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Network geometry is attracting increasing attention because it has a wide range of applications, ranging from
data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical
properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial
complexes describing the interaction between two or more nodes play a special role. In fact these structures
can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely
used in quantum gravity. Here we introduce the network geometry with flavor s = −1,0,1 (NGF) describing
simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF
can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds
to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community
structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the
stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The
thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for
formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In
d = 1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to
obtain a scale-free degree distribution. Instead, for NGF with dimension d > 1 it is not necessary to have an
explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum
mechanical description in terms of associated quantum network states. Quantum network states evolve by a
Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time
t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum
mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either
the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
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I. INTRODUCTION

Recently, network geometry [1] is gaining increasing
interest. Progress in this field is expected to have relevance
for a number of applications, including routing protocols
[2–4], data mining [5–9], and advances in the theoretical
foundations of network clustering [10]. In this context, several
theoretical questions have been recently approached including
the formulation of models for emergent geometry [11–13], the
characterization of hyperbolic networks [14–17], the modeling
of complex networks embedded in the plane or in surfaces
[18–23], and finally the development of a geometric informa-
tion theory of networks [24].

It is also believed that network geometry [25–30] could pro-
vide a theoretical framework for establishing cross fertilization
between the field of network theory and quantum gravity. In
fact most quantum gravity approaches rely on a discretiza-
tion of space-time that takes a networklike structure. These
approaches include causal sets [31,32], causal dynamical
triangulations [33–36], group field theory [37,38], loop quan-
tum gravity [39–41], energetic causal sets [42,43], quantum
gravity as an information network [44], and quantum graphity
[45–47]. Already several works explore the frontier territory
between complex networks and quantum gravity. The relation
between complex hyperbolic networks and causal sets has been
exploited by building a “network cosmology” [48]. Moreover,
causal sets have been used to analyze citation networks and
measuring their effective dimension [49]. Recently, complex
quantum network manifolds (CQNMs) [13] have been intro-

duced as models of discrete manifolds that show the relation
between quantum statistics and emergent network geometry.

When faced with the problem of describing a network
geometry, simplicial complexes of dimension d become very
useful. These are discrete structures formed by the simplices of
dimension δ, with 0 � δ � d, i.e., nodes (δ = 0), links (δ = 1),
triangles (δ = 2), tetrahedra (δ = 3), and so on. Simplicial
complexes are widely used in the quantum gravity literature.
For example, in the context of causal dynamical triangulations
[33–36] and group field theory [37,38] space-time is described
using these discrete structures. In network theory, much
attention [50–52] has been devoted to complex networks
described as sets of nodes and links, i.e., forming simplicial
complexes of dimension d = 1. Only recently additional
attention has been addressed to simplicial complexes of higher
dimension also called hypergraphs in the network science
community. These structures are important to capture relations
existing between more than two nodes, such as the one existing
in collaboration networks (where each paper might result from
a collaboration of more than two individuals, or a movie
might have a large cast of actors), protein interaction networks
(where proteins form complexes consisting in general of more
than two types of proteins), or on Twitter (where one tweet
might include several hashtags). Therefore equilibrium and
nonequilibrium models of random simplicial complexes and
hypergraphs have been recently proposed by physicists and
mathematicians [11–13,53–58].

Modeling complex networks has been the subject of intense
research in network theory over the years. In particular,
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attention has been focusing on the minimal models able
to generate network structure with the universal properties
observed in real complex network data sets: the small-
world property [59], the scale-free degree distribution [60],
and a nontrivial community structure [61]. In this context,
nonequilibrium growing network models generating scale-free
networks [50–52,61–66] have been widely studied. Scale-free
networks have highly inhomogeneous degree distribution
P (k) decaying as a power law for large value of k, i.e.,
P (k) � k−γ , with the power-law exponent γ � 3. The scale-
free network distribution affects the properties of dynamical
processes defined on networks [1,67,68] such as the Ising
model, percolation, epidemic spreading, and quantum phase
transitions. In growing network models formed by nodes
and links, the so-called preferential attachment mechanism
has been identified as a key element for obtaining scale-
free networks as shown in the framework of the famous
Barabási-Albert model [61]. The preferential attachment rule
determines that the probability that a node acquires new links
is proportional to its degree. Additional heterogeneity of the
nodes, capturing intrinsic characteristics of the nodes that
are different from the node degree, have been modeled by
associating an energy ε to the nodes of the network. The
energy ε of a node determines its fitness η = e−βε , measuring
the ability of the node to attract new links compared to the
ability of other nodes with the same degree. The first growing
scale-free network model introducing this heterogeneity of
the nodes is the Bianconi-Barabási model [62–64] that has
been used to model the Internet and the World Wide Web.
This model captures the competition existing between nodes
to attract new links. In fact, nodes acquire new links with a
generalized preferential attachment rule, which assigns to high
degree and high fitness nodes higher probability to acquire new
links than to lower degree or lower fitness nodes.

The characterization of the Bianconi-Barabási model has
unveiled an important relation between complex networks
and quantum statistics. In fact, the Bianconi-Barabási model
[62–64] can be mapped to a quantum Bose gas and, under
the same circumstances in which the Bose gas undergoes a
Bose-Einstein condensation, a structural phase transition is
observed in the network structure in which one node grabs
a finite fraction of all the links [63,64]. Interestingly, the
Fermi-Dirac statistics characterizes growing Cayley trees with
energy of the nodes [69], and these results have been extended
in different directions [65,70,71], including weighted networks
and multiplex networks. It is noteworthy that not only growing
network models but also equilibrium network models have
been shown to be related to quantum statistics [72].

Recently, the new results obtained in Ref. [13] for CQNMs
show that also growing network manifolds describing a
complex network geometry are related to quantum statistics. In
fact, in complex quantum network manifolds the Fermi-Dirac,
the Boltzmann, and the Bose-Einstein statistics coexist in the
same network geometry describing the statistical properties of
the δ-dimensional faces of the CQNM.

Here our goal is to introduce network geometry with flavor
(NGF) s = −1,0,1 showing the strong effect of dimensionality
d on the geometry emergent from these models and the relation
between NGF and quantum statistics. The NGFs describe
growing simplicial complexes with energies associated to all

their simplices (i.e., to their nodes, links, triangular faces, etc.)
and evolving with (case s = 1) or without (cases s = −1,0)
explicit preferential attachment, forming either manifolds
(case s = −1) or more general simplicial complexes (cases
s = 0,1). The NGF generalizes the CQNM introduced in
Ref. [13], which constitutes the NGF with flavor s = −1. For
s = −1, d = 3, and β = 0 the model reduces to the random
Apollonian network [19–22]. Moreover, the NGF with flavor
s = 1 and dimension d = 1 reduces to the Bianconi-Barabási
model.

We will focus specifically on the thermodynamic properties
of NGF, on the relation of NGF to complexity theory, and
on the relation between these geometrical network structures
and their quantum mechanical description. In particular we
will characterize the thermodynamic relations satisfied by the
NGF evolving by a nonequilibrium dynamics and obeying a
generalized area law; we will identify in which dimension
d and for which flavor s NGFs are scale-free networks; and
finally we will provide a quantum mechanical description of
NGFs, constructing quantum network states characterizing the
evolution of these models, and showing how quantum statistics
emerges from the statistical properties of these networks.

In order to determine the thermodynamics of NGF, we
define its total energy E, total entropy S and area A. The
thermodynamic properties of the NGFs reveal that these
structures follow a generalized area law. Since in quantum
gravity the celebrated Jacobson [73–75] result relates the area
law to the Einstein equations as equation of state, this result
could play a crucial role in determining the dynamics of NGFs
at the macroscopic, coarse-grained level.

