρ1/3. (27)

Thus, a small increase in ρ drastically reduces λc1 from λSIR
c .

We approximately have the fraction of the largest R
component, rmax, by applying a procedure similar to the
derivation of smax to the connected components of supernodes
(see Appendix C). This approximation may predict a rise of the
order parameter rmax around λc1 but inherently overestimates
rmax for λ > λc1 due to the overlaps between the R com-
ponents generated from each seed being non-negligible [see
Fig. 4(a)].

We also check our estimate by comparison with Monte
Carlo simulations. In Figs. 4(a) and 4(b), we plot the Monte
Carlo results for the order parameter, rmax(N ), and the corre-
sponding fractal exponent, ψR(N ) ≡ d ln rmax(N )/d ln N . In a
manner similar to that in the previous subsection, we find that
the crossing point of ψR is at our estimate of λc1, λc1 	 0.148.
We also find a good scaling result for Rmax(N ) using ψc

R ≡
ψR(λc1) = 2/3, β = 1, and the estimated λc1 [Fig. 4 (c)], sup-
porting the validity of our estimate and indicating that the per-
colation transition at λc1 belongs to the mean-field universality
class.

C. Phase diagram

We analytically and numerically evaluate λc1 and λc2 for
several values of ρ. In Fig. 5, we have the phase diagram of
(ρ,λ) space. We find that our estimates of λc1 and λc2 perfectly
match the Monte Carlo results. The first percolation point λc1

is smaller than λSIR
c as long as ρ > 0. That is, the percolation

of the R components occurs without global outbreaks. The gap
between λc1 and λSIR

c shrinks with decreasing ρ and λc1 = λSIR
c

(a) (b)
(c)

FIG. 4. (a) Fraction of the largest R component rmax as a function of λ. Symbols were obtained from Monte Carlo simulations. The solid
line was drawn by evaluating Eq. (C4). (b) Numerical results of the fractal exponent of the largest R component, ψR. Data with several values
of N have a crossing point at λc1 	 0.148 and ψc

R 	 2/3. (c) Finite-size scaling for Rmax around λc1. Here we set ψc
R = 2/3 and β = 1, which

means that the transition at λc1 belongs to the mean-field universality class.
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S-dominant phase

R-dominant phase

coexisting phase

FIG. 5. Phase diagram in the (ρ,λ) space. Solid red and dashed
blue lines are the analytically obtained λc1 and λc2, respectively. Black
circles are plotted by the crossings of ψR and ψS.

in the limit ρ → 0. Note that λc1 = 0 when ρ � 0.2 because
the seeds themselves percolate (the site percolation threshold
of the z-RRG is 1/(z − 1), which is derived from the local
tree approximation [5,6]), and λc2 = 0 when ρ � 0.8 because
the seeds themselves disintegrate the susceptible network into
finite components.

Our finite-size scaling for several values of ρ shows that
both percolation transitions at λc1 and λc2 belong to the mean-
field universality class, irrespective of the value of ρ. This
seems unsurprising because the two processes comprising the
present model, the SIR model and site percolation, belong to
the mean-field universality class of percolation when the graph
is RRG.

When ρ > 0, the system does not show any singular
behavior at λSIR

c . However, this does not mean that λSIR
c is

unimportant. In practice, λSIR
c is still an important measure

in the strategy for disease control because a single seed has
the potential to induce a global outbreak above λSIR

c (in other
words, the basic reproduction number R0 > 1 when λ > λSIR

c ).
The singular behaviors at λc1, e.g., the divergence of the R
susceptibility, may be interpreted as a precursor to global
outbreaks, like the proverbial canary in a coal mine.

D. SIR model in regular lattices

We have numerically and analytically shown that the
present model with multiple seeds on the RRG percolates
at a lower infection rate than the epidemic threshold. Is this
phenomenon in common with other networks, e.g., networks
with many short loops and without the logarithmic dependence
of the mean shortest path? In the rest of this section, we
briefly consider the SIR model with multiple seeds on finite-
dimensional Euclidean lattices by Monte Carlo simulations.

