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Fluctuations in complex networks with variable dimensionality and heterogeneity
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Synchronizing individual activities is essential for the stable functioning of diverse complex systems.
Understanding the relation between dynamic fluctuations and the connection topology of substrates is therefore
important, but it remains restricted to regular lattices. Here we investigate the fluctuation of loads, assigned to
the locally least-loaded nodes, in the largest-connected components of heterogeneous networks while varying
their link density and degree exponents. The load fluctuation becomes finite when the link density exceeds
a finite threshold in weakly heterogeneous substrates, which coincides with the spectral dimension becoming
larger than 2 as in the linear diffusion model. The fluctuation, however, diverges also in strongly heterogeneous
networks with the spectral dimension larger than 2. This anomalous divergence is shown to be driven by large
local fluctuations at hubs and their neighbors, scaling linearly with degree, which can give rise to diverging
fluctuations at small-degree nodes. Our analysis framework can be useful for understanding and controlling
fluctuations in real-world systems.
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I. INTRODUCTION

It has recently been of great interest how the global
organization of interactions of constituents influences the
system-level dynamical characteristics [1,2], such as stabil-
ity [3], criticality [4], controllability [5], evolvability [6,7],
and so on. In particular, the impact of the connection topology
for synchronizing the activities and balancing the loads of
elements has attracted much attention [8], as it underlies
the stability of diverse networked systems including brain
networks [9], internet traffic routing [10], electric power
transmission [11–13], and parallel computing [14–17].

The total number of interacting pairs primarily determines a
system’s synchronizability: The more pairs are interacting for
their synchronization, the better fluctuations can be suppressed
in a system. Yet how much an increase of interacting pairs
can enhance the synchronization of a system, especially of
heterogeneous networks universally found in the architecture
of biological, social, and economic systems [1], has not yet
been characterized. Its investigation can help us understand
the mechanism for the stable functionality of systems with
link failures [3,18] and illuminate how the connectivity
of real-world systems is determined under the competition
between the contribution to synchronizability and the cost of
establishing new interaction channels.

We study the fluctuation of loads assigned to the least-
loaded nodes in the neighborhood of each randomly selected
node, following the Family model [19], in scale-free (SF)
networks [20]. Given the sparse connectivity of most real-
world systems [1] and possible applications to damaged
systems, we consider the largest-connected component (LCC)
of SF networks with small link density as substrates. The LCC
is expected to have the core elements, the robustness of which
is essential for the operation of the whole system [3].

Our study shows that the spectral dimension and the
heterogeneity of substrates determine the scaling behavior
of the load fluctuation. For weakly heterogeneous networks,
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the fluctuation in the LCCs first diverges with their size
but later becomes finite while the link density is increased,
which is shown to be related to the spectral dimension of the
substrates increasing and passing the critical dimension 2 as
predicted by the linear diffusion model. Therefore a finite link
density, as large as the threshold, is sufficient for achieving
synchronization. On the other hand, in strongly heterogeneous
systems featured by lots of hubs, the load fluctuation is found
to diverge with substrate size over a wide range of link
density. We show that such anomalous divergence originates in
large local fluctuations at abundant hubs and their neighbors,
characterized by manifestions of the load fluctuation in star
graphs. The condition for local hub-generated fluctuations to
dominate the global fluctuation is presented in terms of the
degree-dependent local fluctuations. These findings lead to a
new framework of analyzing fluctuations in complex systems.

II. MODEL AND SCALING BEHAVIORS OF LOAD
FLUCTUATIONS

Let us consider a network of N ′ nodes, their accumulated
work loads {hi} of which evolve with time t following the
Family model [19,21–23] as follows:

(i) A node i is selected randomly.
(ii) If hi � hj for all neighbor nodes j of i, then hi →

hi + 1; otherwise, h� → h� + 1 at a neighbor node � having
the smallest load among the neighbors.

(iii) Time t is increased by 1 after repeating (i) and (ii) N ′
times.