Our results highlight the strong effect of the dimensionality
d on the structure of the NGF. For NGF in d = 1, as in the
Barabási-Albert model, preferential attachment is a necessary
element for obtaining scale-free networks. Here we show that
for NGFs formed by simplicial complexes of dimension d > 1
an explicit preferential attachment is not necessary to obtain
scale-free networks, as an effective preferential attachment can
emerge in simplicial complexes of dimension d > 1 by dynam-
ical rules that do not include an explicit preferential attach-
ment. Therefore, in dimension d = 2 also network geometry
with flavor s = 0 that is not driven by an explicit preferential
attachment generates scale-free networks. In dimension d � 3
all the NGFs are scale free, independently of their flavor s.

The NGF can be mapped to quantum network states
evolving by a Markovian dynamics. The relation between
the NGFs and their quantum mechanical description is also
emerging from their statistical properties. In fact, NGFs in
dimension d have the generalized degree of their δ faces,
which as a function of the flavor s and the dimensions d,δ

follows Fermi-Dirac, Boltzmann, or Bose Einstein statistics.
The dimension d = 3 again plays a special role because it is the
lowest dimension for observing the coexistence of the Fermi-
Dirac, Boltzmann, and Bose-Einstein statistics describing the
statistical properties of the faces of the NGF of dimensions d.

II. NETWORK GEOMETRY WITH FLAVOR s

A. Network geometry with flavor s and simplicial complexes

Here we define NGFs in a constructive way by characteriz-
ing their nonequilibrium dynamical evolution.
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By d-dimensional simplex here we indicate a fully con-
nected graph (a clique) of (d + 1) nodes. Its δ faces are all the
δ-dimensional simplices that can be built by a subset of (δ + 1)
of its nodes. In general, a simplicial complex of dimension d

is formed by a set of simplices of dimension d ′ � d.
A NGF of dimension d � 1 is a simplicial complex

formed by d-dimensional simplices glued along their (d − 1)-
dimensional faces also called (d − 1) faces. For example, a
NGF of d = 1 is formed by links glued at their end nodes, a
NGF of d = 2 is formed by triangles glued along their links,
and a NGF of d = 3 is formed by tetrahedra glued along their
triangular faces. The set of all possible δ-dimensional faces (or
δ faces) belonging to the d-dimensional NGF with N nodes is
here indicated by Qd,δ(N ). The set of all δ-dimensional faces
belonging to the d-dimensional NGF with δ < d is indicated
by Sd,δ .

B. Energies and generalized degrees of NGF

To each node i of the NGF we assign an energy of the node
εi from a distribution g(ε). The energy of the node is quenched
and does not change during the evolution of the network. This
parameter describes the intrinsic and heterogeneous properties
of the nodes. To every δ face α ∈ Sd,δ we associate an energy
εα given by the sum of the energy of the nodes that belong to
the face α,

εα =
∑
i∈α

εi . (1)

Therefore, each link will be associated to an energy of the link
given by the sum of energies of the two nodes incident to it,
and each triangular face will be associated to the sum of the
energy of the three nodes incident to it, and so on. The energy
ε(i,j ) of the links α = (i,j ) belonging to any given triangle of
the NGF formed by the nodes i,j , and r satisfy the triangular
inequality

|ε(i,r) − ε(j,r)| � ε(i,j ) � ε(i,r) + ε(j,r). (2)

This result remains valid for any permutation of the order of
the nodes i,j , and r belonging to the triangle. The energy of
the links can therefore be interpreted as length of the links and
related to the use of spins in spin networks and loop quantum
gravity [41].

Although most of the derivations shown in this paper can be
performed similarly for either continuous or discrete energy
of the nodes and of the higher-dimensional δ faces, here we
consider the case in which the energies of the nodes {εi} and
consequently the energy of the δ faces {εα} are integers.

The generalized degrees kd,δ(α) of the δ face α (i.e.,
α ∈ Sd,δ) in a d-dimensional NGF is defined as the number
of d-dimensional simplices incident to it. Let us define the
adjacency indicator function a of elements aα′ with α′ ∈
Qd,d−1(N ) taking value aα′ = 1 if the d-dimensional complex
α′ is part of the NGF and otherwise taking value zero, aα′ = 0.
Using the adjacency indicator function, we can define the
generalized degree kd,δ of a δ face α as

kd,δ(α) =
∑

α′|α⊂α′
aα′ . (3)

Therefore, in a NGF of dimension d = 1 the generalized
degree k1,0(α) is the number of links incident to a node
α, i.e., its degree. In d = 2, the generalized degree k2,1(α)
is the number of triangles incident to a link α while the
generalized degree k2,0(α) indicates the number of triangles
incident to a node α. Similarly, in a NGF of dimension d = 3,
the generalized degrees k3,2,k3,1, and k3,0 indicate the number
of tetrahedra incident, respectively, to a triangular face, a link,
or a node.

C. NGF evolution

The NGF comes in three flavors indicated by the variable
s = −1,0,1. In order to define the nonequilibrium dynamics
of NGF we associate to each (d − 1) face α the number nα

given by the sum of the d-dimensional simplices incident to α

minus one, i.e.,

nα = kd,d−1(α) − 1. (4)

If the variable nα can only take values 0,1 the NGF is a
manifold also called CQNM. If instead the variable nα can
also take values greater than two we have a NGF that is not a
manifold. As we will see in the following, NGFs with flavor
s = −1 describe manifolds, the CQNMs, while NGFs with
flavor s = 0,1 do not generate manifolds.

The NGFs in dimension d are evolving according to a
nonequilibrium dynamics enforcing that at each time the NGF
is growing by the addition of a new d-dimensional simplex.
Here we describe the NGF evolution for NGF with every type
of flavor s = −1,0,1 (see Supplemental Material [76] for the
MATLAB code generating NGF in dimensions d = 1,2,3).

At time t = 1 the NGF is formed by a single d-dimensional
simplex. At each time t > 1 we add a simplex of dimension d

to a (d − 1) face α ∈ Sd,d−1, which is chosen with probability
�[s]

α given by

�[s]
α = 1

Z[s](t)
e−βεα (1 + snα), (5)

where β � 0 is a parameter of the model called inverse
temperature, s = −1,0,1 and Z[s](t) is a normalization sum
given by

Z[s](t) =
∑

α∈Sd,d−1

e−βεα (1 + snα). (6)

Having chosen the (d − 1) face α, we glue to it a new d-
dimensional simplex containing all the nodes of the (d − 1)
face α plus the new node i. It follows that the new node i

of the new simplex is linked to each node j belonging to α.
Finally, we note here that the number of nodes N at time t

is given by N = t + d. In fact for t = 1 the NGF is formed
by a single d-dimensional simplex, and has N = d + 1 nodes.
At each time t > 1, a new d-dimensional simplex is added to
the NGF. This simplex has a single new node. Therefore the
number of nodes grows at each time step by one, and is given
by N = t + d.

