
PHYSICAL REVIEW E 93, 032320 (2016)

Fostering cooperation of selfish agents through public goods in relation to the loners

Jianlei Zhang, Zengqiang Chen,* and Zhongxin Liu
Department of Automation, College of Computer and Control Engineering, Nankai University, Tianjin 300071, People’s Republic of China

and Tianjin Key Laboratory of Intelligent Robotics, Computer and Control Engineering, Nankai University, Tianjin 300071,
People’s Republic of China

(Received 7 November 2015; revised manuscript received 22 February 2016; published 25 March 2016)

Altruistic behaviors in multiplayer groups have obtained great attention in the context of the public goods game,
which poses a riddle from the evolutionary viewpoint. Here we focus on a particular type of public goods game
model in which the benefits of cooperation are either discounted or synergistically enhanced at the appearance of
multiple cooperators in a group. Moreover, we focus on the three-strategies profile by adding the role of loners,
besides the often-used cooperation and defection. Using the replicator dynamic equations, we investigate a range
of dynamical portraits that characterizes the properties of the steady state. Analysis results indicate that loners and
cooperators both have chances to be the stable equilibrium points in the presence of perturbations, while defectors
fail to do so in this three-strategy competition. Moreover, the coexistence state, in which all three strategies exist
in equilibrium, can be led by suitable parameters and stabilized for perturbations. These results elucidate the
interplay between the characteristics of the public goods game and evolutionary dynamics in well-mixed systems.
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I. INTRODUCTION

Public goods and common-pool resources are fundamental
features of biological and social systems, and pose important
challenges in achieving sustainability. Such societal problems,
where the private interest may be at odds with the collective
interest constitute an important class of social dilemma.
To investigate this, game theory provides a quantitative
framework for analyzing the decision of rational agents [1–3].
Furthermore, evolutionary game theory popularly provides an
interdisciplinary mathematical framework embodying several
relevant features of the problem and, as such, is used in much
cooperation-oriented research [4–6].

The often-used game models for elucidating cooperative
dilemmas are the two-player prisoner’s dilemma game for
pairwise interactions, as well as the multiplayer public goods
games (PGGs) in larger groups of interacting individuals,
which are both typical paradigms for investigating the emer-
gence of cooperation in spite of the fact that self-interest
seems to dictate defective behavior [7,8]. Generally, these
social dilemmas can be treated as binary situations in which
two strategies are optional: either choose cooperation (C) in
order to serve the public interest, or choose defection (D),
which serves the immediate private interest. In a typical PGG,
players can voluntarily make a contribution to a common
pool, knowing beforehand that the collected goods will be
multiplied and then allocated evenly among all the players
regardless of their actual contributions. Herein, cooperators
are defined as altruistic individuals that offer contributions or
benefits to the group, while at some cost to themselves
concurrently. Instead, defectors act as freeloaders to exploit the
collective goods produced by altruistic behaviors, without any
contribution. This model hypothesis implies that the optimal
outcome for a player is to contribute nothing (i.e., defect) while
others contribute to the common pool (i.e., cooperate). Hence
a benefit conflict between the individual and the group occurs
in such kind of situations.

*Corresponding author: chenzq@nankai.edu.cn

It has been known that the general public goods game
can be viewed as one of the most frequently used models in
describing “the puzzle of common goods.” However, there
are still some collective dilemmas in real life for which
other models would be more appropriate. For example, in
natural systems, the actual value of the benefits provided
by cooperators may depend on the number of cooperators
in the group. As referred to in a previous study [9], in the
case of foraging yeast cells, the benefit provided by the first
cooperator may be of the greatest importance for the survival,
whereas the value of additional food decreases until, even-
tually, more food turns out to be useless for the saturated
cells. This leads to discounted or synergistically enhanced
benefits based on the number of cooperators in groups of
interacting individuals [10]. This kind of public goods dilemma
is fascinating and significant, and is a key supplement to the
modeling of the collective dilemma in real social society,
though currently getting less attention than the general public
goods game model. In this study we will try to understand
how steady-state strategies emerge in the framework of this
game, and to identify the characteristic features of steady-state
strategies.

