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We describe a method for constructing networks for multivariate nonlinear time series. We approach the
interaction between the various scalar time series from a deterministic dynamical system perspective and provide
a generic and algorithmic test for whether the interaction between two measured time series is statistically
significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in
which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To
establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method,
which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations)
between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct
networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of
a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken
from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when
the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic
(essential) connectivity of the elements included in the system or the underlying (assumed) system. The method
is demonstrated for numerical data sets generated by known systems and applied to several experimental time
series.
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I. INTRODUCTION

To understand the nature of ongoing interaction in real-
world complex systems it is first necessary to deduce the
interconnection between the components of the system under
study [1]. Hence, the relationship between the elements (the
intrinsic connectivity) needs to be determined before we
can understand the system—usually this is done by either
mapping physical (for example, anatomical) connections
onto a network or, as we will consider here, by inferring
functional connectivity from multivariate time series data
sets. Once the connectivity has been determined the effect
of that connectivity is frequently studied using the concept
of complex networks [2–7]. There have been several recent
works for constructing networks from scalar time series such
as recurrence networks [8], cycle networks for pseudoperiodic
time series [9,10], and the horizontal visibility algorithm [11].
A distinctive local feature in the scalar time series is treated
as a node of a network in these approaches. There are also
approaches for constructing networks for multivariate time
series [12–18]. Especially the work by Walker et al. is note-
worthy because they applied a surrogate method to construct
refined networks from multivariate time series [18]. We focus
our attention on constructing networks from multivariate time
series in this paper. In these approaches each time series is
considered as a basic node of a network. Nodes are connected
if the dynamics of the corresponding scalar time series are
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sufficiently similar. The naive (and usual) way to measure
“similarity” is with a thresholded linear correlation. While
this naive approach is expeditious, it is also flawed when one is
looking at nonlinear (possibly temporally delayed) interaction
in complex systems. We describe the naive approach in detail
in Sec. II.

In particular, as experimental time series will typically show
some irregular fluctuations, it is difficult to determine the
precise relationship among the various variables and simple
linear correlation (with a constant threshold) will often be
insufficient. Nonetheless, for constructing a network from
multivariate time series the cross correlation function remains
the most commonly used approach [12–17]. When the cross
correlation exhibits strong peaks or has large absolute values
between −1 and +1 at some fixed time lags the result is argued
to be a good indication that the data have “similarities”—and
hence, that the corresponding nodes should be connected.
Hence, we suppose that there are correlation structures
between the two signals (or that similar factors may influence
both systems). On the other hand, when the cross correlation
does not have strong peaks one usually concludes that there
is no similarity. In this case, we conclude that there is no
correlation structure and that the dynamics of the measured
components are unconnected [19].

However, the cross correlation function is only a useful
measure of linear similarity [19]. That is to say, even when
two signals are not similar, there are still possibilities that these
two data sets have some kind of correlation structures (that is,
the two data sets are interconnected or interrelated). Here,
when we use the term “correlation structures” we mean any
functional connectivity, irrespective of whether the structures
are linear or nonlinear. This means that it is not enough to use
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only linear statistics such as the cross correlation function.
To investigate correlation structures more completely, we
adopt the viewpoint of deterministic dynamical systems and
nonlinear time series analysis [20]. The purpose of our method
is to construct networks for multivariate time series, even if
there are nonlinearities in these time series.

We now consider the meaning of correlation structures and
the meaning of the network properties. We consider that if an
element y is included in a function of x (in other words, y is one
of the variables in a function of x) and the influence of y on x

cannot be ignored, there is some kind of correlation structures
between x and y, irrespective of whether the correlation is
linear or nonlinear. Hence, we infer that connecting elements
with correlation structures indicates the intrinsic connectivity
of the elements included in the system or the underlying
(assumed) system.

In this paper, we introduce a method to construct such a
network for multivariate nonlinear time series. To verify the
intrinsic (essential) connection between two data sets from
the viewpoint of a deterministic dynamical system, we apply
the previously proposed small-shuffle surrogate method [19].
The method we propose does not estimate the system itself
(equations or models). The method estimates the intrinsic
connectivity (interconnection or interrelation) of the elements
among which the influences are considerable.

We first describe the current technique briefly and then
we describe our approach. After describing these techniques,
we will apply this algorithm to several cases using simulated
multivariate time series of three systems, linear and nonlinear
systems, and the coupled Lorenz systems [21]. Based on the
numerical experiments, we apply our method to real-world
data. We select two specific systems of particular interest
to us: hourly meteorological time series and daily exchange
rate data. Although meteorological physical quantities under
controlled situations in laboratories are well described by the
equation of state of gases in thermodynamics, actual situations
in weather are fairly complicated and far from controlled.
Similarly, although exchange rate markets are built by humans,
there are many market participants and the deals are intricate.
Hence, we consider that the relationship among meteorological
data and that among exchange rate data are not trivial.