In Fig. 1 we show the first few steps of the NGF evolution
for the cases d = 1,2 and s = −1,0,1. In Fig. 2 we show
a visualization of NGF with s = −1,0,1,d = 1,2,3, and β =
0.1. These NGFs for d = 1 are trees, for d > 1 they have at the
same time large clustering and small average distance between
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FIG. 1. The figure schematically illustrates the temporal evolu-
tion of the NGF of flavor s in dimension d = 1,2. In dimension d = 1
at each time step a new node is added to the network and is connected
to the existing network by a single link. In dimension d = 2, at each
time a new node is added to the network. This node is connected to the
existing network by a triangle, i.e., it is linked to two adjacent nodes of
the network. When NGF has flavor s = −1, each (d − 1) simplex can
be connected at most to two d-dimensional simplices. This implies
that in d = 1 each node can have at most degree two and in d = 2 each
link can be adjacent to at most two triangles. Therefore, NGFs with
flavor s = −1 are manifolds, and are also called CQNM [13]. On the
contrary, NGF with flavor s = 0,1 does not have this constraint and
each (d − 1)-dimensional simplex can be connected to an arbitrarily
large number of d-dimensional simplices. Therefore, in d = 1 each
node can have an arbitrarily large degree and in d = 2 each link
can be incident to an arbitrarily large number of triangles. For s = 1
the NGF evolution includes an explicit preferential attachment rule
implying that each new d-dimensional simplex is linked to a (d − 1)
face α with a probability that increases linearly with its generalized
degree kd,d−1(α). Therefore, the NGF with d = 1,s = 1 for β = 0
reduces to the Barabási-Albert model [61] and for β > 0 it reduces
to the Bianconi-Barabási model [62,63].

the nodes, i.e., they are small world and they have a nontrivial
community structure.

D. NGFs of different flavor s have significantly different
structure and dynamics

The NGFs of different flavor s have significantly different
geometry and statistical properties. In fact, depending on the
flavor s either manifolds (s = −1) or more general simplicial
complexes are generated. The dynamical properties of NGFs
of different flavor s are also very different, with NGFs of
flavor s = 1 including an explicit preferential attachment while
NGFs with flavor s are driven by an homogeneous attachment
dynamics. In the following we will discuss the properties of
NGFs as a function of their flavor s and their dimension d.
Moreover, we will relate specific limiting cases of NGFs with
existing models of complex networks.

The dynamical rules of the NGF imply that only for the case
s = −1 NGFs are actually manifolds, also called CQNMs [13].
In fact, for s = −1 the probability �[−1]

α defined in Eq. (5) is
zero, (i.e., �[−1]

α = 0) for every (d − 1) face α with nα = 1.
If a (d − 1) face has nα = 1 it is already incident to two d-
dimensional simplices, as its generalized degree is kd,d−1(α) =

nα + 1 = 2. Such a face α cannot be glued to any additional
d-dimensional simplex because the probability that we glue
an additional d-simplex to this face is �[−1]

α = 0. In particular
the NGF of d = 1 and flavor s = −1 is a chain.

For s = 1, we observe that the probability to attach a new
simplex to the (d − 1) face α,�[1]

α , is proportional to its gen-
eralized degree kd,d−1(α) = 1 + nα providing a generalization
of the so-called preferential attachment mechanism, known to
be necessary for generating scale-free networks in simplicial
complexes of dimension d = 1.

The evolution of NGF is related to existing complex
network models with fitness of the nodes [61–65,69–71].
In particular the NGF with d = 1,β = 0, and s = 1 is the
Barabási-Albert model [61] (with the number of initial links
of each node given by one), while for d = 1,β > 0, and s = 1
it is the Bianconi-Barabási model [62,63] (always with the
number of initial links given by one). Moreover, the NGF of
d = 2 with flavor s = 0 and β = 0 has been first proposed as
a scale-free network model in Ref. [66]. The NGF in d = 2 is
related to models proposed in the recent literature on emergent
network geometry [11,12].

Finally, the NGF for s = −1,d = 3, and β = 0 is a
stacked polytope model and as such reduces to the stochastic
Apollonian network [19–22]. We note here that it is possible
to define NGFs allowing also for a �[s]

α given by Eq. (5) with
real values of s, as long as s > 0. These models will include
energy of the δ faces and preferential attachment with an
initial additive constant [77]. These models will qualitatively
behave like the NGF with s = 1. Also it is possible to consider
negative values s �= −1. Nevertheless, to avoid having negative
probabilities �[s]

α given by Eq. (5), we should impose that s

takes negative rational values s = −1/m with m � 1. This
model allows the generalized degree of (d − 1) faces to be at
most m and therefore nα � m. These models are related to the
ones recently proposed in Ref. [11] for simplicial complexes in
d = 2. For simplicity here we restrict our study only to NGFs
with flavor s = −1,0,1 that display a significant change in
their structural properties.

E. Area and volume of NGFs

The boundary of the NGF is defined as the set of (d − 1)
faces with nα = 0, i.e., incident to exactly one d-dimensional
simplex. We will call the area A of the NGF the number of
(d − 1) faces in the boundary, i.e.,

A =
∑

α∈Sd,d−1

δ(nα,0). (7)

At each time step of the NGF dynamical evolution, a (d − 1)
face is chosen and a new simplex is attached to it. If this face
is initially at the boundary of the NGF, after the addition of the
simplex it will leave the boundary, contributing to a negative
change of A of one. At the same time the new simplex adds d

new (d − 1) faces to the boundary, contributing to an increase
of A by d. For NGF with flavor s = −1 (i.e., for CQNMs),
the new d-dimensional complex is attached exclusively to a
(d − 1) face at the boundary. Moreover, at time t = 1 the area
is the area of a single d-dimensional simplex, and is given by
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)c()b()a(
1=s,1=d0=s,1=d1-=s,1=d

)f()e()d(
1=s,2=d0=s,2=d1-=s,2=d

)i()h()g(
1=s,3=d0=s,3=d1-=s,3=d

FIG. 2. Network geometry with flavor s = −1,0,1 and dimension d = 1,2,3. The NGFs have N = 103 nodes, β = 0.1 and uniform
distribution of the energy of the nodes g(ε) = 1/10 for 0 � ε < 10. The color of the nodes indicates their energy; the color code keeps the
same order of the frequency of light (in order of increasing energy we have red, orange, yellow, green, blue, violet); the size of the nodes is
proportional to their degree.
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A = d + 1. Therefore, we have

A = (d − 1)t + 2. (8)

In general for NGF with every flavor s = −1,0,1, and
sufficiently low values of β, we have

A � λt (9)

for t � 1 with λ ∈ [d − 1,d). The volume V of the NGF is
given by the total number of d-dimensional simplices that form
the NGF. The volume V of the NGF at time t is equal to the
time, i.e.,

V = t, (10)

since at each time step one d-dimensional simplex is added to
the NGF. Therefore, in NGF the area A is proportional to the
volume V , i.e., A ∝ V . This property of the NGF is crucial
to determine the NGF small-world diameter, i.e., a diameter
at most increasing like the logarithm of time t , for sufficiently
low values of the inverse temperature β.

F. Dual of the NGFs

The NGF have a particularly simple dual network struc-
ture. The dual network is formed by considering nodes
indicating the d-dimensional simplices and links connecting
d-dimensional simplices that share a (d − 1) face. For NGFs
with flavor s = −1, i.e., for the CQNMs, the dual is a
tree with degree bounded by d + 1. In fact each (d − 1)
face connects at most two d-dimensional simplices and each
d-dimensional simplex has exactly d + 1 (d − 1)-dimensional
faces. Interestingly, as it is possible to see in Fig. 2, the
CQNMs, also if they have very homogeneous dual networks,
can display very complex structure, and as we will see in
the next section they are scale free for d � 3. This shows
a clear example in which the relation between simplicial
complexes and their dual networks might not preserve the
same complexity properties. For network geometry with flavor
s = 0,1 the dual network remains a tree but the degree of its
nodes is no longer bounded. The treelike nature of the dual
network of the NGF allows for relevant simplifications in the
analytical calculations.