First, we consider the cubic lattice with the periodic
boundary condition. In Monte Carlo simulations, we set μ = 1,
ρ = 0.01, and N = 403, 503, 603, 703. The number of trials
is 50 000. In Fig. 6(a), we show the size dependence of
the order parameters, rmax and smax. We find that rmax and
smax become nonzero and 0 at different points λc1 	 0.27
and λc2 	 0.49, respectively. This discrepancy is also led by
the peak positions of R susceptibility and S susceptibility,
as shown in Fig. 6(b). Both λc1 and λc2 are also different
from the epidemic threshold λSIR

c , which is obtained from the
single-seed simulations (not shown). Starting from a single
seed, rmax(= r) becomes nonzero at λSIR

c 	 0.36, which is
larger than λc1. Then we have the discrepancy among λc1,
λSIR

c , and λc2, on the cubic lattice, and expect that the observed
phenomena on the RRG will hold for other clustered networks.
A qualitative difference between the cubic lattice and the RRG
is in their universality class. From the crossings of the fractal
exponents ψR and ψS, we have ψc

R 	 ψc
S 	 0.84 for the cubic

lattice (not shown), and this estimate means that transitions
of both R components and S components belong to the
universality class of three-dimensional percolation transition
[36] but not to the mean-field universality class.

Let us mention a special case, the SIR model in the
square lattice with the periodic boundary condition. In Fig. 7,
we show the Monte Carlo results. In this case, smax and
rmax seem to undergo a macroscopic change at the same
point, i.e., λc1 = λc2 	 0.91 [see Fig. 7(a)]. The corresponding
susceptibilities also seem to have a peak at the same value of λ

[Fig. 7(b)]. Compared to single-seed simulations, λc1 and λc2

decrease with an increase in ρ and differ from the epidemic
threshold λSIR

c 	 1.17. The absence of the coexisting phase

(a) (b)

FIG. 6. Monte Carlo results for the SIR model on a cubic lattice with the periodic boundary condition: (a) fractions of the largest R component
(open symbols) and of the largest S component (filled symbols), rmax and smax; (b) R susceptibility (open symbols) and S susceptibility (filled
symbols), χR and χS. The three vertical lines represent λc1, λSIR

c , and λc2, from left to right. Here λc1 	 0.27 and λc2 	 0.49 were confirmed by
the crossings of ψR and ψS and their finite-size scalings, and λSIR

c 	 0.36 was obtained from the Monte Carlo simulations for the SIR model
with a single seed (not shown).
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(a) (b)

FIG. 7. Monte Carlo results for the SIR model on a square lattice with the periodic boundary condition: (a) fractions of the largest
R component (open symbols) and of the largest S component (filled symbols), rmax and smax; (b) R susceptibility (open symbols) and S
susceptibility (filled symbols), χR and χS. In these simulations, we set μ = 1, ρ = 0.01, and N = 3002, 4002, 5002, 6002. Each of data is
averaged over 50 000 trials. The two vertical lines represent λc1 = λc2 	 0.91 (left) and λSIR

c 	 1.17 (right), respectively. Here λc1 = λc2 was
confirmed by the crossings of ψR and ψS and their finite-size scalings, and λSIR

c was obtained from the Monte Carlo simulations for the SIR
model with a single seed (not shown).

does not seem surprising if we consider a spatial constraint
of the square lattice: When the largest component percolates
the lattice vertically and horizontally, the residual components
after removing the largest one cannot maintain the connection
across the lattice. (This reflects on the fact that the percolation
threshold is equal to or larger than 1/2 in both site and
bond percolations.) Turning to other real spatial networks,
which are often regarded as two-dimensional objects, it
is an open question whether or not the coexisting phase
exists.

V. SUMMARY

In this paper, we have studied the SIR model in an RRG with
a nontrivial fraction of infection seeds, ρ. Through analytical
estimates and numerical simulations, we have obtained the
phase diagram in (ρ,λ) space. The SIR model with numerous
seeds shows the percolation transition of the removed and
susceptible nodes at λc1 and λc2, respectively. In particular, λc1

is smaller than the epidemic threshold λSIR
c as long as ρ > 0.

This means that epidemic clusters generated by multiple seeds
percolate without global outbreaks.

So far, we have focused on the SIR model in the RRG
and the lattices. We expect that the above statement holds
for the SIR model in other networks, although the details of
the phase transition may depend on network structures, e.g.,
λc1 < λSIR

c = 0 in a fat-tailed scale-free network with γ � 3.
Finally, we briefly discuss other epidemic models with

multiple seeds. Krapivsky et al. [39] proposed an extended
SIR model, called a transient fad, with the assumption
of a well-mixed population. They analytically showed that
this model exhibits a discontinuous transition if ρ > 0. The
authors and a collaborator [40] performed Monte Carlo
simulations for this fad model in networks to confirm that
a discontinuous jump of the order parameter appears near
the epidemic threshold, which is behind the percolation of
epidemic clusters. The authors also investigated the discrete-
time version of the transient fad to confirm it numerically and
analytically [41]. Very recently, several generalized epidemic
models in networks beyond the classical SIR model have

been investigated [42–45]. It will be interesting to clarify
what numerous seeds induce in such generalized epidemic
models.
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APPENDIX A: DERIVATION OF λSIR
c FOR THE LIMIT