Assigning a new unit of load to the locally least-loaded node
as above helps synchronize loads. For the substrates, the static
model [24] is used to generate SF networks of N nodes, L links,
and a power-law degree distribution Pdeg(k) ∼ k−γ for k large
with γ the degree exponent. The link density K is defined as
K ≡ L/N . The obtained networks can be fragmented and we
run the Family model on the LCC, consisting of NG nodes and
LG links. The structure of the LCC varies with the link density
K and the degree exponent γ of the original SF network (see
Appendix A).
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For the LCCs of SF networks with the link density
1/8 � K � 1, the degree exponent γ = 100,3.6, and 2.4, and
different numbers of nodes N , we obtain in simulations the
average size NG of the LCCs and the load fluctuation W (t) ≡√

〈(1/NG)
∑NG−1

i=0 (hi(t) − h̄t )
2〉 with h̄t = ∑

i hi(t)/NG. We
are interested in the time-averaged stationary-state fluctuation

Wsat =
√

1
T −tc

∑T
t>tc

W (t)2 where T is the simulation time
period and tc is the crossover time after which W (t) stops
increasing and becomes stationary [25].

The simulation results for (NG,W 2
sat) are presented in

Fig. 1(a). For γ = 3.6 and 100,Wsat increases with NG when
the link density K is small, but Wsat remains constant against
increasing NG for large K , suggesting that the addition of links
should facilitate synchronization by preventing fluctuations
from diverging with the substrate size. For γ = 2.4,Wsat

increases with NG for all considered K’s. The scaling exponent
α characterizing the divergence or finiteness of the load
fluctuation as

Wsat ∼ Nα
G (1)
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FIG. 1. Scaling of the stationary-state load fluctuation Wsat with
respect to the average size NG of the LCCs of SF networks with
different link densities K = L/N and degree exponents γ in the
Family model. (a) Plots of W 2

sat vs NG for selected K and γ . Error
bars show the maximal difference between W 2(t) and W 2

sat. (b) Scaling
exponents α in Eq. (1) as a function of K . Variations with the fitting
range are represented by error bars (Appendix B).

can be a measure of synchronizability: Fluctuations will be
finite in the thermodynamic limit (NG → ∞) if α = 0 while
it will diverge if α > 0. The scaling behavior in Eq. (1) has
been extensively studied in the context of surface growth on
the Euclidean lattices [25], but that on complex networks is
little understood [14,15,21–23].

The fluctuation exponent α decreases to reach zero within
error bar at Kth between 1/2 and 5/8 for γ = 100 and
Kth between 3/8 and 1/2 for γ = 3.6 [Fig. 1(b)]. These
thresholds are close to the threshold Kc for the emergence
of the giant component, the LCC of NG = O(N ): Kc 	 0.50
for γ = 100 and Kc = 0.31 for γ = 3.6 [26]. The smaller
threshold for γ = 3.6 than for γ = 100 implies that hubs are
helpful for maintaining synchrony with small link densities. In
contrast, for γ = 2.4, the scaling exponent α rarely decreases
with K , remaining positive: Adding links, up to K = 1,
hardly improves synchronizability. Therefore hubs may be
hindering synchronization in this case. Similarly a logarithmic
divergence of Wsat has been reported for the unfragmented
configuration-model SF networks with the minimum degree
2,γ = 2.5, and K 	 2.4 [21].

III. SPECTRAL DIMENSION OF SUBSTRATES

To understand the origins of these rich behaviors of α(K,γ ),
we first refer to the Edwards-Wilkinson (EW) model [27],
a solvable linear diffusion model known to belong to the
same universality class as the Family model on the Euclidean
lattices. The time evolution of work loads in the EW model is
represented by the EW equation ∂hi

∂t
= −∑N ′

j=1 Mijhj + ξi(t)
for a network of N ′ nodes, where ξi(t) is an uncorrelated noise
and Mij is the Laplacian matrix Mij = kiδij − Aij with Aij the
adjacency matrix. This is another mechanism of synchronizing
the work loads at neighboring nodes, via linear coupling, and
its lattice version has each randomly selected node i increase
or decrease its load by 1 with equal probability as long as its
new load would not differ from that of any neighbor node by
more than 1 [25].