In Recent years scores of mechanisms have been proposed,
which aim to enhance the evolution of cooperation among
selfish and unrelated individuals. Kin selection operates when
the donor and the recipient of an altruistic behavior are genetic
relatives, and is deemed as the key to altruism [11–14]. Direct
reciprocity needs repeated encounters between the same two
individuals [15,16]. Indirect reciprocity is based on reputation;
a helpful individual gets a better reputation and an individual
with a good reputation is more likely to receive help [17–22].
Network reciprocity is a reciprocity based on some type of
spatial or other clustering [23–25]. In addition, a number of
more recent studies have focused on the coevolution of strategy
and population structure, which also plays a crucial role in the
resolution of cooperative dilemma [26–30].

Literature on competitive altruism has also revealed that
strategy choices provide an important means to explain the
sustained levels of cooperation within the context of social
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dilemmas. Examples include loners [31], punishers [32],
insured players [33], or destructive agents [34,35]. Recent
work has uncovered a remarkable class of extortion strategies
that afford one player a disproportionate payoff when facing
an unwitting opponent [36,37]. Moreover, a strong body
of empirical evidence points to the widespread behaviors
of voluntary participation [38–42]. Among these previous
studies, some have supported a noticeable effect of an attractive
exit option on contribution levels, and voluntary participation
can induce a recovery of cooperation levels when the payoff
yielded by the exit option is high enough. Briefly, the
mentioned strategies providing rich types of options and
describing the individual heterogeneity, have been verified
to play important roles in the dynamics of evolutionary
games [43].

Here we establish our analysis about strategy competition in
the framework of the PGGs played by cooperators, defectors,
and loners, and in which the benefits of cooperation are either
discounted or synergistically enhanced. To our knowledge,
previous investigations paid little attention to the resolution of
the collective dilemma illustrated by this type of public goods
game. In this study we adopt the replicator dynamics and hope
to find some situations in which dilemma can be resolved
and cooperation can be enhanced. Moreover, a voluntary
participation case can better represent a conservative attitude
and the attempts to keep fixed values in complicated real-life
situations. In order to test for the direct effect of voluntary
participation on the contribution levels in this particular model,
we thus adopt these available strategies. Our simple model
may be applied to many social systems, where strategic
interactions occur all around us in a multitude of forms among
agents.

The paper is structured in the following way: In the next
section we give a description about the model. In Sec. III we
study analytically the case when the game is a PGG played by
cooperators, defectors, and loners, and in which the benefits of
cooperation are either discounted or synergistically enhanced,
along with a detailed discussion of the results. Finally, in
Sec. VI we summarize our findings and conclude.

II. MODEL DESCRIPTION

The present model consists of a population of N agents; all
the members of this sample can make a decision to play the
game or not. Each player has three possible actions available
to her: to cooperate, defect, or to be a loner. Loners do not take
part in the game, but obtain an autarkic benefit independent
of the other player’s strategy and the game result. Notably a
special case will probably arise: if only one player intends to
play, but all others refuse, then this single player is forced
to play the role of a loner by only obtaining the autarkic
payoff σ . Donation therefore represents the altruistic behavior
because the cooperator incurs an individual cost c to benefit
the group. As outlined in detail below, each agent receives a
payoff corresponding to the choices made by them.

As argued earlier, the first cooperator in a group makes
her contribution c which will produce a benefit rc to the
group. And then this benefit is shared by all the participants
in the group (including herself), and each participant gets
rc/Np. Here r denotes the amplification effect on the collected

common goods, and Np is the number of participants in this
group. Then, the second one enhances each participator’s
benefit by providing an income of rcω/Np. By that analogy,
the last of k cooperators in the group will provide a benefit of
rcωk−1/Np to all the participants. The special case of ω = 1,
where all cooperators furnish the group member with the same
incremental benefit rc/Np, naturally transforms the model to
the general formulation of the PGG.

Then, it is accessible that in the case of ω < 1, the benefits
are discounted and the value of the benefits provided by each
additional cooperator is lower than her previous one. While in
the setting of ω > 1, the benefits are synergistically enlarged,
and each additional cooperator brings incremental benefits of
increasing value.

