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Optimal transport in time-varying small-world networks
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The time-order of interactions, which is regulated by some intrinsic activity, surely plays a crucial role
regarding the transport efficiency of transportation systems. Here we study the optimal transport structure by
measure of the length of time-respecting paths. Our network is built from a two-dimensional regular lattice,
and long-range connections are allocated with probability Pij ∼ r−α

ij , where rij is the Manhattan distance. By
assigning each shortcut an activity rate subjected to its geometric distance τij ∼ r−C

ij , long-range links become
active intermittently, leading to the time-varying dynamics. We show that for 0 < C < 2, the network behaves
as a small world with an optimal structural exponent αopt that slightly grows with C as αopt ∼ log(C), while for
C � 2 the αopt → ∞. The unique restriction between C and α unveils an optimization principle in time-varying
transportation networks. Empirical studies on British Airways and Austrian Airlines provide consistent evidence
with our conclusion.
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I. INTRODUCTION

Transport efficiency is one of the primary concerns in net-
work design and optimization of transportation systems, such
as the Internet and airport networks. In the past decade, those
networks are often viewed as static geographic-based graphs
where nodes are embedded in a d-dimensional lattice. By
allocating long-range connections between two distant nodes i

and j with the probability Pij ∼ r−α
ij , the network turns into a

small world within a specific range [1–5]. Theoretical studies
have shown that there is a trade-off between short- and long-
range connections to best optimize transport paths and ongoing
traffic dynamics [6–12]. But the optimal conditions are far
from unified. As found on the unconstrained Kleinberg model,
the network diameter is minimized at αopt = 0 [9,13,14].
Imposing the cost limitation on additional links, the optimal
exponent enlarges to αopt = d + 1 [15,16], while it shifts to
a smaller value by introducing degree heterogeneity [17]. All
these efforts provide us a better understanding of the optimal
spatial structure for general transport dynamics.

Apart from the geometric topology, transport efficiency is
also determined by the dynamic pattern of link interactions.
In airline networks, for example, flights are running on
predesigned air routes to transport passengers [18–22]. The
time-ordered flight schedule is at the basis of travel time, whose
inefficient design will dissipate structural convenience. For a
passenger arriving at airport j from airport i at time t1, his
travel to k can continue only if there is a flight from j to k at
time t2 > t1. Hence the transport path not only relies on the
underlying topology, but also on how the edge activation events
are ordered in time, which is the key character of time-varying
systems [23–27]. In such a context, the temporal shortest path
length Tij is defined as the fastest time it takes to reach the
target j from the source i along the time-respecting path.
Taking temporal dimensions into account, some fundamental
properties such as network connectivity, damage resilience,
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and epidemic threshold are strikingly different from those of
static cases [26,28–30]. Consequently, the problem of how
well the network is optimized might go beyond our traditional
knowledge.

On the other hand, interaction dynamics is not completely
random but driven by intrinsic activity [31–35]. In transport
systems, the activity potential of each route, i.e., the flight
intensity or bus departure frequency, is implicitly involved
in running schedules, whose design significantly considers
geographical distance for cost savings. We believe that it is the
close interplay between geometric structure and interaction
dynamics that determines the transport efficiency, which is
neglected in previous attempts. In this paper, we introduce the
temporal effect into the classical Kleinberg model to determine
the optimal behavior of the temporal shortest path. The paper
is organized as follows. In Sec. II we propose a temporal model
by relating the activity potential of shortcuts to their geometric
lengths. In Sec. III, we discuss in detail the optimal transport
structure of time-varying systems. Our empirical analysis on
British and Austrian Airlines in Sec. IV unveils the relationship
between flight schedule and underlying air-route structure,
which confirms our theoretical prediction. Finally, we make
a conclusion in Sec. V.

II. MODEL DESCRIPTION

To characterize the long-term pattern of contacts, we first
construct the underlying network G0 based on the classical
Kleinberg model [2,3]. N nodes are arranged in a two-
dimensional regular lattice and each node is connected with
its four nearest neighbors. Additionally, each node has q

long-range connections. Node i is connected to a distant node
j with probability

p(rij ) = r−α
ij∑

j �=i r−α
ij

, (1)

where rij = |ri − rj | is the Manhattan distance between node
i and j , and α is a control parameter that determines the
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magnitude of both short- and long-range connections. The
larger the parameter α, the shorter are the long-range shortcuts.