One can see from the corresponding Fokker-Planck equa-
tion that the load distribution takes the Gaussian form
P ({h}) ∝ exp[−(1/2)

∑
ij hiMijhj ] in the stationary state,

which leads to the analytic expression for the load fluctuation

in the EW model, W 2
sat = 1

N
′
∑N

′

n=2
1
λn

with λn’s being the
eigenvalues of the Laplacian matrix M sorted in the ascending
order, and the smallest eigenvalue λ1 = 0 [28]. The sum is
dominantly governed by the small eigenvalues, the spectral

density function of which, ρ(λ) = (1/N
′
)
∑N

′

n=2 δ(λ − λn),
behaves in general as ρ(λ) ∼ λds/2−1 for λ small with ds the
spectral dimension [29]. Using the spectral density function
ρ(λ), one can evaluate W 2

sat as

W 2
sat =

∫
λ2

dλ ρ(λ) λ−1 ∼
∫

λ2

dλ λ
ds
2 −2

∼
{

λ
ds
2 −1

2 for ds < 2,

constant for ds > 2,
(2)
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with λ2 being the second smallest eigenvalue. In the LCC of
size N ′ = NG,λ2 behaves as

λ2 ∼ N
− 2

ds

G , (3)

from the extreme-value relation
∫
λ2

dλ ρ(λ) = NG−1
NG

[30].
Inserting Eq. (3) into Eq. (2), we find that Wsat follows Eq. (1)
with [31]

α(EW) =
{ 1

2

(
2
ds

− 1
)

for ds < 2,

0 for ds > 2.
(4)

We remark that the return-to-origin probability in random
walks is related to the spectral density function by the Laplace
transform [31].
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FIG. 2. Spectral dimension of the studied substrates. (a) The
second smallest eigenvalue λ2 of the Laplacian for γ = 100 (left), 3.6
(middle), and 2.4 (right). λ2 ∼ N−1.4

G best fits the data for K = 1/2
and γ = 100 and λ2 ∼ N−1.2

G for K = 3/8 and γ = 3.6. Error bars
indicate the standard deviation of λ2 over different realizations of
networks. (b) Spectral dimensions ds estimated by fitting Eq. (3) to
the data in panel (a). The line is for ds = 2. (c) α(EW) obtained by
inserting the estimated ds in Eq. (4).

To see whether Eq. (4) explains the behaviors of α in
the Family model, we obtain numerically λ2 [Fig. 2(a)] and
determine ds by fitting Eq. (3) to the obtained data. The spectral
dimensions less than 2 appear for K � 1/2 and γ = 100
and for K = 3/8 and γ = 3.6 as shown in Fig. 2(b). As a
result, for γ = 3.6, α(EW) obtained by using the estimated ds

in Eq. (4) is zero for K � 1/4, positive for K = 3/8, and again
zero for K � 1/2. For γ = 100, α(EW) > 0 for K � 1/2 and
α(EW) = 0 for K > 1/2. α(EW) = 0 for all K and γ = 2.4.
See Fig. 2(c). α(EW) transits from positive to zero between
K = 1/2 and 5/8 for γ = 100 and between K = 3/8 and 1/2
for γ = 3.6, as does α in Fig. 1(b). This agreement suggests
that the transitions of α from positive to zero arise from ds of
the LCCs increasing beyond 2.