Alternative general nonlinear similarity measures have been
proposed in the literature—the most common approach is cross
mutual information [22]. However, unlike mutual information
based methods (which compute probabilistic independence
from statistical estimates of histograms), the approach we
propose is grounded in unraveling the deterministic interaction
among the components—rather than looking for statistical or
probabilistic dependence, we are seeking to describe nonlinear
determinism between the components. We also note that there
are many alternative methods to which we could compare
our approach. However, such an exhaustive comparison would
be beyond this work and the purpose of this work. We have
chosen to focus on mutual information as it is a particularly
well understood, and technically well motivated approach.
Moreover, mutual information is widely used and has been
seen to perform extremely well in many situations. We use
mutual information as a widely accepted benchmark, and
we anticipate that the reader can then infer the relative
performance of their own favorite measure.

II. THE NAIVE APPROACH TO NETWORK
CONSTRUCTION

The most extensively used method to construct networks
from multivariate time series using the cross correlation can
be reduced to the following three steps [12–17].

(1) Each time series is considered as a basic node of a
network.

(2) To investigate the relationship among multivariate time
series, the cross correlation between each pair of time series
(i.e., two time series) taken from the whole multivariate time
series is estimated.

(3) The pair of nodes corresponding to the chosen two time
series is connected with an undirected edge when the value
of the cross correlation is larger than an appropriately chosen
threshold.

We refer to this method as “the naive method.” The basic
idea behind the naive method is as follows. When signals are
similar, we expect that there may be some sort of relationship
between the corresponding nodes, and hence the pair is
considered to be connected with an undirected link. On the
other hand, there are cases where time series are not similar
enough. In this case, as we may have the impression that these
are independent or have no relationship, we do not connect
them. This approach relies on one selecting an appropriate
threshold, and this is usually done in an ad hoc manner (often
arguments are made that a suitable value of threshold can be
selected such that one ensures graph connectivity, or some
minimum number of edges).

Although the naive method has been proved to be effective
in various cases [12–17], the range of applicability might be
restrictive because “no similarity” is not equivalent to “no
correlation” [19]. In the next section, we describe an approach
to reduce this problem.

III. A DIFFERENT APPROACH
TO CONSTRUCT NETWORKS

The approach of the proposed method is basically the same
as the naive method described in Sec. II. The difference is
the way of verifying the connection between two data sets. As
mentioned above, only the cross correlation function is used in
the naive method. To determine whether two nodes should be
connected statistically and to make the result rigorous, we
apply the concept of the surrogate data method [23], and
in particular, we apply the recently proposed small-shuffle
surrogate (SSS) method [19]. The approach employed to
construct a network for multivariate time series and the method
to generate surrogate data are not novel, but the combination of
network construction with the small-shuffle surrogate method
improves the accuracy of the network connectivity in the
system or the underlying (assumed) system.

To investigate correlation structures, the random-shuffle
surrogate (RSS) method has been proposed in [23]. The RSS
method can test for whether data can be fully described by
independent and identically distributed random variables.

When a system is composed of many variables we an-
ticipate that each variable is influenced by some of these
variables. Hence, we consider that the relationship (correlation
structures) among the variables might be very complicated.
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The cross correlation function is intrinsically a statistic to
investigate linear similarity between two data channels. To
investigate whether two data channels selected from many
variables are somehow connected, we construct artificial
time series, destroying the correlation structure between the
two data while preserving all independent features of each
independent data set. That is, we generate an ensemble of
artificial realizations that explicitly do not have a correlation
between them (either linear or nonlinear), but otherwise appear
like the original data.

The RSS method destroys any correlation structure in data.
That is, not only the relationship between two data sets but also
all relationships among any other variables that may be present
is also destroyed. Hence, by examining the cross correlation
function of the (decorrelated) RSS data, and comparing this to
the original, we can test whether the original variables exhibit
significant dependencies.

However, the RSS method assumes global stationarity
and performs a pairwise linear decoupling between channels.
In many typical examples the individual channels are also
influenced by local drift and other nonstationary variation. To
account for these effects, we propose that the small-shuffled
method is preferable to the RSS method.

A. The small-shuffle surrogate method

To investigate whether temporal correlations in time series
data are absent or if the data are independently distributed
random variables, the SSS method is often used [19]. The SSS
method destroys local structures or correlations in irregular
fluctuations (short-term variabilities) and preserves the global
behaviors by shuffling the data index on a small (local) scale.