To our assumption, link dynamics over the underlay is
driven by the internal activity potential. Each shortcut lij is
characterized by an activity rate τij , derived from its geometric
length rij in the following form [36]:

τij ∼ r−C
ij , (2)

where C is the coupling strength which determines to what
extent the link activity is constrained by geometric distance.
At each time step t , interactions of distance become active with
probability τ . As for the local links whose activity rate τ = 1,
they stay active during the whole period to make every node
reachable. All local connections and active shortcuts form the
instantaneous network Gt . From the link’s aspect, the dynamic
correlation of link l during the observation time window T is
defined as

�l = 1

T − 1

T −1∑

t=1

l(t) · l(t + 1), (3)

where l(t) = 1 if the link l is active at time t and l(t) = 0
otherwise. As each link intermittently switches between the
states of “on” and “off”, �l quantitatively measures the
ability of the link to persist its current state. Averaged over
all shortcuts, � = 〈�l〉 reflects the global persistence of the
interaction dynamics.

Obviously, the basic properties of our model are determined
by the common influence of Eqs. (1) and (2). In the case of
C = 0, τ → 1 for any connection so that our model degrades to
the static Kleinberg model with � = 1. Figure 1 vividly reflects
the general persistence of the network for different C and α.
For α > 2d (d = 2 in this work), most of the shortcuts are
with small lengths [13] whose activity is scarcely influenced
by spatial constraint, resulting in a highly clustered interaction
pattern regardless of C. For 0 � α � 2d, there are shortcuts

FIG. 1. Persistence of the interaction dynamics with different
structural exponents α and coupling strengths C. For C = 0, the
network degrades to a static model so that all shortcuts exist in
the whole time period, resulting in the maximum persistence value
of � = 1 regardless of α. With the growth of C, i.e., a stronger
spatial constraint on link dynamics, the time persistence of long-range
interactions is greatly reduced for the small structural exponent α.
While in the large range of α, shortcuts of short range take charge,
which are scarcely affected by spatial constraint.

of both short and long range, diverging in their ability to
become active. When geometric constraint is in the reasonable
scope, typically C < 2, the global persistence � is determined
by the number of long-range shortcuts, which increases with
descending α. With the increase of C, the spatial constraint on
link dynamics becomes stronger and interactions are therefore
poorly clustered in time, resulting in vigorously fluctuating
topologies. When C grows to infinity, the network loses all
potential long-range connections, degenerating to a stationary
regular lattice.

III. OPTIMAL STRUCTURE OF TIME-VARYING
NETWORKS

We now study in detail the dependence on the coupling
strength C of the average temporal shortest path length 〈T 〉.
The nodes are located on a two-dimensional lattice with
periodic boundaries. Here we assume that each node has
two neighbors of long distance, namely, q = 2 [37]. Results
depicted in Fig. 2 clearly indicate three regimes. For C = 0,
the temporal effect disappears and the network degrades to
a static Kleinberg model. As small α favors the creation
of more shortcuts with long length, it significantly reduces
the topological diameter. Hence the optimal value occurs at
α = 0 to maximize the transport efficiency, in accordance
with the condition reported in previous literature [9,13,14].
In the temporal case, however, there is a contradiction. More
shortcuts of long range, which greatly shorten the global
transport path in static networks, lead to poorly clustered
topologies because of their lower activity potential. In the
intermediate range of 0 < C � 2, an optimal exponent is
always observed at α �= 0, in sharp contrast to the static
case. With gradually deepening spatial constraint on link
activities, αopt slightly shifts to a larger value at around 2,
balancing the temporal and geometric effect. For C � 2, 〈T 〉
decays monotonically with α, since the shortcuts of long range

FIG. 2. Dependence on α of the average temporal shortest path
length of the network for different values of C. The underlying
substrate is a two-dimensional lattice with L = 100. The optimal
structure for efficient navigation is found for three different regimes
of C. For C = 0, the network degrades to a static Kleinberg model
so that αopt = 0; for 0 < C � 2, αopt slightly grows around two; for
C � 2, more long-range connections with poor activity will attenuate
temporal diameter so that the optimal condition is αopt → ∞.
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FIG. 3. (a) Average temporal shortest path length 〈T 〉 versus α

for different network sizes of C = 0.5. Nonmonotonical behavior of
〈T 〉 has been observed with a minimum at αopt ≈ 1.9 for L = 100.
(b) Finite-size analysis presents αopt = −10.09 × L−1 + 1.99 (fitted
by red solid line), indicating that αopt → 2 in the limit of L → ∞.
All the results are averaged with 100 realizations for L = 60,70,80,
and 10 realizations for L = 90,100.

severely participate in this case. The minimum value of 〈T 〉 is
therefore obtained at α → ∞.