For the analysis we have assumed a group of size N ,
which is composed of Nc cooperators, Nd defectors, and Nl

loners. With Pc, Pd , and Pl , we denote the average payoff for
cooperators, defectors, and loners, respectively, as follows:

Pc = r(1 + ω + ω2 + · · · + ωNc−1)c

Nc + Nd

− c,

Pd = r(1 + ω + ω2 + · · · + ωNc−1)c

Nc + Nd

,

Pl = σ. (1)

The parameter c is the cooperative cost paid by a cooperator.
For simplicity and without loss of generality, we set the coop-
erative cost c = 1 in the following parts. As usual, defectors
avoid contributions and exploit other players’ contributions.
And, the loners do not make any contribution and only
sparingly keep the fixed payoff σ , which will not be affected
by the game results.

III. GENERAL ANALYSIS

As mentioned we consider a sample of N players randomly
selected from the population. Thus, the probability that two
players in a sufficiently large population ever encounter each
other again can be neglected. And, it is clear that such
random sampling leads to groups whose composition follows a
binomial distribution. We now focus on the strategy evolution
dynamics of the groups composed by these three types of
players. Based on the replicator dynamics, which is a useful
approach, here a strategy’s payoff determines the growth rate
of its fraction in the population [44]. In the continuous time
model, the evolution of the frequency fi of the strategy i acts
up to the reduced differential equation

ḟi = fi(Pi − P̄ ), (2)

where i ∈ (C,D,L), and P̄ = fcPc + fdPd + flPl is the
average payoff of a player in the population. Here we employ
x, y, and z to denote the fractions of cooperators, defectors,
and loners, respectively, in this large population.

Next, similar to [31], the probability that there are
S − 1 coplayers (not including the loners) in the sample group
in which a given player finds herself, is determined by the
probability of (

N − 1

S − 1

)
(1 − z)S−1zN−S, (3)
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which is independent of whether the agent is a cooperator,
defector, or loner.

Then, the probability that there are m cooperators and
S − 1 − m defectors in the current group where a given player
finds herself, is determined by

(
S − 1

m

)(
x

x + y

)m(
y

x + y

)S−1−m

. (4)

According to Eq. (1), the expected payoff for a defector in
such a group of size S (S = 2, . . . ,N) is

Pds =
S−1∑
m=0

r(1 − ωm)

S(1 − ω)

(
S − 1

m

)(
x

x + y

)m(
y

x + y

)S−1−m

= r

S(1 − ω)

[
1 −

(
ωx

x + y
+ y

x + y

)S−1]
, (5)

where ω �= 1, and the summation runs over all the possible
numbers of cooperators belonging to the group of size S,
which includes the focal defector. As argued earlier, the term
r(1−ωm)
S(1−ω) represents the payoff related to the value of S, and

the cooperation cost is set as c = 1 as mentioned above. In
this case, the probability that there are m cooperators and
S − 1 − m defectors in the group where a given defector finds
herself is given by Eq. (1).

Thus, the average payoff of a defector in the whole
population is

Pdw = σzN−1 +
N∑

S=2

(
N − 1

S − 1

)
(1 − z)S−1zN−S

× r

S(1 − ω)

[
1 −

(
ωx + y

1 − z

)S−1]
. (6)

As already mentioned, loners make no contribution and get a
fixed payoff σ irrespective of the game results. In this case, a
defector facing N − 1 loners in the population is forced to be
a loner. This consideration is described by the first term σzN−1

of Eq. (6).
From this analysis we get the formula which represents the

payoffs of a focal defector facing N − 1 coplayers. For the
convenience of analysis, it can be rewritten in another form of

Pd = σzN−1 + r

1 − ω

[
1 − zN

N (1 − z)
− (ωx + y + z)N

N (ωx + y)

+ zN

N (ωx + y)

]
. (7)

The above analytical approach allows us to study the payoff
of a cooperator in such population, which is given by

Pcw = σzN−1 +
N∑

S=2

(
N − 1

S − 1

)
(1 − z)S−1zN−S

×
{

r
[
1 − ω

(
ωx+y

1−z

)S−1]
S(1 − ω)

− 1

}
. (8)

For the sake of the convenient calculation, it can be rewritten
as another form of

Pc = σzN−1 + r

1 − ω

[
1 − zN

N (1 − z)
− zN−1

]

− ωr

1 − ω

1

N (ωx + y)
[(ωx + y + z)N − zN

−N (ωx + y)zN−1] − 1 + zN−1. (9)

Under the replicator condition, the strategy evolution will
depend on the respective payoffs depending on different
strategies. Here we first focus on the competition between
strategies C and D. The sign of Pd − Pc determines whether
it pays to switch from defection to cooperation or vice versa,
with Pd − Pc = 0 being the equilibrium condition.