SSS data are generated as follows. Let the original data
be x(t), let i(t) be the index of x(t) [that is, i(t) = t , and so
x[i(t)] = x(t)], let g(t) be Gaussian random numbers, and s(t)
will be the surrogate data.

(i) Obtain i ′(t) = i(t) + Ag(t), where A is an amplitude.
(ii) Sort i ′(t) by the rank order and let the index of i ′(t) be

î(t).
(iii) Obtain the surrogate data s(t) = x[î(t)].
It has been found that choosing A = 1.0 is adequate for

nearly all purposes [19]—although this parameter choice
remains heuristic. Further details of the method and the
mechanism are provided in [19]. When we apply the SSS
method to multivariate data, the null hypothesis (NH) is that
there is no short-term correlation structure between the data or
that the irregular fluctuations are independent [19].

When we use multivariate data exhibiting irregular fluc-
tuations (short-term variabilities) the behaviors are varied.
This means that we need to treat data with different trends
in some cases. When we want to know some kind of
relationship between two data sets, the correlation coefficient
is a simple approach because this statistic is effective to
investigate similarities of long-term trends between two data
sets. However, to know the detailed relationship, we need
to investigate the local relationship (short-term dynamics)
among data. A requisite null hypothesis to accomplish this
investigation in these situations is the null hypothesis described
above.

B. When to reject a null hypothesis

Discriminating statistics are necessary for surrogate data
hypothesis testing. The SSS method changes the flow of
information in the data. It is preferable to use discriminating
statistics which can accurately reflect features of the surrogate
method. Hence, we choose to use the cross correlation
(CC) function and the average mutual information (AMI) as
discriminating statistics. These statistics can determine, on
average, how much one learns about one signal by observing
the other [24].

After the calculation of these statistics, we need to deter-
mine whether a NH should be rejected. We employ Monte
Carlo hypothesis testing and determine whether the estimated
statistics of the original data fall within or outside the statistical
distribution of the surrogate data [25]. When the statistics fall
within the distributions of the surrogate data, we conclude
that the hypothesis may not be rejected. In this paper, we
generate 99 SSS data and hence the nonparametric significance
level is between 0.01 and 0.02 for a one-sided test with two
nonindependent statistics [26].

It should be noted that although the multiple comparison
problem is common in surrogate data applications—it is
exacerbated in the multivariate network setting. We use the
CC and the AMI as complementary statistics. This is because
some of the test systems are robust to one or the other of our two
primary statistical tests (the CC and the AMI) [19]. We show
plots of both the CC and the AMI as a function of time lag.
In fact, we expect that it is usually a meaningful test statistic
for relatively small lags (for example, between −10 and 10),
because the CC and the AMI of the original and surrogate data
will coincide for large lag. For more details see [19].

We also note that we apply a surrogate data based
hypothesis test as a part of our program. This is a Monte
Carlo resampling scheme to test against a specific NH (in this
case encapsulated in the small-shuffled surrogate scheme). A
necessary component of this hypothesis testing is a test statistic
with which we compare the observed data and the surrogate
generated null distribution. We choose the CC and the AMI
as they are robust, independent of the underlying surrogate
generation scheme and also pivotal (in the sense of yielding the
same distribution of values for a wide range of seed realization
consistent with the null). Nonetheless, this choice is not critical
and one is free to utilize other suitable statistics at this point
in our procedure.

C. Statistical rigor of the proposed method

In the proposed method the SSS method is used and the SSS
method is a statistical hypothesis test. Applying a statistical
hypothesis test can result in two outcomes: either the NH is
rejected, or it is not. In the former case there is a possibility
that the NH is rejected even though it is true, which is called
type I error; in the latter case there is a possibility that we will
fail to reject the NH when it is in fact false, which is called
type II error [27]. As the proposed method relies on a statistical
hypothesis test, we cannot avoid this problem.

Also, when the influence of the observational noise level
is more significant than that of data from the systems, the
SSS method cannot properly investigate the features of the
data [28]. Hence, when the observational noise is large
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FIG. 1. Time series data generated by the linear system, Eqs. (1)–(4). We use the data to construct the network.

the network constructed by the proposed method might not
indicate the connectivity in the system or the underlying
(assumed) system.

IV. NUMERICAL EXAMPLES

We now demonstrate the application of our algorithm
to various simulated multivariate time series data sets, and
confirm our theoretical arguments with several examples. For
comparison we also apply the naive method to the data sets.
Broadly speaking, we consider two situations, in which the
precise relationship among the variables is either explicit or
not. For the former case, we use two systems: a linear system
and a nonlinear system [29]. As the systems are in actual time,
the relationship among the variables is clear. For the latter case,
we use the coupled Lorenz systems presented in the form of a
differential equation [21].