ρ → 0

The AMEs do not predict any transition point when ρ > 0
because r > ρ > 0. However, it is possible to derive the
transition point λSIR

c if the fraction of infection seeds is
infinitesimally small (ρ → 0). In the AMEs for {sl,m}, only
sz,0 and sz−1,1 are relevant up to the first order of ρ,

ṡz,0 = −βsi
s zsz,0,

ṡz−1,1 = −λsz−1,1 + βsi
s zsz,0 − βir

s sz−1,1, (A1)

with

βsi
s = λ

(z − 1)sz−1,1

zsz,0
, βir

s = μ, (A2)

and the initial condition

sz,0(0) = 1 − (z + 1)ρ, sz−1,1(0) = zρ. (A3)

Equation (A2) is substituted into Eq.(A1) to find the condition
for sz−1,1 to remain finite as t → ∞,

μ

λ
> z − 2, (A4)

and thus, the lower bound of μ/λ gives the epidemic threshold,
λSIR

c = μ/(z − 2), which corresponds to the known result, (1).
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APPENDIX B: DISTRIBUTION OF THE R COMPONENT
GENERATED FROM A SINGLE SEED

First, we evaluate the size distribution of the R component
created by a single seed. To do this, we need to know the
probability, p

(k)
� , that an infected node will infect � of k

neighboring susceptible nodes before being removed. Such
an infected node is removed before infecting any neighbors
with a probability p

(k)
0 = 1

1+kλ
, so that the probability of its

infecting at least one neighboring node before removal is
1 − p

(k)
0 = kλ

1+kλ
. As shown in Fig. 8, we can express p

(k)
� as a

recursive form,

p
(k)
� =

{
1

1+kλ
, � = 0,

kλ
1+kλ

× p
(k−1)
�−1 , 0 < � � k.

(B1)

From this equation, we find that the generating function
of p

(k)
� ,

gk(x) =
k∑

�=0

p
(k)
� x�, (B2)

satisfies the recursion relation

gk(x) = 1 + kλxgk−1(x)

1 + kλ
(B3)

with g0(x) = 1.
Now let Pn be the probability that a single seed creates an R

component of size n, and let Qn be the probability that a node
infected by another node further creates a partial R component
of size n. Then, by considering the infection process starting

FIG. 8. Schematic of the recursive relation for p
(k)
� . Let con-

sider the probability p
(k)
� that an infected node infects � nodes

of k susceptible neighbors before being removed [(a)→(d)]. The
probability that this infected node is removed before infecting any
neighbors [(a)→(b)] is p

(k)
0 = 1/(1 + kλ). On the other hand, the

event that this node infects one susceptible neighbor [(a)→(c)] occurs
with probability 1 − p

(k)
0 = kλ/(1 + kλ). At (c), the focal infected

node infects further � − 1 nodes from k − 1 remaining neighbors
before being removed [(c)→(d)] with probability p

(k−1)
�−1 because the

infecting process is Markovian. Thus, p
(k)
� , which is the probability

from (a) to (d), is given as p
(k−1)
�−1 × kλ/(1 + kλ).

from a single seed, Pn can be evaluated as

Pn =
z∑

�=0

p
(z)
�

∑
m1,m2,...,m�

Qm1Qm2 . . . Qm�
δn,1+∑�

μ=0 mμ
, (B4)

and similarly, Qn can be recursively given as

Qn =
z1∑

�=0

p
(z1)
�

∑
m1,m2,...,m�

Qm1Qm2 . . . Qm�
δn,1+∑�

μ=0 mμ
, (B5)

where zν = z − ν (Fig. 9). Introducing the corresponding
generating functions,

G0(x) =
∞∑

n=1

Pnx
n, G1(x) =

∞∑
n=1

Qnx
n, (B6)

we can express the above relations (B4) and (B5) in a compact
form as

G0(x) = xgz(G1(x)) (B7)

and

G1(x) = xgz1 (G1(x)), (B8)

respectively.
What we want to know is the mean size of the R component,

〈n〉 = G′
0(1), and the mean square size of the R component,

〈n2〉 = G′′
0(1) + G′

0(1). To evaluate these values, we need the
derivative of gk(x), which is given by

g′
k(x) = kλ

1 + kλ
[gk−1(x) + xg′

k−1(x)], (B9)

from which the mean value 〈�〉k is easily found to be

〈�〉k = g′
k(1) = kλ

1 + λ
. (B10)