To quantitatively investigate the optimal structure for global
transport, we further perform extensive simulations for differ-
ent values of α and different system sizes. Here we present
detailed results of C = 0.5 in Fig. 3(a). Intuitively, the average
temporal shortest path length 〈T 〉 behaves nonmonotonically
with the structural exponent α. The minimum path length
appears at αopt ≈ 2 for large networks of size L, where the
transport efficiency is best optimized. To get the precise αopt

of L → ∞, we apply the finite-size scaling analysis. As shown
in Fig. 3(b), the result of least linear fitting gives αopt =
−10.09 × L−1 + 1.99, which confirms the optimal exponent
directly observed in Fig. 3(a).

We also show the way in which 〈T 〉 scales with the system
size L. For C = 0.5, the results in Fig. 4(a) clearly indicate two
distinctive behaviors separated by a threshold αc = 3.5. For
0 � α � αc, a logarithmic relation, 〈T 〉 ∼ logγ L, is observed,
which is a signature of the small-world effect [1,38]. For those
α tested out of this range, however, a power-law dependence
of 〈T 〉 ∼ Lβ takes over, indicating a large world. In the case of
C = 2, however, all the 〈T 〉 scale as 〈T 〉 ∼ Lβ , regardless of
the value that α takes. And the minimal scaling exponent β

FIG. 4. Average temporal shortest path length 〈T 〉 versus the
linear size L of the network. (a) When C = 0.5, two distinctive
behaviors are observed. For 0 � α � 3.5, 〈T 〉 grows slowly as
〈T 〉 ∼ logγ (L), which is the signature of the small-world effect. For
α > 3.5, a power-law relation 〈T 〉 ∼ Lβ emerges. (b) In the case of
C = 2, however, only the power-law relation remains in the full range.
As an indicator of the growth rate, the value of β falls at a minimum
at α ≈ 2, as shown in the inset. Both plots have been vertically shifted
for better visualization.

corresponds to the shortest 〈T 〉, though the network cannot be a
small world. As shown in the inset of Fig. 4(b), the minimum
β is located at α ≈ 2, which indicates a relatively optimal
structure.

To better reflect the influence of spatial constraint on long-
range shortcuts, we perform similar analysis on other values of
C in the range of 0 < C < 2, where the small-world effect is
available. As depicted in Fig. 5, the optimal structure exponent
αopt logarithmically increases, while the upper bound of the
small-world region linearly decreases from 4 to 2, as shown in
the inset of Fig. 5.

The above observations indicate the following conclu-
sions. In time-varying systems with 0 < C < 2, there exists
an optimal spatial structure, resulting from the balance of
geometric lengths and activity potential of shortcuts. In
this effective range, the optimal exponent αopt grows with
gradually deepening constraints as αopt ∼ log(C). Specifically,
the optimal value for C = 0.5 is consist with the optimal
condition αopt = 2 in static spatial networks navigated with
local knowledge [2,3,7,8]. But once the coupling strength
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FIG. 5. Optimal structure exponent αopt of different C. Intuitively,
αopt logarithmically increases with the deepening spatial constraint
(red solid line) in the range of 0 < C < 2. On the other hand, the
separation threshold αc reduces with C in a linear form, as shown in
the inset.

exceeds the critical value of C = 2, the network is no longer
efficient in information transport and the small-world region
disappears.

IV. EMPIRICAL RESULTS OF AIRLINE NETWORKS

The airline network is a typical complex system exhibiting
small-world features in which nodes are airports located
in the plane with well-defined longitude and latitude. Two
airports are connected once there is at least an air route,
and this link is “on” if there is a running flight. The flight
information is collected from official websites [39,40], and
the geographical location of each airport is provided by the
Open-Flights program [41]. Flights operate on a designed
timetable, resulting in time-fluctuating interaction graphs of
each day as illustrated in Fig. 6 [42].

The cumulated number of flights during a given period �t

(�t is set to one week in this study due to the flight period)
partially involves the information of how busy a certain line is.
Flight intensity is closely related to the expected traffic on each
air route. Due to the structural heterogeneity, the traffic wij

over the air route depends on the degrees ki,kj of the airports
located at both ends. As previously mentioned in [18], a power-
law behavior of wij ∼ (kikj )θ is observed in the world wide
airport networks. Despite the divergence in airport capacity,
the geographical distance of each air route, which is the proxy
for transport cost, influences the flight intensity as well. Here
we define the rescaled flight intensity nl = Nl

kikj
, where l is the

air route between airports i and j , and Nl is the number of
cumulated flights during a week.