In all cases, we use A = 1.0 for generating SSS data,
generate 99 SSS data, and the data is 1000 points with Gaussian

FIG. 2. The linkage of network: (a) the connectivity of Eqs. (1)–
(4) and Eqs. (9)–(12). The same network is obtained when the
proposed method is applied to the data shown in Figs. 1 and 4. We
show the results later in Secs. IV A and IV B. (b) The network when
we apply the naive method to the data. As shown in this figure, there
is no link among the nodes.

observational noise with the mean zero and the standard
deviation 0.01.

A. Data from a linear system

The first application is to time series from a linear system.
To verify the correlation structures between the elements, we
use the system which consists of four dynamical variables,
x1(t), x2(t), x3(t), and x4(t), and the models are described by
the following expressions:

x1(t) = 1.3 + 0.4 x1(t − 1) − 0.2 x1(t − 3)

+ 0.3 x2(t − 4) + 0.2 x4(t − 7) + ε1(t), (1)

x2(t) = 2.0 + 0.6 x2(t − 1) − 0.2 x2(t − 6) + ε2(t), (2)

x3(t) = 2.2 + 0.2 x1(t − 2) + 0.3 x4(t − 9) + ε3(t), (3)

x4(t) = 1.3 + 0.2 x1(t − 2) + 0.5 x4(t − 1)

− 0.3 x4(t − 3) + ε4(t), (4)

where εi(t) (i = 1,2,3,4) are dynamic noise, independent and
identically distributed Gaussian random variables with mean
zero and standard deviation 1.0. The behaviors of the four
time series generated by these models are shown in Fig. 1. The

TABLE I. The largest absolute values of the cross correlation
function of all possible pairs between the time lag −10 and 10, where
the number in parentheses is the time lag when the cross correlation
function has the largest absolute value. The data are generated by the
linear system, Eqs. (1)–(4), and the values are estimated using 1000
data points.

x1 x2 x3 x4

x1 1.0000 – – –
x2 0.4111 (−4) 1.0000 – –
x3 0.3285 (2) 0.0788 (5) 1.0000 –
x4 0.3225 (2) 0.1230 (6) 0.3942 (−9) 1.0000
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FIG. 3. The result of the linear system, Eqs. (1)–(4). A plot of (a), (c), (e), (g), (i) and (k) the cross correlation function (CC), and (b), (d),
(f), (h), (j) and (l) the average mutual information (AMI), (a) and (b) are result of x1 and x2, (c) and (d) are result of x1 and x3, (e) and (f) are
result of x1 and x4, (g) and (h) are result of x2 and x3, (i) and (j) are result of x2 and x4, and (k) and (l) are result of x3 and x4. The solid line is
the original data and the dotted lines are the SSS data.

behaviors show irregular fluctuations and it is difficult to know
the relationship among the data by visual inspection.

In this paper, we distinguish between “component” and
“variable” as different technical terms. We use the term
“component” to represent xi , and the term “variable” when
it takes a particular value xi(t − l). We treat the components
as the nodes of the network. That is, Eq. (1) has three
components (x1, x2, and x4) and four variables, x1(t − 1),
x1(t − 3), x2(t − 4), and x4(t − 7). As shown in Eqs. (1)–(4),

each dynamical variable at time t is determined by various
other dynamical variables. We consider the connectivity of
the linear system, Eqs. (1)–(4). Equation (1) shows that the
component x1 is influenced by three components, x1, x2, and
x4. That is, other components which connect the component
x1 are x2 and x4. Similarly, as Eq. (2) shows that x2 is driven
by only x2, there is no connection with x2. As Eq. (3) shows
that x3 is driven by x1 and x4, x1 and x4 connect x3. As Eq. (4)
shows that x4 is driven by x1 and x4, x1 connects x4. Based on
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FIG. 4. Time series data generated by the nonlinear system, Eqs. (9)–(12). We use the data to construct the network.

this, the connectivity expressions of the linear system become

x1 = C1(x2,x4), (5)

x2 = 0, (6)

x3 = C3(x1,x4), (7)

x4 = C4(x1), (8)

where Ci stands for the function representing connectivity
of the ith component, xi , and zero means that there is no
connection. The network structure constructed based on this
idea is shown in Fig. 2(a).

We first estimate the cross correlation function to apply to
the naive method. All the values are shown in Table I. We
need to determine the threshold value to decide whether a
link is present between two components. If we set the value
0.5, as shown in Table I, we cannot connect any link between
nodes [30]. The network structure constructed by the naive
method is shown in Fig. 2(b) and Fig. 2(b) shows that there is
no link among any node on this network. However, we note that
as Eqs. (1)–(4) show, there are correlation structures among
the components. This result clearly indicates that only the
application of the cross correlation function is not effective. We
consider that the network we really want and need is that shown
in Fig. 2(a), because the network reflects the connectivity of
components in the system of Eqs. (1)–(4).