Pd − Pc = 1 − zN−1 − r[(ωx + y + z)N − zN ]

N (ωx + y)
+ rzN−1.

(10)

For any state (x,y,z) where x �= 0, the probability that
there are Nc cooperators in the current group where a given
cooperator finds herself, is denoted by ξ (Nc). Then it is easy
to get

∑N
Nc=1 ξ (Nc) = 1.

We also notice that

ξ (Nc) =
N−Nc∑
Nc=1

τ (Nc,Nd ), (11)

where τ (Nc,Nd ) is the joint probability that the group is
composed of Nc cooperators and Nd defectors. And, it is
worth noting that τ (Nc,Nd ) is only related to (x,y,z), and
is not affected by the parameter ω. It suggests that the ratio
of cooperators, defectors, and loners in the whole population
decides the numbers of three strategies in the chosen players
of size N .

For a chosen group which contains Nc cooperators and
Nd defectors, the payoff of cooperators is given by Pc and
Pd by recalling Eq. (1). If ω > 0, it is easy to get the result
∂Pc(Nc,Nd )

∂ω
> 0, implying that Pc is monotonically increasing

with ω. This result is consistent with our intuition about
the roles of subsequent cooperators, driven by synergistically
enhanced benefits based on the number of cooperators.

In the following we focus our attention on the dynamic
results of the system. The first consideration is the evolution
dynamics on the boundary of the strategy simplex, where only
two strategies (i.e., pairs of CD, pairs of CL, and pairs of DL

in this model) are provided for the population. The results are
listed as follows.

(1) The available strategies are C and D (i.e., z = 0), and
in this case Pd − Pc = 1 − r(ωx+y)N−1

N
. Here, we can get the

following results. Particularly, ω � 1 results in Pd − Pc > 0
due to r < N . Second, ω > 1 helps to get lim

y→0
(Pd − Pc) =

1 − rωN−1

N
, and lim

x→0
(Pd − Pc) = 1 − r

N
> 0. Thus, it is easy to

conclude that a nonstable equilibrium point exists on the edge
of CD when 1 − rωN−1

N
< 0.

(2) The optional strategies are only D and L (i.e., x = 0),
where Pd = σzN−1 < σ , therefore the population will evolve
into a pure state of L.
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(3) Players are provided with two strategies of C and L

(i.e., y = 0), where the results will depend on the value of ω.
If ω = 1, cooperators get dominance over loners with the aid of
Pc − Pl = r − 1 − σ and r > 1 + σ . If ω �= 1, we can obtain
lim
x→1

Pc = r(1+ω+···+ωN−1)
N

− 1. Specifically, the two cases given

by lim
x→1

Pc = r(1−ωN )
N(1−ω) − 1 and lim

x→0
Pc = σ , respectively, need

to be distinguished by comparing the values of lim
x→0

Pc and σ .

As analyzed, for any cooperator, the probability of finding
S − 1 coplayers among the N − 1 players in her group is given
by(

N − 1

S − 1

)
(1−z)S−1zN−S =

(
N − 1

S − 1

)
xS−1(1−x)N−S. (12)

Here these S − 1 coplayers are cooperators since we have
assumed that only cooperators and loners are provided for the
gaming population.

By considering the condition of

ξ (S) =
(

N − 1

S − 1

)
xS−1(1 − x)N−S, (13)

and when i > 2,

lim
x→0+

ξ (i)

ξ (2)
= lim

x→0+

(
N−1
i−1

)
xi−1(1 − x)N−i

(N − 1)x(1 − x)N−2
= 0. (14)

The approximative results can be gained, where lim
x→0+

∂Pc

∂x
> 0 supported by Pc(Nc = 2) = r(1+ω)

2 − 1 and thus r >
2σ+2
ω+1 . Then the final results depend on the following: If

lim
x→1

Pc = r(1−ωN )
N(1−ω) − 1 > σ , the system will evolve into the

pure state dominated by cooperators; if lim
x→1

Pc < σ , there

exists a steady equilibrium point x∗ ∈ (0,1) which leads to
Pc(x = x∗) = σ .