For the LCCs of ds > 2, however, the EW model prediction
fails to explain all the Family model results. While α(EW) = 0
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FIG. 3. Properties of the LCCs and the load fluctuations in star
graphs. (a) The largest degree kmax scaling with the size NG for γ =
100 (left), 3.6 (middle), and 2.4 (right). kmax ∼ N

1
γ−1

G [26] except for
kmax ∝ NG with K = 1/8 and kmax ∼ N 0.68

G with K = 1/4 in the case
of γ = 3.6. Insets: Examples of the LCCs for K = 1/8. (b) Sorted
relative loads hr − h̄ vs their ranks r on the star graph of N = 20
nodes. Inset: Node color varies with the relative load h − h̄ from
red (h − h̄ = −5) through black (h − h̄ = 0) to green (h − h̄ = 5).
(c) W 2

sat and the local fluctuation at the node in the center W 2
sat,0 vs

the size N in star graphs for the Family model ([F]) and the EW
model ([E]).
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for all the substrates with ds > 2, α of the Family model is
zero only for K > Kth with γ = 3.6 and 100; α is quite large
for very small link densities K � 1/4 with γ = 3.6 and α

remains positive for all K with γ = 2.4. These differences
may be attributed to the nonlinear terms in the time-evolution
equation of the Family model on heterogeneous networks [22].
The nonlinear terms are, however, hard to analyze further to
gain insight into the origin of such different load fluctuations
between the two models. Instead, we investigate in the next
section the fluctuations in star graphs, as the heterogeneity of
SF networks stem from the inclusion of many such star graphs
of widely different sizes.

IV. FLUCTUATIONS IN STAR GRAPHS AND
DEGREE-DEPENDENT LOCAL FLUCTUATIONS

A hub and its nearest neighbors form a star graph, which
features the LCCs exhibiting α(EW) = 0 (ds > 2) but α > 0. In
Fig. 3(a), the LCC with γ = 3.6 and K = 1/8 is dominated
by a single big star graph and has its largest degree kmax ∝ NG

as the star graphs. The LCCs with γ = 2.4 has multiple star
graphs.

On star graphs, loads are unevenly distributed in the Family
model while they are almost uniform in the discrete EW model
[Fig. 3(b)]. The hub node in the center is given a higher
chance to increase its load than its neighbors, resulting in
its load higher than the average in the Family model [23]. The
peripheral nodes of degree 1 then have quite heterogeneous
loads such that when sorted, loads increase linearly with their
ranks [Fig. 3(b)]. As a result, Wsat increases linearly with the
size N

′
[Fig. 3(c)]:

Wsat 	 cstarN
′

(5)

with cstar 	 0.2.
Therefore the anomalously large exponent α for

γ = 3.6 and K = 1/8 in Fig. 1(b) may stem from such
large fluctuation around the hub as shown in the linear
scaling in Eq. (5). The LCCs with γ = 2.4 can be
viewed as multiple star graphs of different sizes that are
interconnected [Fig. 4(a)]. This view leads us to understand
the persistent divergence of Wsat. To do so, we measure the
stationary-state fluctuations of degree-k nodes Wsat(k) ≡√

[1/(T − tc)]
∑T

t>tc
〈∑NG

i=1 δki ,k[hi(t) − h̄t ]2/
∑NG

i=1 δki ,k〉,
which would satisfy Wsat = √∑

k Pdeg(k)Wsat(k)2 if the
ensemble variation of Pdeg(k) is decoupled from that of
Wsat(k). Our simulations for K = 1 and N � 104, all the
substrates displaying ds > 2, show that Wsat(k) decreases with
k for k small but grows for k large as [Fig. 4(b)]

Wsat(k) 	 c+ kθ . (6)

The scaling exponent θ are estimated by fitting Eq. (6) to
the data of Wsat(k), which remains around 1 for all K and
γ = 2.4 and is about 0.8 for large K and γ = 3.6 [Fig. 4(c)].
For small K and γ = 3.6, θ display some fluctuation around
1 depending on the fitting range. These values of θ are
reminiscent of the linear scaling in star graphs in Eq. (5),
implying that the fluctuations at hubs of a given large degree
is driven mainly by interacting with their neighbors. However,
c+ 	 0.06 in Eq. (6) is smaller than cstar in Eq. (5) and θ is
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FIG. 4. Degree-dependent local fluctuations. (a) An LCC of
NG = 72 and LG = 95 for γ = 2.4. Node color and size represent
the degree ki and the relative load hi − h̄. (b) Wsat(k)2 for K = 1 in
the Family model ([F]) and the EW model ([E]). (c) Estimated scaling
exponents θ in Eq. (6). (d) W 2

sat(k = 1) vs NG. The line fits the data
for γ = 2.4 in the Family model.