We apply the SSS method to the data of all possible pairs to
verify the connection between two data sets. Figure 3 shows the
result. Figures 3(a) and 3(b) show that the CC of the original
data falls outside the distribution of the SSS data, although the
AMI of the original data falls inside the distribution of the SSS
data. As a result, we can consider that there is some sort of
correlation structure between x1 and x2, and this diagnosis is
correct. On the other hand, Figs. 3(g)–3(j) show that both of
the CC and AMI of the original data falls inside the distribution
of the SSS data. Hence, we do not connect the link between x2

and x3 and between x2 and x4. In this way when we examine
the connectivity between the components, we can obtain the

same result as Eqs. (5)–(8). This result indicates that we can
discriminate correctly whether there are correlation structures
between two signals. Based on this we can construct the same
network as shown in Fig. 2(a) [31].

B. Data from a nonlinear system

To investigate whether the proposed method works even
if there is nonlinearity, we use the following models instead
of Eqs. (1) and (3) where Eqs. (10) and (12) are the same as
Eqs. (2) and (4).

x1(t) = 1.3 + 0.2 x1(t − 1) − 0.1 x1(t − 3)

+ 0.1 x2(t − 4)x4(t − 7) + ε1(t), (9)

x2(t) = 2.0 + 0.6 x2(t − 1) − 0.2 x2(t − 6) + ε2(t), (10)

x3(t) = h[2.2 + 0.2 x1(t − 2)

+ 0.3 x4(t − 9) + ε3(t)], (11)

x4(t) = 1.3 + 0.2 x1(t − 2) + 0.5 x4(t − 1)

− 0.3 x4(t − 3) + ε4(t). (12)

TABLE II. The largest absolute values of the cross correlation
function of all possible pairs between the time lag −10 and 10, where
the number in parentheses is the time lag when the cross correlation
function has the largest absolute value. The data are generated by the
nonlinear system, Eqs. (9)–(12), and the values are estimated using
1000 data points.

x1 x2 x3 x4

x1 1.0000 – – –
x2 0.3413 (−4) 1.0000 – –
x3 0.3337 (2) 0.0688 (6) 1.0000 –
x4 0.4113 (−7) 0.0725 (8) 0.3906 (−9) 1.0000
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FIG. 5. The result of nonlinear system, Eqs. (9)–(12). A plot of (a), (c), (e), (g), (i) and (k) the cross correlation function (CC), and (b), (d),
(f), (h), (j) and (l) the average mutual information (AMI), (a) and (b) are result of x1 and x2, (c) and (d) are result of x1 and x3, (e) and (f) are
result of x1 and x4, (g) and (h) are result of x2 and x3, (i) and (j) are result of x2 and x4, and (k) and (l) are result of x3 and x4. The solid line is
the original data and the dotted lines are the SSS data.

The function h(x) is a static monotonic nonlinear function [32],

h(x) = 5.0
[

x−a−0.0001
b−x+0.0001

]ρ

1 + [
x−a−0.0001
b−x+0.0001

]ρ , (13)

where ρ = 3, a = −2.0, and b = 10.0. The behaviors of the
four time series generated by these models are shown in
Fig. 4. The behaviors show irregular fluctuations and it is
difficult to know the relationship among the data by visual
inspection.

In Eq. (9) there is a product x2(t − 4)x4(t − 7), which is
a nonlinear function, and as the data is transformed by a
nonlinear function in Eq. (11), x3(t) is nonlinear data. x4(t)
is no longer linear because x1(t − 2) is included in the model
as Eq. (4) shows. The connectivity of the nonlinear system is
essentially the same as that of the linear system, Eqs. (1)–(4).
That is, the network of the nonlinear system is the same as that
shown in Fig. 2.

We estimate the cross correlation function to apply the
naive method. All the values are shown in Table II. We need
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FIG. 6. Phase projections of phase trajectories of x1 and x2 of the coupled Lorenz systems, Eq. (14), for different values of coupling:
(a) γ = 0.0 corresponds to the case of no coupling, (b) γ = 1.0 corresponds to the case of weak coupling, (c) γ = 4.05 corresponds to the
beginning of synchronization of switching, and (d) γ = 6.0 corresponds to synchronous oscillations of subsystems. The data are calculated
using the fourth order Runge-Kutta method with the sampling interval 0.01 and the resampling interval 0.05. The number of data points is 1000
and we use the data to construct the network.

to determine the threshold value to decide whether the link is
connected between two components. If we set the value 0.5, as
shown in Table II, we cannot connect any link between nodes.
This result clearly indicates that only the application of the
cross correlation function is not effective.