The dependence of game dynamics on the characteristics
of this public goods game model deserves investigation, where
the amplification coefficient can be diminishing, increasing, or
fixed. In the following we focus our attention on two different
situations for a thorough study.

Situation 1. where no border equilibrium consisting of
cooperation and defection exists, i.e., 1 − rωN−1

N
> 0. As

illustrated in Fig. 1, we obtain four scenarios in relation to
the values of ω and σ , where these two parameters play key
roles in deterring defection.

(1.1) If r(ω + 1) > 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 > σ , the out-

come of the game dynamics depends on the initial conditions.
For any initial state situating on the boundary of the strategy
simplex, the corners C, D, and L are unstable equilibria of the
game dynamics for possible perturbations. However, the initial
state satisfying the condition of x > 0, y > 0, z > 0 will lead
to a state where the three strategies coexist in the final state.

(1.2) If r(ω + 1) < 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 < σ , full

loner equilibrium (L) is the only stable point in the system
when considering the presence of perturbations. As mentioned,
the advantage of one strategy over another depends on the
payoff difference between them. Different from (1.1) by
increasing σ from σ = 0.8 to σ = 0.9, larger σ facilitates
the survival of loners.

C

D

L

(1.1)
C

D

L

(1.2)

C

D

L

(1.3)
C

D

L

(1.4)

FIG. 1. Three strategy evolution dynamics in this special public
goods game characterized by the parameter ω, where in the presence
of smaller ω, cooperators are hard to stabilize. However, the presence
of loners is beneficial for inhibiting the dominance of free riders
in this system. In the presence of loners, there are four scenarios
for the game dynamics that are characterized by the magnitude
of multiplication factor ω and the payoffs σ of acting as loners.
Resulting game dynamics depending on the initial state are shown
in the four scenarios. The corners C, D, and L are equilibrium
points. Open dots are unstable equilibrium points and closed dots are
stable equilibrium points when considering the mutation. In (1.1) the
parameters satisfy r(ω + 1) > 2σ + 2 and r(1−ωN−1)

N(1−ω) − 1 > σ ; here
N = 5, r = 3, σ = 0.8, ω = 0.8. Besides the unstable equilibria of
C, D, and L, the coexistence (i.e., the interior equilibrium point)
of the three competing strategies is also possible here. In (1.2)
the parameters satisfy r(ω + 1) < 2σ + 2 and r(1−ωN−1)

N(1−ω) − 1 < σ ;
here N = 5, r = 2, σ = 0.9, ω = 0.8. Results show that full loner
equilibrium (L) is the only stable point in the system when
facing perturbations. In (1.3) the parameters satisfy r(ω + 1) >

2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 < σ , and we employ here N = 5, r = 2,

σ = 0.5, and ω = 0.8 in our analysis. From the results we can see
a border equilibrium consisting of cooperators and loners. (1.4)
the parameters satisfy r(ω + 1) < 2σ + 2 and r(1−ωN−1)

N(1−ω) − 1 > σ .
The employed parameter takes the value of N = 5, r = 2, σ = 1.3,

ω = 1.05. Besides the stable point of pure loners, an unstable border
equilibrium consisting of loners and cooperation is also observed.

(1.3) If r(ω + 1) > 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 < σ , there is

an additional border equilibrium consisting of cooperators and
loners. Compared with case (1.2) above, with lower σ drive
the population evolves to this steady state.

(1.4) If r(ω + 1) < 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 > σ , this cre-

ates a border equilibrium consisting of loners and cooperators.
This equilibrium is unstable for perturbations. And, there
is now an additional stable equilibrium purely consisting of
loners. It is understandable that large enough payoffs gained
by loners will promote its survival and spread in the popu-
lations always seeking the maximum profit. Further, here we
employ ω = 1.05 in our analysis, signifying the synergistically
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enhanced benefits based on the number of cooperators in
groups of interacting players. It is clear that the public goods
benefits are provided only by cooperators here, not defectors
or loners. Thus, more cooperators will improve the payoffs of
the whole public group. Along this line, decreasing ω impairs
the magnifying effect of contributions impartially provided
by cooperators. Here, the payoff competition between the
cooperators and loners depends on the number of cooperators,
resulting in the unstable border equilibrium consisting of
loners and cooperation as shown in Fig. 1 (1.4).