III. THERMODYNAMICS OF NGFs

A. Probability of a given NGF evolution and total energy of a
given NGF

Given the evolutionary dynamics of the NGFs, the evolution
of the NGF up to time t is fully determined by the sequence
{αt ′ }t ′�t , where αt ′ indicates the (d − 1) face to which the new
d-dimensional simplex is added at time t ′ > 1. Moreover, the
NGF is associated with the sequence of the energies of its N =
t + d nodes {ε(t ′)}t ′�t+d . Of those, only the energy of the nodes
arrived in the NGF before time t , i.e., the sequence {ε(t ′)}t ′<t+d

determines the probabilities of choosing a particular sequence
of {αt ′ }t ′�...t . Finally, it is possible to evaluate the probability
P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s) that the temporal evolution until
time t of the NGF with flavor s is described by the subsequent
addition of d simplices to the (d − 1) faces {α(t ′)}t ′�t given
that the energies of the nodes until time t − 1 are {ε(t ′)}t ′<t+d .
In fact P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s) is given by the product of

the probability of each subsequent addition of the new simplex
to the α(t) face, i.e.,

P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s) =
∏
t ′�t

�
[s]
α(t ′), (11)

where �α(t ′) is given by Eq. (5). Inserting the explicit
expression of �α(t ′) in Eq. (11), we obtain

P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s)

= 1

Z [s](t)
e−βE

∏
α∈Sd,d−1(t)

[1 + snα(t)]!. (12)

Here we have indicated by E the total energy of the NGF,
given by

E(t) =
∑

α∈Sd,d−1

εαnα(t), (13)

and with Z [s](t) the normalization constant,

Z [s](t) =
∑

{α(t ′)}t ′�t

e−βE
∏

α∈Sd,d−1(t)

[1 + snα(t)]!

=
∏
t ′�t

Z[s](t ′). (14)

Moreover, Sd,d−1(t) is the set of (d − 1) faces in the NGF
formed by the subsequent addition of d-dimensional simplices
to the faces {α(t ′)}t ′�t .

For sufficiently low values of β we have that for large times,
i.e., for t � 1, the ratio Z[s]/t is a self-averaging quantity
and limt→∞ Z[s]/t = e−βμ

[s]
d,d−1 , with μ

[s]
d,d−1 indicating the

chemical potential associated to the (d − 1) faces in NGF of
flavor s. Therefore, we can approximate Z [s] as

Z [s](t) � e−βμ
[s]
d,d−1 t! � e−βμ

[s]
d,d−1N ! (15)

for large times t � 1 and t � N . Finally,
P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s) can be expressed as

P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s) = 1

N !
e−β(E−μ

[s]
d,d−1N−F ), (16)

where F is given by

eβF =
∏

α∈Sd,d−1(t)

[1 + snα(t)]!. (17)

B. Entropy of the NGF and the generalized area law

We note that different histories of the NGF up to time t can
give rise to the same network structure. This network structure
is indicated by GN where N = N (t) is the number of nodes
of the network and {εi}i�N are the energies of the nodes.
All the possible temporal evolutions {α(t ′)}t ′�t of the NGF
corresponding to the same network GN have the same proba-
bility P ({α(t ′)}t ′�t |{εi}i�N,s) = P ({α(t ′)}t ′�t |{ε(t ′)}t ′<t+d ,s),
and they can be obtained from a given history by considering
all causal relabelings of the nodes. We define the probability
P (GN |{εi}i�N,s) that the NGF of flavor s at time t results in
a given network structure GN , independently of its temporal
evolution, given the energy of the nodes {εi}i�N . Using the
fact that the dual of the NGF is a tree, this probability can be
calculated with methods already developed in Refs. [78,79]
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by evaluating the number of possible causal relabelings of the
dual tree. Specifically, we have

P (GN |{εi}i�N,s) = e−β(E−μ
[s]
d,d−1N−F )z

[s]
N , (18)

where

z
[s]
N = 1

N !
L[s](T ) (19)

and where L[s](T ) indicates the number of different NGF
temporal evolutions giving rise to the same network GN . It
can easily be realized that L[s](T ) indicates also the number
of different labelings of the tree T that is the dual network
of the NGF. The introduced quantity z

[s]
N can be calculated

by following the derivation given in Ref. [78] as long as the
NGF is in a stationary state and the degree distribution of
the tree describing the dual network of the NGF is known.
In fact, it is possible to evaluate the scaling of z

[s]
N by writing

a recursive equation for L[s](T ) for a tree T given by a root
node connected to p subtrees T1,T2, . . . ,Tp of N1,N2, . . . ,Np

nodes, respectively. The recursive equation is given by

L[s](T ) = (N − 1)!

N1!N2! . . . Np!
δ∑

i Ni+1,N

p∏
i=1

L[s](Ti). (20)

Here, differently from the case analyzed in Ref. [78], the differ-
ent branches T1,T2, . . . ,Tp of the tree T are not exchangeable
since the tree T is a dual of a labeled NGF where the labels
indicate the different energies of the nodes. Using Eq. (20), it
is found (see Supplemental Material for details) that z

[s]
N scales

with the number of nodes as

z
[s]
N = C[s]eβν[s]N (21)

as long as the NGF is not a chain (it is different from the case
s = −1,d = 1), and the NGF reaches a stationary state (low
enough values of β). In fact, the prefactor 1/N ! in Eq. (19)
is compensated by the number of terms in the summand.
Therefore, in Eq. (21), C[s] is a subleading factor, and ν[s]

depends on the degree distribution of the dual of the NGF, and
therefore depends on its flavor s.

Finally, the probability P (GN,s) scales exponentially with
the number of nodes and can be written for large networks
N � 1 as

P (GN |{εi}i�N,s) = C[s]e−β(E−μs
d,d−1N−ν[s]N−F ). (22)

The entropy S(N ) of the NGF has the natural definition

S(N ) = −∑
GN

P (GN |{εi}i�N,s) ln P (GN |{εi}i�N,s).

The total energy E and the entropy S of NGF satisfy
thermodynamics relations. In order to derive them, let us
evaluate the variation in entropy of the network �S given by

�S(N ) = S(N ) − S(N − 1). (23)

It can be easily shown, using the definition of the total energy
E in Eq. (13) and the rules determining the NGF evolution, that

〈εα〉�[s] = 〈�E〉�[s] . (24)

Finally, since the dynamics of the NGF reaches stationarity for
sufficiently low values of β, both 〈εα〉� and 〈ln(1 + snα)〉� are

independent of time for sufficiently large times t � 1. There-
fore, the relation between �S and 〈�E〉 calculated over the in-
terval �t = 1 can be found using Eqs. (22), (24) and is given by

�S = {
β
(〈εα〉�[s] − μ

[s]
d,d−1 − ν[s]

) − 〈ln(1 + snα)〉�[s]

}
�t.

Using the scaling of the area A with time given by Eq. (9), it
follows that the change in entropy �S can then be expressed as

�S = {
β
[〈εα〉�[s] − μ

[s]
d,d−1 − ν[s]

] − 〈ln(1 + snα)〉�[s]

}�A

λ
.

This relation provides a special type of area law because for
NGF the area A scales like the volume V = N , i.e., A ∝ V .
Nevertheless, we believe that this result opens new avenues
for formulating the macroscopic description of NGF at the
coarse-grained level, in the light of the results obtained in
Refs. [73–75].

C. Relation between the Regge curvature and the total energy
E of NGF with flavor s = −1

We note here that the NGF with flavor s = −1 are mani-
folds, specifically, they are the CQNM. For these manifolds,
one may wish to characterize their geometry using Regge’s
definition of curvature [41,80,81]. The Regge curvature is
localized on (d − 2) faces and is given by the excess angle
formed by the d-dimensional simplices incident to a given
(d − 2) face. Therefore, in the case in which the d-dimensional
simplices are assumed all equilateral the curvature Rα asso-
ciated to the (d − 2) face α is uniquely determined by the
generalized degree kd,d−2(α), i.e.,

Rα = aαπ − θd kd,d−2(α), (25)

where θd > 0 indicates the angle between any two (d − 1)
faces of the d-dimensional simplex and where aα = 1 [81] for
all α ∈ Sd,d−2(N ) because for the NGF all (d − 2) faces are at
the boundary.