We apply the SSS method to the data of all possible pairs
to verify the connection between two data sets. Figure 5
shows the result. This result indicates that we can discriminate
correctly whether there are correlation structures between two

signals. Based on this we can construct the same network as
shown in Fig. 2(a).

C. Data from the coupled Lorenz systems

The linear and nonlinear systems used in Secs. IV A
and IV B are trivial examples, because the relationships among
variables included in the systems are straightforward, as these
systems are in actual time. To investigate how the proposed

TABLE III. The largest absolute values of the cross correlation function of all possible pairs between the time lag −10 and 10, where the
number in the parentheses is the time lag when the cross correlation function has the largest absolute value. The data are generated by the
coupled Lorenz systems with γ = 0.0, Eq. (14), and the values are estimated using 1000 data points.

x1 y1 z1 x2 y2 z2

x1 1.0000 – – – – –
y1 0.9669 (−1) 1.0000 – – – –
z1 0.0343 (−9) 0.0314 (−8) 1.0000 – – –
x2 0.1238 (−7) 0.1245 (−5) 0.0323 (−10) 1.0000 – –
y2 0.1221 (−9) 0.1261 (−7) 0.0320 (8) 0.9664 (−1) 1.0000 –
z2 0.0876 (−10) 0.0972 (−10) 0.1344 (−5) 0.0445 (10) 0.0146 (−5) 1.0000
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FIG. 7. Network of the coupled Lorenz systems using the
proposed method: (a) the network when γ = 0.0, (b) the network
when γ = 1.0, (c) the network when γ = 4.05, and (d) the network
when γ = 6.0.

method works in uncertain situations, we use the coupled
Lorenz systems presented in the form of a differential equation
as a less trivial example [21]. The coupled Lorenz systems are

two symmetrically coupled chaotic systems. The equations are
given as

ẋ1 = σ (y1 − x1) + γ (x2 − x1),

ẏ1 = r1x1 − x1z1 − y1,

ż1 = x1y1 − bz1,

ẋ2 = σ (y2 − x2) + γ (x1 − x2),

ẏ2 = r2x2 − x2z2 − y2,

ż2 = x2y2 − bz2, (14)

where the parameters are σ = 10, r1 = 28.8, r2 = 28, b = 8/3
and γ is a coupling control parameter [21]. When calculating
Eq. (14) we use the fourth order Runge-Kutta method. When
the sampling interval of the Runge-Kutta method is small,
there is strong collinearity among the data points. In such a
case, even if two data channels are independent, when there
are similar behaviors or patterns in some parts, the cross
correlation function often indicates a large value because of
these influences. On the other hand, the smaller the sampling
interval the better to obtain the precise trajectories. To avoid
this problem we resample the data. We use data using the
fourth order Runge-Kutta method with the sampling interval
0.01 and the resampling interval 0.05 [33].

The mutual phase projections of phase trajectories for
different values of coupling have been investigated by An-
ishchenko et al. [21]. Figure 6 shows the phase projections of
x1 and x2.

We first consider when γ = 0.0 in Eq. (14). In this case
the systems are not coupled. From Eq. (14) we expect that
there are relationships among x1, y1, and z1, and there are
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FIG. 8. Hourly meteorological time series in Tokyo, Japan from January 1 to February 28 in 2015 (1416 data points): (a) atmospheric
pressure, (b) temperature, (c) dew-point temperature, (d) vapor pressure, and (e) humidity.

032323-9



NAKAMURA, TANIZAWA, AND SMALL PHYSICAL REVIEW E 93, 032323 (2016)

also relationships among x2, y2, and z2. We estimate the cross
correlation function to apply to the naive method. All the
values are shown in Table III. To decide whether the link is
connected between two components, we use the threshold
value 0.5 as mentioned above. As shown in Table III, we can
connect a link between x1 and y1 and another link between
x2 and y2. As the systems are not coupled when γ = 0.0,
it is reasonable that there is no link among some nodes, for
example, between x1 and x2, x1 and y2, and x1 and z2. This
is as expected. However, there are links we cannot connect
among some nodes, although we expect the links, for example,
between x1 and z1, and y2 and z2. We consider that this result
is different from our expectation. Hence, this result indicates
that only the application of the cross correlation function is not
effective.