One also requires the second derivative,

g′′
k (x) = kλ

1 + kλ
[2g′

k−1(x) + xg′′
k−1(x)], (B11)

so that

〈�(� − 1)〉k = g′′
k (1) = 2k(k − 1)λ2

(1 + λ)(1 + 2λ)
, (B12)

yielding

〈δ�2〉k = 〈�2〉k − 〈�〉2
k = kλ[1 + (k + 1)λ]

(1 + λ)2(1 + 2λ)
. (B13)

Now we can evaluate the derivatives of G0(x) and G1(x) as

G′
0 = gz(G1) + xg′

z(G1)G′
1, (B14)

G′′
0 = 2g′

z(G1)G′
1 + xg′′

z (G1)G′2
1 + xg′

z(G1)G′′
1 (B15)

and

G′
1 = gz1 (G1) + xg′

z1
(G1)G′

1, (B16)

G′′
1 = 2g′

z1
(G1)G′

1 + xg′′
z1

(G1)G′2
1 + xg′

z1
(G1)G′′

1. (B17)
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FIG. 9. Schematic of Pn (top) and Qn (bottom) for the case of the RRG with z = 3: Pn = p
(3)
0 δn,1 + p

(3)
1

∑
m1

Qm1δn,1+m1 +
p

(3)
2

∑
m1,m2

Qm1Qm2δn,1+m1+m2 + p
(3)
3

∑
m1,m2,m3

Qm1Qm2Qm3δn,1+m1+m2+m3 and Qn = p
(2)
0 δn,1 + p

(2)
1

∑
m1

Qm1δn,1+m1 + p
(2)
2

∑
m1,m2

Qm1

Qm2δn,1+m1+m2 .

Setting x = 1 gives G1(1) = 1 and

G′
1(1) = 1 + g′

z1
(1)G′

1(1) = 1

1 − g′
z1

(1)
= 1

1 − 〈�〉z1

, (B18)

G′′
1(1) = 2g′

z1
(1)G′

1(1) + g′′
z1

(1)G′
1(1)2 + g′

z1
(1)G′′

1(1)

= G′
1(1)3

[
2g′

z1
(1)

(
1 − g′

z1
(1)

) + g′′
z1

(1)
]
. (B19)

These quantities provide an explicit expression for the first
moment, M1, and the second cumulant, C2 (and thus the second
moment M2 = C2 + M2

1 ), of Pn as

M1 = 〈n〉 = G′
0(1) = 1 + 〈�〉zG′

1(1), (B20)

C2 = 〈n2〉 − 〈n〉2

= G′′
0(1) + M1 − M2

1

= G′
1(1)2[g′′

z (1) + g′
z(1) − g′

z(1)2]

+ g′
z(1)[G′′

1(1) + G′
1(1) − G′

1(1)2]

= G′
1(1)2〈δ�2〉z + G′

1(1)3〈�〉z〈δ�2〉z1 . (B21)

When λ approaches λSIR
c from below, G′

1(1) dominates the
behavior of M1 and C2. Indeed (B18) tells us that G′

1(1)
diverges as δλ−1, where δλ = λSIR

c − λ, and thus

M1 = 〈n〉 ∼ δλ−1, C2 ∼ 〈n2〉 ∼ δλ−3. (B22)

Substituting Eq. (B22) for Eq. (26), we have a power-law
dependence of the gap δλ on the seed fraction ρ as Eq. (27).

APPENDIX C: LARGEST R-COMPONENT SIZE

The generating function of the probability that a supernode
will have the degree kn is given by

H0(x) =
∞∑

n=1

Pnx
kn = x2G0(xz2 ), (C1)

and that of the excess degree as

H1(x) = H ′
0(x)

H ′
0(1)

= 2xG0(xz2 ) + z2x
z1G′

0(xz2 )

〈kn〉 . (C2)

Let u be the probability that a finite cluster of supernodes is
found by following randomly chosen links; this satisfies

u = 1 − p̃ + p̃H1(u). (C3)

Here, p̃ is the probability that the node reached by following
a randomly chosen link is a component of a supernode and is
given by Eq. (23). Then, the density of the largest component
of supernodes in size, i.e., rmax, is evaluated as

rmax = ρ

∞∑
n=1

nPn(1 − ukn) = ρ[〈n〉 − uzG′
0(uz2 )], (C4)

where we have used 〈kn〉 = (z − 2)〈n〉 + 2 from Eq. (24).

032324-9



TAKEHISA HASEGAWA AND KOJI NEMOTO PHYSICAL REVIEW E 93, 032324 (2016)

[1] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. London
A: Math. Phys. Eng. Sci. 115, 700 (1927).

[2] R. M. Anderson and R. M. May, Infectious Diseases of Humans:
Dynamics and Control (Oxford University Press, New York,
1992).

[3] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[4] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47
(2002).

[5] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[6] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 (2008).
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