The total energy E of the NGF with flavor s is defined in
Eq. (13) as

E =
∑

α∈Sd,d−1

εαnα, (26)

where nα is related to the generalized degree of the (d − 1)
face α by nα = kd,d−1(α) − 1 [Eq. (4)], and where the energy
of the face α is given by the sum of the energy of the nodes
belonging to that face [Eq. (1)]. We note now that it is possible
to show (see Supplemental Material for details), using simple
combinatorial calculations, that∑

α∈Sd,d−1

εαkd,d−1(α) = Bd

∑
α′∈Sd,d−2

εα′kd,d−2(α′), (27)

with Bd = 2/(d − 1). Using this expression we can express
the total energy E and the total energy of the boundary Ê of
the NGF in terms of the Regge curvature Rα of the (d − 2)
faces. The total energy E of the NGF can then be written as

E = Bd

θd

⎛
⎝� −

∑
α′∈Sd,d−2

εα′Rα′

⎞
⎠ (28)
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with � being independent of the curvature and it can be shown
to be given by

� =
(

π − θd

2

) ∑
α′∈Sd,d−2

εα′ . (29)

We note that the expression for E in Eq. (28) differs from the
Regge action [41,80,81] by an overall sign, and by the fact that
Eq. (32) contains the energy of the (d − 2) faces while in the
Regge action their role is played by the volume of the (d − 2)
faces. Additionally, it is possible to define the total energy of
the boundary Ê of the NGF as given by the sum of the energies
of the (d − 1) faces at the boundary, i.e.,

Ê =
∑

α∈Sd,d−1

εα(1 − nα), (30)

with Ê and E being related by

E + Ê =
∑

α∈Sd,d−1

εα. (31)

The total energy Ê of the the boundary can be written as

Ê = Bd

θd

⎛
⎝ ∑

α′∈Sd,d−2

εα′Rα′ − �̂

⎞
⎠ (32)

with �̂ being independent of the curvature and given by

�̂ = (π − θd )
∑

α′∈Sd,d−2

εα′ . (33)

We note that the expression for Ê in Eq. (32) differs from the
Regge action [41,80,81] by the fact that Eq. (32) contains the
energy of the (d − 2) faces while in the Regge action their role
is played by the volume of the (d − 2) faces.

IV. GENERALIZED DEGREE DISTRIBUTIONS AT β = 0

A. Dependence of the generalized degree distribution on
dimensions d,δ and flavor s

The NGFs display a number of critical dimensions marking
changes in the structure of these networks as their dimension
d changes. These structural changes are revealed by the
statistical properties associated with the distribution of the
generalized degree kd,δ of their δ faces with 0 � δ < d. To
show this, here we focus on the effect of the dimensions d and
δ on the distribution P

[s]
k,δ(k) of the generalized degrees kd,δ of

NGF of flavor s. For simplicity, our study will focus first on the
simpler case β = 0, where the energies of the nodes play no
role in the NGF dynamics. Using the master equation approach
[50–52] we show that depending on the dimensions d and δ,
and on the flavor s, the generalized degrees kd,δ can follow
either binomial or exponential or power-law distributions. The
power-law distributions are characterized by the asymptotic
behavior for large generalized degree kd,δ = k � 1 given by

P
[s]
k,δ(k) � k−γ

[s]
d,δ . (34)

Our results on the generalized degree distribution of NGF of
different flavor s, dimension d, and β = 0 are summarized in
Table I.

TABLE I. Distribution of generalized degrees of faces of di-
mension δ in a d-dimensional NGF of flavor s at β = 0. For
d � d [δ,s]

c = 2(δ + 1) − s the power-law distributions are scale-free,
i.e., the second moment of the distribution diverges.

flavor s = −1 s = 0 s = 1

δ = d − 1 Binomial Exponential Power law
δ = d − 2 Exponential Power law Power law
δ � d − 3 Power law Power law Power law

Additionally, power-law distributions can be characterized
either by a power-law exponent γ [s]

d,δ > 3 or γ
[s]
d,δ � 3 indicating,

in the second case, a divergent second moment 〈k2
d,δ〉 of the

generalized degree distribution P
[s]
d,δ(k). The critical dimension

d [δ,s]
c is the smallest dimension d of the NGF of flavor s

for which the generalized degree distribution P
[s]
d,δ(k) is scale

free. For obtaining the exact asymptotic expression for the
generalized degree distribution P

[s]
d,δ(k) of generalized degree

kd,δ = k in NGF of flavor s with s = −1,0,1 we use the master
equation approach [50–52]. Here we discuss in detail the
results in the cases s = −1,0,1. For details of the calculation
we refer the reader to the Supplemental Material [76].

B. Generalized degree distribution P [−1]
d,δ (k) for s = −1,β = 0

In the case s = −1 NGF generates manifolds also called
CQNM [13]. At β = 0 the generalized degree follows a
binomial distribution for faces of dimension δ = d − 1, an
exponential distribution for faces of dimension δ = d − 2, and
a power-law distribution for faces of dimension δ � d − 3 (see
Table I). In particular, the distributions P

[−1]
d,δ (k) of generalized

degrees kd,δ are given by

P
[−1]
d,d−1(k) =

{
d−1
d

for k = 1
1
d

for k = 2
,

P
[−1]
d,d−2(k) =

(
2

d + 1

)k
d − 1

2
,

P
[−1]
d,δ (k) = d − 1

d − δ − 2

�[1 + (d + 1)/(d − δ − 2)]

�[1 + 2/(d − δ − 2)]

× �[k + 2/(d − δ − 2)]

�[k + 1 + (d + 1)/(d − δ − 2)]
,

for δ � d − 3. (35)

These distributions perfectly match the simulation results as
shown in Fig. 3. For δ � d − 3 and for large values of k, the
distribution P

[−1]
d,δ (k) can be fitted by a power law given by

Eq. (34) with power-law exponent γ
[−1]
d,δ given by

γ
[−1]
d,δ = 1 + d − 1

d − δ − 2
. (36)

This exponent is lower than 3, i.e., γ
[−1]
d,δ � 3 indicating a

scale-free distribution of generalized degrees above the critical
dimension, i.e., for d � d [δ,−1]

c where

d [δ,−1]
c = 2δ + 3. (37)
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FIG. 3. The distribution P
[s]
d,δ(k) of generalized degrees kd,δ = k in NGF of dimension d = 3 with value of flavor s = −1,0,1 and β = 0.

The simulation results indicated with blue circles are shown for networks of N = 104 nodes. These results perfectly match the theoretical
predictions of Eqs. (35), (38), and (41) indicated here with solid black lines.

Therefore for NGF with flavor s = −1 and β = 0 the
generalized degree of faces of dimension δ = d − 2 follows
an exponential distribution. This result implies that in this
case the Regge curvature R given by Eq. (25) is following an
exponential distribution too.