Summarizing the four scenarios corresponding to
Figs. 1(1.1)–1(1.4), we can conclude that the introduction
of loners plays a significant role in deterring the spread of
defectors who free ride other’s contributions. Naturally, larger
σ [e.g., scenario (1.4)] can effectively guarantee the existence
of a stable equilibrium point of pure loners. Further, the nature
of the employed public goods game also notably influences the
strategy evolution. Smaller ω could not efficiently ensure the
payoff advantages of cooperators which will propel the spread
and domination of the corresponding strategy.

Situation 2. where there is a border equilibrium consisting
of cooperation and defection (on the edge of CD), i.e.,
1 − rωN−1

N
< 0. Similar to the above analysis, we need to clarify

the possible scenarios of the game dynamics.
(2.1) If r(ω + 1) > 2σ + 2 and r(1−ωN−1)

N(1−ω) − 1 > σ , the out-
come of the game dynamics depends on the initial conditions.
For any initial state situating on the boundary of the strategy
simplex, full cooperation equilibrium (C) is the only stable
point in the system in the presence of perturbations. It is
clear that ω > 1 means synergistically enhanced benefits
based on the number of cooperators in groups of interacting
agents. More cooperators will magnify the gains of the group
nonlinearly. Different from Figs. 1(1.1)–1(1.3) by increasing
ω from ω = 0.8 to ω = 1.2, this updated situation provides a
dominating advantage in payoffs for cooperators over others.

(2.2) If r(ω + 1) < 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 < σ , full

loner equilibrium (L) is the only stable point in the system.
Under this situation, the increasing σ from σ = 0.5 [as used
in case (2.1)] to σ = 3 facilitates the loners to finally dominate
the whole population.

(2.3) If r(ω + 1) < 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 > σ , this

creates a border equilibrium consisting of loners and coop-
erators. And this equilibrium is unstable in the presence of
perturbations. Moreover, cooperation (C) and loners (L) are
both stable equilibria of the game dynamics. By comparison
we can see the dependence of the dynamic results on the
increasing σ and ω.

(2.4) If r(ω + 1) > 2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 < σ , this

will create a stable border equilibrium consisting of loners
and cooperators. In our system, the evolution dynamics thus
depends on the following set of inequalities:

1 − rωN−1

N
< 0, r(ω + 1) > 2σ + 2,

r(1 − ωN )

N (1 − ω)
− σ − 1 < 0, ω > 1, r < N. (15)

Considering the precondition of r > 2(σ+1)
ω+1 , we introduce

r∗ = 2(σ+1)
ω+1 , thus r > r∗ denotes r(ω + 1) > 2σ + 2. With a

C

D

L

(2.1)
C

D

L

(2.2)
C

D

L

(2.3)

FIG. 2. Three-strategies evolution dynamics in this special public
goods game in the presence of larger ω. Similarly, the corners C, D,
and L are equilibrium points. Open dots are unstable equilibrium
points and closed dots are stable equilibrium points when considering
perturbations. In (2.1) the parameters satisfy r(ω + 1) > 2σ + 2 and
r(1−ωN−1)

N(1−ω) − 1 > σ ; here N = 5, r = 3, σ = 0.5, ω = 1.2. In this
case, the outcome of the game dynamics depends on the initial
conditions. In (2.2) the parameters satisfy r(ω + 1) < 2σ + 2 and
r(1−ωN−1)

N(1−ω) − 1 < σ ; here N = 5, r = 2.5, σ = 3, ω = 1.2. Resulted
by larger σ , full loner equilibrium (L) is the only stable point in the
system for perturbations. In (2.3) the parameters satisfy r(ω + 1) <