smaller than 1 for γ = 3.6 as the embedded star graphs are not
isolated in the substrates.

Summing up the fluctuations at hubs over different k > kc

with kc a characteristic degree, one can evaluate a part of
the global fluctuation W 2

+ ≡ ∑
k>kc

Pdeg(k)Wsat(k)2 by using
Eq. (6) as W 2

+ ∼ ∑
k>kc

k−γ k2θ , which diverges with the

largest degree kmax as W 2
+ ∼ k

1−γ+2θ
max if γ < 1 + 2θ , and is

finite if γ > 1 + 2θ . Inserting kmax ∼ N
1

γ−1

G , valid for most
cases [Fig. 3(a)], we find that W+ ∼ N

α+
G with

α+ =
{

θ
γ−1 − 1

2 for γ < 1 + 2θ,

0 for γ > 1 + 2θ.
(7)
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For γ = 2.4, α+ 	 0.2 with θ = 1, which is close to α within
error bar in Fig. 1(b) and is equal to α estimated for the
data with N � 104 only. More importantly, Eq. (7) presents
a plausible reason why the diverging fluctuations over a wide
range of K appears exclusively for γ = 2.4 in our simulations:
A sufficient number of hubs are needed to make the sum of
their large fluctuations diverge with the substrate size. Note
that the criterion 1 + 2θ is 3 with θ = 1. θ is negative in the
EW model [31].

Small-degree nodes are connected to hubs by a link or a
path, and can thus display large fluctuations as well. Wsat(k)
for small k and γ = 2.4 increases with NG as does W+. In
particular, for k = 1,

Wsat(k = 1) ∼ N
α−
G (8)

with the exponent α− 	 0.2 ± 0.1 [Fig. 4(d)], which agrees
well with α+ and α, suggesting that the large fluctuations at
abundant hubs and their neighbors induce diverging fluctua-
tions at small-degree nodes.

V. DISCUSSION

We have here shown that diverging fluctuations can be
driven by either low dimensionality or strong heterogeneity,
only the former of which has been well known for regular
lattices but both of which are present in real-world complex
systems. Our study illuminates the nature of the heterogeneity-
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FIG. 5. Examples of the largest connected components (LCC) of
SF networks. Those in panels (a), (c), and (e) are from the SF networks
with link density K = L/N = 1/4 and those in panels (b), (d), and
(f) are with K = 5/8. The degree exponent γ is 100 for panels (a)
and (b), 3.6 for panels (c) and (d), and 2.4 for panels (e) and (f).
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FIG. 6. Size and connectivity of the LCCs of SF networks. (a) The
number of nodes NG in the LCC. For γ = 3.6 and 100, NG grows
sublinearly with the total number of nodes N for small link density
(K = 1/4) while it grows linearly for large link density (K = 5/8).
NG ∼ N 0.43 for γ = 3.6 and K = 1/4 (dashed line) with the exponent
close to 1/(γ − 1) = 0.39 [26]. For γ = 2.4 and K = 1/4, NG ∼
N 1.03 (solid line). (b) Plots of NG/N vs the link density K = L/N

for N = 105. (c) Plots of LG/(NG − 1) vs K for N = 105. LG is the
number of links in the LCC. It remains 1 for small K and γ = 3.6
and 100 while it deviates from 1 even for small K and γ = 2.4.