C. Generalized degree distribution P [0]
d,δ(k) for s = 0,β = 0

In the case s = 0, the generalized degree of (d − 1) faces
follows an exponential distribution, while the generalized
degree of faces of dimension δ � d − 2 follows a power-law
distribution (see Table I). Specifically, the distribution P

[0]
d,δ(k)

of generalized degree kd,δ is given by

P
[0]
d,d−1(k) =

(
1

d + 1

)k

d

P
[0]
d,δ(k) = d

d − δ − 1

�[1 + (d + 1)/(d − δ − 1)]

�[1 + 1/(d − δ − 1)]

× �[k + 1/(d − δ − 1)]

�[k + 1 + (d + 1)/(d − δ − 1)]
,

for δ � d − 2. (38)

These distributions perfectly match the simulation results as
shown in Fig. 3. For δ � d − 2 and for large values of k the
distribution P

[0]
d,δ(k) can be fitted by a power law given by

Eq. (34) with power-law exponent γ
[0]
d,δ given by

γ
[0]
d,δ = 1 + d

d − δ − 1
. (39)

This exponent is lower than 3, i.e., γ
[0]
d,δ � 3 indicating a

scale-free distribution of generalized degrees above the critical
dimension, i.e., for d � d [δ,0]

c where

d [δ,0]
c = 2δ + 2. (40)

D. Generalized degree distribution P [1]
d,δ(k) for s = 1,β = 0

In the case s = 1 the generalized degree distribution P
[−1]
d,δ

is power-law (see Table I) for any dimension δ � d − 1 and is
given by

P
[1]
d,δ(k) = d + 1

d − δ
�[1 + (d + 1)/(d − δ)]

× �[k]

�[k + 1 + (d + 1)/(d − δ)]
. (41)

These distributions perfectly match the simulation results as
shown in Fig. 3. For any δ � d − 1 for large values of k the
distribution P

[1]
d,δ(k) can be fitted by a power law given by

Eq. (34) with power-law exponent γ
[1]
d,δ given by

γ
[1]
d,δ = 1 + d + 1

d − δ
. (42)

This exponent is lower than 3, i.e., γ
[1]
d,δ � 3 indicating a

scale-free distribution of generalized degrees above the critical
dimension, i.e., for d � d [δ,1]

c where

d [δ,1]
c = 2δ + 1. (43)

E. Critical dimensions d[δ,s]
c

Summarizing the results of the previous paragraphs, NGFs
of flavor s follow a regular pattern, with the flavor s having
the effect of shifting the statistical properties of generalized
degree kd,δ as indicated in Table I. The critical dimension for
having a scale-free distribution of generalized degree for faces
of dimension δ in NGF of dimension d at β = 0 is given by

d [δ,s]
c = 2(δ + 1) − s, (44)

which is a simple expression, which summarizes the Eqs. (37),
(40), (43). Therefore, the generalized degree distribution
Pd,δ(k) of NGF of flavor s is scale free for every dimension d
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of the NGF satisfying

d � d [δ,s]
c = 2(δ + 1) − s. (45)

Since in NGF the generalized degree of node α,kd,0(α), is
related to its degree K(α) by the simple relation

K(α) = kd,0(α) + d − 1, (46)

the critical dimension d [0,s]
c indicates also the smallest di-

mension d of the NGF for which the NGF has a scale-free
degree distribution. Therefore, the NGFs at β = 0 are scale
free networks as long as the dimension d is greater than the
critical dimension d [0,s]

c , i.e.,

d � d [0,s]
c = 2 − s. (47)

Therefore, for s = −1 NGF at β = 0 are scale free for d �
d [0,−1]

c = 3, while for s = 0 they are scale free for any d �
d [0,0]

c = 2, and for s = 1 they are scale free for any dimension
d � d [0,−1]

c = 1.
This interesting result implies that an explicit preferential

attachment rule is not necessary for generating scale-free
NGFs in dimension d > 1. In fact both NGFs with flavor s = 0
and s = −1 do not have an explicit preferential attachment
rule, but they can generate scale-free networks respectively
for d � 2 and d � 3. This apparent contradiction with the
results obtained by the seminal Barabási-Albert model [61]
is solved by observing that NGFs of dimension d > 1 and
flavor s �= −1 that are scale free, although they do not evolve
according to an explicit preferential attachment rule, follow
an effective preferential attachment rule emergent from their
dynamics (see Supplemental Material [76] for details).

V. QUANTUM NETWORK STATES

To each NGF of flavor s, evolved up to time t , we can
associate a quantum network state |ψ [s](t)〉 belonging to the
Hilbert space H[s]

tot by following a similar procedure as the one
used in precedent works [12,13,45–47]. A Hilbert space H[s]

tot
is associated to a simplicial complex of N nodes formed by
gluing together d-dimensional simplices along (d − 1) faces.
The Hilbert space H[s]

tot is the tensorial product of the Hilbert
spaces Hnode associated to the nodes of the NGF and of two
Hilbert spaces Hd,d−1 and H̃[s]

d,d−1 associated to each of the
possible (d − 1) faces of the NGF, i.e.,

H[s]
tot =

N⊗
Hnode

P⊗
Hd,d−1

P⊗
H̃[s]

d,d−1, (48)

with P = (Nd ) indicating the maximum number of (d − 1)
faces in a network of N nodes. The Hilbert space Hnode is the
one of a fermionic oscillator of energy εi , with basis {|oi,ε〉},
with oi = 0,1. We indicate with b

†
i (ε),bi(ε), respectively, the

fermionic creation and annihilation operators acting on this
space. The Hilbert space Hd,d−1 associated to a (d − 1) face
α is the Hilbert space of a fermionic oscillator with basis
{|aα〉}, with aα = 0,1. We indicate with c†α,cα respectively the
fermionic creation and annihilation operators acting on this
space. Finally, the Hilbert space H̃[s]

d,d−1 associated to a (d − 1)
face α has a different definition depending on the flavor s of the
NGF. For s = −1,H̃[−1]

d,d−1 is the Hilbert space of a fermionic

oscillator with basis {|nα〉}, with nα = 0,1. For s = 1,H̃[1]
d,d−1 is

the Hilbert space of a bosonic oscillator with basis {|nα〉}, with
nα = 0,1,2,3, . . .. For s = 0,H̃[0]

d,d−1 is the Hilbert space with
basis {|nα〉}, with nα = 0,1,2,3, . . .. For s = 1, and s = −1
we indicate with h†,[s]

α ,h[s]
α the fermionic and bosonic creation

and annihilation operators acting respectively on the space
H̃[−1]

d,d−1 and H̃[1]
d,d−1. For s = 0 we indicate with h†,[0]

α ,h[0]
α the

operators with commutation relations[
h†,[0]

α ,h[0]
α

] = b (49)

with the operator b having elements

bmn = 〈m|b|n〉 = δm,nδm,0, (50)

such that

h†,[0]|n〉 = |n + 1〉 (51)

and

h[0]|n〉 = |n − 1〉 for n > 0

h[0]|0〉 = 0.

Having introduced the Hilbert space H[s]
tot , we can decompose

any quantum network state |φ〉 ∈ H[s]
tot as

|φ〉 =
∑

{oi ,εi ,aα,nα}
C({oi,εi,aα,nα})

N⊗
i=1

|oi,εi〉

×
⊗

α∈Qd,d−1(N)

(|aα〉 ⊗ |nα〉), (52)

where with Qd,d−1(N ) we indicate all the possible (d − 1)
faces of a network of N nodes.

The node states |oi,ε〉 are mapped respectively to the
presence (|oi = 1,ε〉) or the absence (|oi = 0,ε〉) of a node i

of energy εi = ε in the simplicial complex. The state |aα = 1〉
is mapped to the presence of the (d − 1) face α ∈ Sd,d−1 in
the network while the quantum state |aα = 0〉 is mapped to the
absence of such a face. Moreover, when aα = 1, the quantum
number nα is mapped to the generalized degree of the face
α minus one kd,d−1(α) − 1. Note that for s = −1 the Hilbert
space H̃[s]

d,d−1 is the one of a fermionic oscillator therefore
allowing only nα = 0,1 corresponding to generalized degrees
kd,d−1(α) = 1,2.