Intriguingly, results depicted in Figs. 7(a) and 7(b) clearly
show a power-law dependence of the flight intensity on
its geometric distance, i.e., nl ∼ (rl)−0.5. And the universal
coupling exponents in both British and Austrian Airlines
indicate that there is some intrinsic constraint restricting
activity intensity in airline networks.

We also measured the probability density function (PDF)
of the flight distances. For long-range flights, typically those
with a distance larger than 103 km, the distribution decays

FIG. 6. An illustration of the temporal evolution of British
Airways. For clarity, only a small part of the network is displayed.
Nodes are arranged based on their relative geographical distances,
and the label of each node is the airport’s three-letter code. When
there is a running flight between two airports, the link is “on” of
that day. Otherwise, the link is hibernating and is not shown in the
graph. Intuitively, the interaction structure varies day by day based
on operation schedule and the air routes of long distance seem more
volatile.

FIG. 7. Dependence of rescaled flight intensity on geometric
distance for (a) British Airways and (b) Austrian Airlines. Logarith-
mically binned results (blue square) indicate a power-law dependence
nl ∼ (rl)−C in both companies. Least linear fitting derives a slope
of −0.52 in British Airways and −0.49 in Austrian Airlines,
respectively. The universal coupling exponents suggest some intrinsic
constraint restricting activity intensity in airline networks. The
distance distribution p(r) of fights decays approximately as a power
law p(r) ∼ r−δ for distance > 103 km with a structure exponent (c)
δ ≈ 1.15 for British Airways and (d) δ ≈ 1.2 for Austrian Airlines.
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approximately as a power law p(r) ∼ r−δ with an exponent
δ ≈ 1.15 for British Airways and δ ≈ 1.2 for Austrian Air-
lines. In the d-dimensional lattice, the number of nodes that
have the same distance r to a given node is proportional to
rd−1. Given the probability P (rij ) for two nodes to have a
long-range connection with length r , the PDF of the flight
distances is

p(r) ∼ rd−1r−α = rd−α−1, (4)

which means δ = α + 1 − d. Hence the structural exponents
of these two airline networks are αBritish = δ + 1 = 2.15 and
αAustria = 2.2, respectively, which is very close to the model
prediction of αopt = 2 with the same coupling strength of C =
0.5. This consistence is not a coincidence. Deeply influenced
by economic and social limitations, the design of air routes
and corresponding running schedules reveals the optimized
aspect of networks. After long-term self-organization, airline
systems eventually evolve to be optimal. Similarly, the unique
restriction between C and α indicates a general scheduling
principle for other transport systems.

V. CONCLUSION

We propose a time-varying model to get insight about how
the temporal aspect takes effect on the optimal structure for
global transport. Here the geometric structure and interaction
dynamics are entangled by associating power laws for both

(i) the probability distribution of long-range connections,
Pij ∼ r−α

ij , and (ii) their corresponding activity potential, τij ∼
r−C
ij . For C = 0, our model degrades to the classical Kleinberg

model with the optimal exponent αopt = 0 [9,13,14]. When the
temporal dimension takes effect, namely, C �= 0, the optimal
transport occurs in a new structure. In the limit of large values
of C, the spatial constraint is so strong that only short-range
connections with significant activity potential contribute to
improving the transport efficiency, and thus we obtained
αopt → ∞. For intermediate values 0 < C < 2, the network
behaves as a small world and the optimal structural exponent
logarithmically grows with the coupling strength C. The
difference between optimum conditions mainly results from
the practical impact that long-range connections have on the
transportation process. A similar work on Laplacian transport
in small-world networks, in which the contribution of shortcuts
is denoted by conductance, revealed the same fact [10].
With empirical validation in real air-transport systems, our
observations suggest a design principle in temporal network
optimization.

Notably, our model is not limited in geographic-based
systems. As a measure of node similarity, the geometric
distance also spans to social ones such as salary, research
community, and friendship closeness. Therefore the idea of
introducing the temporal effect in this framework offers
a different view to explain the spatial scaling p(r) ∼ r−1

observed in many social networks [43–45].
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[27] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[28] H. Kim and R. Anderson, Phys. Rev. E 85, 026107 (2012).
[29] S. Trajanovski, S. Scellato, and I. Leontiadis, Phys. Rev. E 85,

066105 (2012).
[30] N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-
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