driven fluctuations. Fluctuations around hubs, as in star
graphs, are crucially dependent on the details of dynamics,
as exemplified by the difference between the Family model
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and the EW model. Allowing work load to be assigned to
a neighbor in the Family model gives hub nodes a higher
chance to increase loads than small-degree nodes, causing the
local fluctuation around hubs to increase linearly with their
degrees. The sum of those local fluctuations can diverge when
there are sufficiently many hubs, the condition of which we
identified. In contrast, the local fluctuation at a hub decay with
its degree in the EW model, preventing the global fluctuation
from diverging solely due to the heterogeneity of substrates.
This suggests that the synchronization of complex systems can
be significantly affected by the details of dynamic processes.
One of the implications of our study is that assigning jobs to
neighbors should be supervised carefully in, e.g., the internet
routing, parallel computing, and the electric power grids, so
as not to lose the system’s synchronization owing to diverging
fluctuations.

Given the limitation of the system size in our simulations, it
is desirable to further investigate the finite-size effects. As our
study demonstrates, the spectral dimension, the fluctuation
of the dynamic processes of interest on star graphs, and
the degree-dependent local fluctuations can be measured and
analyzed to help understand the empirical fluctuations in
diverse systems.
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APPENDIX A: LCC OF THE STATIC-MODEL
SF NETWORKS

The LCCs of SF networks with different link densities
and degree exponents are presented in Fig. 5. For γ > 3, the
number of nodes NG in the LCC increases sublinearly with
the total number of nodes N if the link density is small. If the
link density is large, NG grows linearly with N . See Fig. 6(a).
If LCC is as large as of order N (NG = O(N )), one can call
it the giant component. In Ref. [26], it was shown for γ > 3

that the scaling behavior of NG is changed from O(N
1

γ−1 ) to

O(N ) at a critical threshold

Kc = (γ − 1)(γ − 3)

2(γ − 2)2
, (A1)

exactly at which NG is O(Nmax{ 2
3 ,

γ−2
γ−1 }). On the other hand, for

γ < 3,NG scales linearly with N for all K > 0 as shown in
Figs. 6(a) and 6(b) [26].

It is not only the size but also the topological structure
of the LCC that changes with the link density K of the
original network. For K small and γ > 3, the LCC takes
a tree structure: The ratio LG/(NG − 1) remains close to 1
[Fig. 6(c)], which is 1 if the network is of perfect tree structure
without any loop. The ratio deviates from 1 and increases with
K for K large, as loops are formed. The boundary of these
distinct behaviors is Kc in Eq. (A1) [26]. For γ < 3, on the
contrary, the ratio LG/(NG − 1) increases almost linearly with
the link density K , meaning that the LCC is loopy even with
small link densities.

APPENDIX B: ESTIMATION OF THE SCALING
EXPONENT α AND THE SPECTRAL DIMENSION ds

The scaling exponent α in Fig. 1(b) is estimated by fitting
Eq. (1) to the data points of Wsat’s and NG’s, some of
which are shown in Fig. 1(a), for given K and γ . Given
the limitation that NG is finite in our simulations and the
finite-size effects indeed seen in our data in Fig. 1(a), we also
compute the local exponents α in the ranges NG ∈ [N1,N2] as

α(N1,N2) = log
√

W 2
sat(N2)

W 2
sat(N1)

/ log (N2
N1

), where N1 and N2 are the
adjacent values of NG considered in our simulations and take
the maximal difference between α(N1,N2) and the estimated
α as the error bar.

The spectral dimension ds in Fig. 2(b) is estimated by fitting
Eq. (3) to the data points of λ2’s and NG’s shown in Fig. 2(a),
for given K and γ , and the error bars are determined in the
same way as for α.

APPENDIX C: LAPLACIAN SPECTRA OF STAR GRAPHS

Note that Wsat is finite in the EW model on star graphs as
the eigenvalues of the Laplacian are given by λ1 = 0, λ2 =
λ3 = · · · = λN−1 = 1 and λN = N , implying ds → ∞.
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