We apply the proposed method to the data from the coupled
Lorenz systems. Figure 7 shows the network of each value
of γ shown in Fig. 6. When γ = 0.0, as this is the case of
no coupling, we consider the network shown in Fig. 7(a) is
reasonable, because there are links among x1, y1, and z1 and
among x2, y2, and z2, and these networks are separated. When
γ = 1.0, this is the case of weak coupling. Figure 7(b) shows
that x1 and x2 are connected. As x1 and x2 are influenced by
one another in this case, we consider that this is reasonable.
Also, x1 and y2 are connected, although y1 and x2 are not. This
might be because the values of r1 and r2 are slightly different.
Figures 7(c) and 7(d) show that all nodes are connected. When
γ = 4.05 and γ = 6.0, as full-scale synchronous oscillations
begin, we consider that the results are reasonable.

These results described in Secs. IV A and IV B indicate that
we can discriminate correctly whether there are correlation
structures between two signals, irrespective of whether data
sets are from the linear system and nonlinear system, even
if the value of the cross correlation function is small. The
results in Sec. IV C indicate that the networks constructed

by the proposed method are the same as our expectation.
Therefore, we conclude that the proposed method can verify
the connectivity correctly.

V. APPLICATIONS

Based on the results of these computational studies, we
apply the proposed method to two experimental systems: (i)
hourly meteorological time series data set in Tokyo, Japan and
(ii) daily exchange rate data set. As shown in Figs. 8 and 11,
each of them shows irregular fluctuations. We use 1416 data
points for a meteorological time series data set, and 2255
data points for an exchange rate data set. In all cases we use
A = 1.0, generate 99 SSS data, and estimate the CC function
and the AMI between the time lag −10 and 10.

A. Meteorological data

The meteorological time series data set we use are five
different time series: the atmospheric pressure, the temper-
ature, the dew-point temperature, the vapor pressure, and
the humidity taken hourly in Tokyo, Japan from January 1
to February 28 in 2015 [34]. The measurement location is
35◦41.5′′ north latitude and 139◦45.0′′ east longitude. Figure 8
shows the time series.

Figure 9 shows the two results of applying the SSS method
to the the meteorological time series. Figures 9(a) and 9(b)
show that both the CC and the AMI of the original data fall
within the distributions of SSS data. This result indicates
that there is no correlation structure between the irregular
fluctuations of temperature and vapor pressure. Figure 9(c)
shows the CC of the original data fall outside the distributions
of SSS data, although Fig. 9(d) shows that the AMI of the
original data fall within the distributions. Hence, we consider
that there are correlation structures between the irregular
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FIG. 9. A plot of (a) and (c) CC, and (b) and (d) AMI for the meteorological time series shown in Fig. 8: (a) and (b) temperature and vapor
pressure, and (c) and (d) temperature and humidity.
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FIG. 10. Network of meteorological time series taken hourly in Tokyo, Japan from January 1 to February 28 in 2015 (1416 data points):
(a) the network using the naive method using the CC with the threshold 0.5, and (b) the network using the proposed method.

fluctuations of temperature and humidity. We note that the
largest absolute values of the cross correlation function for
both cases are not large and these values are smaller than 0.5.
This means that temperature, vapor pressure, and humidity are
not connected if we apply the naive method.

Figure 10 shows the network of applying the proposed
method to the meteorological time series. For comparison
we also construct the network using the naive method, where
we use the threshold 0.5 for the cross correlation function.
Figure 10(a) shows that the network using the naive method
has three links. However, Fig. 10(b) shows there are nine
links which is more than that on the network using the
naive method. From the result, we see that the relationship
among meteorological data sets may be more complicated
than suggested via the naive approach.

We briefly consider the reciprocal relationship between
temperature and humidity. As Fig. 9(c) shows that the behavior
of the CC is similar to a downward convex shape, a parabola
of a quadratic function which opens upward, we understand

that these are negatively correlated. However, the largest
absolute value of the CC is not large as mentioned above.
As a result, we would conclude that the temperature and
humidity in Tokyo are not correlated. As many roads are paved
with asphalt and there are many tall buildings in Tokyo, the
environment or situation might be far from nature. Hence,
the relationship between the temperature and the humidity in
Tokyo might be tenuously tied. However, as the basic physical
and meteorological relationship does not change, we consider
that the naive method is inadequate.

B. Exchange rate data

The exchange rate data set we use are four different
time series: Swiss Franc–US dollar (CHF–USD), European
Euro–US dollar (EUR–USD), British Pound–US dollar (GBP–
USD), and the Japanese Yen–US dollar (JPY–USD). These
currencies are often treated as the major currency. The data
set is from January 3, 2006 to December 31, 2014 and we use
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FIG. 11. The first difference data of daily exchange rate set from January 3, 2006 to December 31, 2014 (2255 data points): (a) CHF–USD,
(b) EUR–USD, (c) GBP–USD, and (d) JPY–USD.
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FIG. 12. A plot of (a) and (c) CC, and (b) and (d) AMI for the first difference data of the exchange rate data set shown in Fig. 11: (a) and
(b) GBP–USD and JPY–USD, and (c) and (d) EUR–USD and JPY–USD.

the first difference data [35]. Figure 11 shows the four time
series. The volatility of these data is not constant and clearly
increases and decreases over time.