As already proposed in the literature [12,13,45], here we
assume that the quantum network state follows a Markovian
evolution. In particular we assume that at time t = 1 the state
is given by

|ψ [s](1)〉 = 1√
Ẑ [s](1)

∑
{εi }i=1,..d+1

d+1∏
i=1

√
g(εi)b

†
i (εi)

×
∏

α∈Qd,d−1(d+1)

c†α|0〉, (53)

where Z [s](1) is fixed by the normalization condition
〈ψ [s](1)|ψ [s](1)〉 = 1. The quantum network state is updated
at each time t > 1 according to the transition matrix T

[s]
t ,
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i.e.,

|ψ [s](t)〉 = T [s]
t |ψ(t − 1)〉 (54)

with T
[s]
t given by

T [s]
t =

√
Ẑ [s](t − 1)

Ẑ [s](t)

∑
εt+d

√
g(εt+d )b†t+d (εt+d )

×
∑

α∈Qd,d−1(t+d−1)

e−βεα/2

⎡
⎣ ∏

α′∈F(t+d,α)

c
†
α′

⎤
⎦h†,[s]

α c†αcα,

where F(i,α) indicates the set of all the (d − 1) faces α′
formed by the node i and a subset of the nodes in α ∈
Qd,d−1(N ),Z [s](t) is fixed by the normalization condition

〈ψ [s](t)|ψ [s](t)〉 = 1. (55)

The quantity Ẑ [s](t) is a path integral over NGF evolutions
determined by the sequences {εi}i�t+d ,{αt ′ }t ′�t . In fact, using
the normalization condition in Eq. (55) and the evolution of
the quantum network state given by Eqs. (54), (55) we get

Ẑ [s] = Z [s], (56)

whereZ [s] defined in Eq. (14) describes the temporal evolution
of NGF, and therefore

Ẑ [s] =
∑

{α(t ′)}t ′�t

e−βE
∏

α∈Qd,d−1(t)

[1 + snα(t)]!. (57)

This implies that the set of all classical evolutions of the
CQNM fully determines the properties of the quantum network
state evolving through the Markovian dynamics given by
Eq. (54).

VI. QUANTUM STATISTICS IN NETWORK GEOMETRY
WITH FLAVOR s

A. Fermi-Dirac, Boltzmann, and Bose-Einstein statistics
describe the properties of the generalized degree of δ faces

For β > 0, as long as β is sufficiently low, we can
define self-consistently the chemical potentials μ

[s]
d,δ and

express the distributions P
[s]
k,δ(k) of the generalized degrees

kd,δ as convolution of binomial, exponential, or power-law
distributions corresponding to the generalized degrees of δ

faces of energy ε. These distributions depend on the chemical
potentials μ

[s]
d,δ . When we average the generalized degrees

of δ faces of energy ε and subtract one, i.e., we evaluate
〈kd,δ − 1|ε,s〉, we observe that these quantities obey either the
Fermi-Dirac, the Boltzmann, or the Bose-Einstein statistics,
depending on the dimensions d and δ and on the flavor s

of the NGF, where the Fermi-Dirac nF (ε,μ), the Boltzmann
nB(ε,μ), and the Bose-Einstein statistics are given [82] by the

TABLE II. The average 〈kd,δ − 1|ε,s〉 of the generalized degrees
kd,δ of δ faces with energy ε minus one in a d-dimensional NGF
of flavor s follows either the Fermi-Dirac, the Boltzmann, or the
Bose-Einstein statistics depending on the values of the dimensions d

and δ.

flavor s = −1 s = 0 s = 1

δ = d − 1 Fermi-Dirac Boltzmann Bose-Einstein
δ = d − 2 Boltzmann Bose-Einstein Bose-Einstein
δ � d − 3 Bose-Einstein Bose-Einstein Bose-Einstein

expressions

nF (ε,μ) = 1

eβ(ε−μ) + 1
,

nZ(ε,μ) = e−β(ε−μ), (58)

nB(ε,μ) = 1

eβ(ε−μ) − 1
.

The results are summarized in Table II and simulation results
are compared with the theoretical expectations in Fig. 4.

We note here that the average of kd,d−1(α) − 1 = nα obeys
the Fermi-Dirac statistics for s = −1, the Boltzmann statistics
for s = 0, and the Bose-Einstein statistics for s = 1. This is
particularly surprising because it shows that the statistical
properties of NGF are intertwined with the properties of
quantum network states in which nα is mapped to a quantum
number, which is fermionic in the case s = −1 and bosonic in
the case s = 1. Therefore, statistically, on the NGF nα follows
the Fermi-Dirac statistics for s = −1 and the Bose-Einstein
statistics for s = 1 even if the NGF does not follow quantum
equilibrium statistical mechanics. In order to show this result,
let us give the results of the master equation approach for
the generalized degree distribution P

[s]
d,δ(k) for β > 0 (for the

details of the derivation see the Supplemental Material [76]).
We will distinguish the cases in which the flavor s takes value
s = −1,0,1.

B. Generalized degree distribution P [−1]
d,δ (k) for s = −1,β > 0

As long as the NGF is not a chain, i.e., d > 1, and as long as
we consider sufficiently low values of the inverse temperature
β, we can define a set of self-consistent quantities that we
call the chemical potentials μ

[−1]
d,δ . The generalized degrees

kd,δ = k of NGF with d > 1 follow the distribution P
[−1]
d,δ (k)

that depends on the chemical potential μ
[−1]
d,δ , and is given

by a binomial distribution defined only for k = 1,2 (for δ =
d − 1), by a convolution of exponentials (for δ = d − 2), or
by a convolution of power-law distributions (for δ � d − 3)
[13]. In fact the exact asymptotic expression of the distribution
P

[−1]
d,δ (k) of the generalized degree kd,δ = k obtained with the

master equation approach is given by

P
[−1]
d,d−1(1) =

∑
ε

ρ
[−1]
d,d−1(ε)

(
1 − 1

exp
[
β
(
ε − μ

[−1]
d,d−1

)] + 1

)
,

P
[−1]
d,d−1(2) =

∑
ε

ρ
[−1]
d,d−1(ε)

1

exp
[
β
(
ε − μ

[−1]
d,d−1

)] + 1
,
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P
[−1]
d,d−2(k) =

∑
ε

ρ
[−1]
d,d−2(ε)

exp
[
β
(
ε − μ

[−1]
d,d−2

)]
{

exp
[
β
(
ε − μ

[−1]
d,d−2

)] + 1
}k

,

P
[−1]
d,δ (k) =

∑
ε

ρ
[−1]
d,δ (ε)

exp
[
β
(
ε − μ

[−1]
d,δ

)]
�[k + 2/(d − δ − 2)]

�
[
k + 1 + 2/(d − δ − 2) + exp

[
β
(
ε − μ

[−1]
d,δ

)]]
× �

[
1 + 2/(d − δ − 2) + exp

[
β
(
ε − μ

[−1]
d,δ

)]]
�[1 + 2/(d − δ − 2)]

,

where ρ
[−1]
d,δ (ε) indicates the probability that a δ face has

energy ε, the dimension d is greater than one, i.e., d > 1,
and the last expression is valid for values of δ satisfying
0 � δ � d − 3. The average of the generalized degree minus
one, performed over δ faces of energy ε in dimension d > 1,
is given by the Fermi-Dirac statistics for δ = d − 1, the
Boltzmann statistics for δ = d − 2 and the Bose-Einstein
statistics for δ � d − 3 [13]

〈kd,d−1 − 1|ε,s = −1〉 = nF

(
ε,μ

[−1]
d,d−1

)
,

〈kd,d−2 − 1|ε,s = −1〉 = nZ

(
ε,μ

[−1]
d,d−2

)
, (59)