2σ + 2 and r(1−ωN−1)
N(1−ω) − 1 > σ ; here N = 5, r = 2.5, σ = 2, ω =

1.2. Depending on the initial state, the stable equilibria of C and D,
and a border equilibrium consisting of L and C are possible outcomes
under this situation. (2.4) r(ω + 1) > 2σ + 2 and r(1−ωN−1)

N(1−ω) − 1 < σ ;
since there is no stable border equilibrium consisting of loners and
cooperation under this situation, no figure is presented here.

view to r < r∗∗ = N(σ+1)
ωN−1+ωN−2+···+ω+1 , r(1−ωN )

N(1−ω) − σ − 1 < 0 is
equal to r < r∗∗. It is clear that the above Eq. (15) has no
solution if r∗ > r∗∗. Accordingly, r∗ − r∗∗ = (σ + 1)( 2

ω+1 −
N

ωN−1+ωN−2+···+ω+1 ). If N is even, we can obtain the following
results: r∗−r∗∗ > (σ+1)( 2

ω+1− N
ω+1

2
N

) = 0 (due to ω > 1).
If N is odd, r∗ − r∗∗ > (σ + 1)[ 2

ω+1 − N

(ω+1)( N−1
2 )+ωN−2 ] >

(σ + 1)[ 2
ω+1 − N

(ω+1)( N−1
2 + 1

2 )
] = 0. The precondition of ω > 1

results in ωN−2 > ω. Omitting other calculation details, we
finally obtain r∗ > r∗∗ and arrive at a conclusion that the set
of inequalities Eq. (15) has no solution, thus there is no stable
border equilibrium consisting of loners and cooperators.

Summarizing above, the results in Figs. 1 and 2 have proved
to be sensitive to the key parameter ω of the underlying public
goods game, and the given payoffs σ of loners. Particularly,
in this setting larger ω promotes the emergence of stable
equilibrium of pure cooperators, or loners under suitable
conditions. Synergy (ω > 1) generally favors cooperation as
compared to discounting (ω < 1). For the discounted benefits,
ω < 1, defection gains the chance to reign (depending on the
payoffs σ of loners), whereas cooperators lose this chance.
As described, depending on the initial condition, the state
converges either to an equilibrium consisting of cooperators
and loners, or to an coexistence of the three strategies, or the
fixation state of cooperators or loners.

IV. CONCLUSION

Cooperation in social interactions involving more than two
agents is a widely studied problem. The mostly discussed
public goods game can be seen as a standard model for
studying cooperation and cheating in evolving populations.
Relaxing the uniform influence of each contribution provided
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by the cooperators, we discuss a version of the public goods
game which includes the discounting or synergy in the benefits
provided by cooperators in the gaming group. Among them,
how the tunable parameter helps the traditional public goods
game is a special case of this studied game. The conflict
between the pursuit of self-interests and collective interests
in the context of social dilemmas still exists here. And our
investigations are focused on the three-strategies games, which
are constructed by adding an option of being loners. We aim to
provide some conditions by which cooperation may originate
and be maintained in this type of public goods game. A rich
variety of competition scenarios emerge from the description
of evolutionary games.

In our model, ω < 1 is a crucial ingredient where the
discounted benefits (driven by parameter ω < 1) indicate a
stricter cooperation dilemma than the synergistically enhanced
one. It has indeed been observed that the discounted benefits
based on the number of cooperators lead to a decline in
cooperation. In opposition to this, larger ω together with the
appropriate payoffs σ of loners, may keep cooperators alive.
The resulting dynamics can also allow the coexistence of the
three strategies, and even the full cooperator equilibrium which
is a stable point of the dynamics under perturbations. Last, the
variation of the payoffs σ helps us to verify that being loners

is an effective mechanism for sustaining contribution levels
when players can opt out. In addition, it is understandable
that larger payoffs of loners can better deter the spread of free
riders.

To conclude, we focused on the synergy and discounting in
a three-strategies public goods game. Our results point out
that the nature of the public goods game (decided by the
discounted or synergistically enhanced benefits in the presence
of multiple cooperators) plays a fundamental and positive role
in the evolution of cooperation. While our well-mixed model
does not address here the question of which strategy succeeds
in the structured populations, it would be interesting to see if
our conclusions would still hold (or not) in a networked system.
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