Figure 12 shows the two results of applying the SSS method
to the exchange rate data sets. Figures 12(a) and 12(b) show
that both the CC and the AMI of the original data fall within
the distributions of SSS data. This result indicates that there
is no correlation structure between the irregular fluctuations
of GBP–USD and JPY–USD. Figure 12(c) shows the CC of
the original data fall outside the distributions of SSS data,
although Fig. 12(b) shows that the AMI of the original data
fall within the distributions. Hence, we consider that there
are correlation structures between the irregular fluctuations of
EUR–USD and JPY–USD. We note that the largest absolute
values of the cross correlation function for the both the cases
are not large and these values are smaller than 0.5. This means
that EUR–USD and JPY–USD are not connected if we apply
the naive method.

Figure 13 shows the network of applying the naive method
and the proposed method to the daily exchange rate data sets.
Figure 13(a) shows that the network using the naive method
has two links and only JPY–USD has no connection. However,
Fig. 13(b) shows there are more links and JPY–USD connects
with CHF–USD and EUR–USD.

It should be noted that Figs. 10 and 13 show that there
are differences between the networks using the naive method
and the proposed method. This indicates that we cannot easily
decide whether there are correlation structures between the
two signals using the CC of only the original data. Also, this
implies that there are more complicated relationships among
data sets than we expected.

Price movements of exchange rate are basically determined
by the balance of supply and demand for the currency. The
main factors are the national context and future prospects
about the politics and economics. Hence, price movements of
exchange rate can be said to be assessment of an economic

performance of countries. As the United Kingdom (UK),
Switzerland, and the Euro area are geopolitically close,
the direct economical ties such as exchange people and
commercial pursuits are active. The gross domestic product
(GDP) of purchasing power parity (PPP) of the Euro area is
13.236 trillion USD, that of UK is 2.569 trillion USD, and that
of Switzerland is 473.3 billion USD. That is, the GDP (PPP)
of the Euro area is the largest, that of UK is second largest, and
that of Switzerland is third largest. From this we consider that
the UK and Switzerland have a strong economical influence
from the Euro area. As a result, we consider that the behavior
of EUR–USD and GBP–USD is similar and that of EUR–USD
and CHF–USD is also similar (the largest absolute value of
the CC between EUR–USD and GBP–USD is 0.6524 and
that between EUR–USD and CHF–USD is 0.7905). However,
the UK and Switzerland each have internal affairs and affairs
with other countries except the Euro area. Hence, although
the UK and Switzerland are influenced by the Euro area, the
behavior of GBP–USD and CHF–USD is not similar (the
largest absolute value of the CC between GBP–USD and
CHF–USD is 0.4914).

On the other hand, when countries are geographically sep-
arated, the above mentioned direct economical ties among the
countries are generally less active (inactive) than that among
geographically close countries. However, we can directly
make foreign-currency transactions of various countries at the
present day. In this case, as the deals are done based on dealers’
circumstances, expectations, and so on, the relationships
among the exchange rates might be more complicated than
we expect. Switzerland and Japan are geographically very
separated. However, Switzerland and Japan have something
in common. The common point is that CHF and JPY are
regarded as worldwide stable and reliable currencies. As a
matter of fact, CHF and JPY buying are often increased in
case of emergencies. Hence, it is small wonder that there is
some kind of relationship between CHF–USD and JPY–USD.
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FIG. 13. Network of daily exchange rate data from January 3, 2006 to December 31, 2014 (2255 data points): (a) the network using the
naive method using the CC with the threshold 0.5, and (b) the network using the proposed method.

We consider that the network constructed by the proposed
method shown in Fig. 13(b) reflects these matters.

VI. CONCLUSION

We have described an algorithm for constructing networks
from multivariate linear or nonlinear time series, even when
the data are not linearly correlated. To verify the connection
between two signals, we apply the previously proposed SSS
method, which can investigate correlation structures irrespec-
tive of whether the structures are linear or nonlinear. We have
demonstrated the application of this algorithm to computa-
tional examples using the CC and the AMI as discriminating
statistics. Our arguments and computational examples show

that this algorithm succeeds in testing correlation structures in
irregular fluctuations irrespective of whether the data are linear
or nonlinear and constructing the network from a dynamical
system perspective.
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