〈kd,δ − 1|ε,s = −1〉 = A
[−1]
d,δ nB

(
ε,μ

[−1]
d,δ

)
,

where the last expression is valid for δ � d − 3, and where
nF (ε,μ),nZ(ε,μ), and nB(ε,μ) are given by Eqs. (58), while
A

[−1]
d,δ is given by

A
[−1]
d,δ = (d − δ)

(d − δ − 2)
. (60)

These relations perfectly match the simulation results for suffi-
ciently low value of the inverse temperature β (see Fig. 4). The
self-consistent value of the chemical potential can be found by
imposing the following geometrical relations satisfied by the
generalized degrees of the NGF of every flavor s,

lim
t→∞

∑
α∈Sd,δ (t) kd,δ(α)

Nd,δ(t)
= d + 1

δ + 1
. (61)

Imposing such condition is equivalent to fixing the
normalization conditions for nF (ε,μ[−1]

d,d−1),nZ(ε,μ[−1]
d,d−2), and

nB(ε,μ[−1]
d,δ ). These conditions are given by

∑
ε

ρd,d−1(ε)nF

(
ε,μ

[−1]
d,d−1

) = 1

d
,

∑
ε

ρd,d−2(ε)nZ

(
ε,μ

[−1]
d,d−2

) = 2

d − 1
,

∑
ε

ρd,δ(ε)nB

(
ε,μ

[−1]
d,δ

) = d − δ − 2

δ + 1
. (62)

The case d = 1 is an exception because it is the only case
in which the area A of the NGF is not growing in time, in
fact we have A = 2 for every value of t . This property of
the NGF of flavor s = −1 in dimension d = 1 makes this case
significantly different from the other cases, but fortunately this
NGF has a much simpler dynamics, since it is a chain.

C. Generalized degree distribution P [0]
d,δ(k) for s = 0,β = 0

For NGF of flavor s = 0, using the master equation
approach together with the self-consistent derivation, we can
derive the distribution P

[0]
d,δ(k) of generalized degrees kd,δ = k.

Therefore, we define self-consistently the chemical potentials
μ

[0]
d,δ , and express the distribution P

[0]
d,δ(k) as a convolution

of exponentials or a convolution of power-law distributions
depending on the dimension d and δ. These distributions are
given by

P
[0]
d,d−1(k) =

∑
ε

ρ
[0]
d,d−1(ε)

eβ(ε−μ
[0]
d,d−2)

(eβ(ε−μ
[0]
d,d−2) + 1)k

,

P
[0]
d,δ(k) =

∑
ε

ρ
[0]
d,δ(ε)

exp
[
β(ε − μ

[0]
d,δ)

]
�[k + 1/(d − δ − 1)]

�
[
k + 1 + 1/(d − δ − 1) + exp

[
β
(
ε − μ

[0]
d,δ

)]] (63)

× �
[
1 + 1/(d − δ − 1) + exp

[
β
(
ε − μ

[0]
d,δ

)]]
�[1 + 1/(d − δ − 1)]

,

where ρ
[0]
d,δ(ε) indicates the probability that a δ face has

energy ε, and where the last equation is valid for values
of δ satisfying 0 � δ � d − 2. Therefore, the (d − 1) faces
have generalized degree distribution P

[0]
d,d−1(k) that is given

by a convolution of exponentials, while the δ faces with

δ � d − 2 have a generalized degree distribution P
[0]
d,δ(k)

that is given by a convolution of power laws. When con-
sidering the average 〈kd,δ − 1|ε,s = 0〉, we observe that
for δ = d − 1 this quantity is a Boltzmann distribution
and for every δ � d − 2 is a Bose-Einstein distribution,
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FIG. 4. The average 〈kd,δ − 1|ε,s〉 for NGF of flavor s in dimension d = 3 follows either the Fermi-Dirac statistics nF (ε,μ), the Boltzmann
statistics nZ(ε,μ) or the Bose-Einstein statistics nB (ε,μ) given by Eqs. (58) depending on the value of δ and s as predicted by Eqs. (60), (65),
and (68). Here the simulation results for NGF of dimension d = 3 formed by N = 104 nodes for β = 0.05,0.1,0.2 (indicated, respectively, by
blue circles, red squares, and orange diamonds) averaged 20 times are compared with the theoretical expectations (indicated with solid black
lines). The energies of the nodes take integer values and their uniform distribution is given by g(ε) = 1/10 for 0 � ε < 10.

i.e.,

〈kd,d−1 − 1|ε,s = 0〉 = nZ

(
ε,μ

[0]
d,d−2

)
,

〈kd,δ − 1|ε,s = 0〉 = A
[0]
d,δnB

(
ε,μ

[0]
d,δ

)
, for δ � d − 2

(64)

with nZ(ε,μ) and nB(ε,μ) given by Eqs. (58) and A
[0]
d,δ given

by

A
[0]
d,δ = (d − δ)

(d − δ − 1)
. (65)

The chemical potential μ
[0]
d,δ can then be found imposing the

condition in Eq. (61) that all NGFs must satisfy. Therefore,
the self-consistent equations that the chemical potentials must
satisfy are

∑
ε

ρd,d−1(ε)nZ

(
ε,μ

[−1]
d,d−1

) = 1

d
,

∑
ε

ρd,δ(ε)nB

(
ε,μ

[−1]
d,δ

) = d − δ − 1

δ + 1
, for δ � d − 2.

(66)

D. Generalized degree distribution P [1]
d,δ(k) for s = 1,β = 0

The NGF of flavor s = 1, at sufficiently low inverse
temperature β, has the generalized degrees kd,δ = k with
distribution P

[1]
d,δ(k) dependent on the chemical potential μ

[1]
d,δ .

The generalized degree distributions P
[1]
d,δ(k) can be found

using the master equation approach, and they are given by

P
[1]
d,δ(k) =

∑
ε

ρ
[1]
d,δ(ε)

exp
[
β
(
ε − μ

[1]
d,δ

)]
�[k]

�
{
k + 1 + exp

[
β
(
ε − μ

[1]
d,δ

)]}
×�

{
1 + exp

[
β
(
ε − μ

[1]
d,δ

)]}
, (67)

where ρ
[1]
d,δ(ε) indicates the probability that a δ face has energy

ε. In this case, if we perform the average 〈kd,δ − 1|ε,s = 1〉
over all δ faces with energy ε, we always get the Bose-Einstein
distribution, independently of 0 � δ < d, i.e., we obtain

〈kd,δ − 1|ε,s = 1〉 = nB

(
ε,μ

[1]
d,δ

)
, (68)

with nB(ε,μ) given by Eq. (58). The chemical potentials
μ

[1]
d,δ must satisfy Eq. (61). Therefore, they can be found

self-consistently by solving∑
ε

ρd,δ(ε)nB

(
ε,μ

[1]
d,δ

) = d − δ

δ + 1
. (69)

E. Low-temperature regime

In the regime of low temperatures, i.e., high enough
values of β, it is possible to observe a breakdown of the
self-consistent hypothesis made for solving the generalized
degree distribution and the self-consistent equations might
not have a solution. In the NGF of d = 1 and flavor s = 1
there is a well-defined phase transition in which one node
grabs a finite fraction of all the links. This phase transition is
also called Bose-Einstein condensation in complex networks
and has been characterized in Ref. [63]. In general NGF of
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higher dimensions and also different flavors might show phase
transitions modifying the generalized degree distribution of
different δ faces as shown for the case d = 2 and flavors
s = −1 and s = 1 in Ref. [12]. A full investigation of the
nature of the possible phase transitions occurring in NGF is
beyond the scope of this paper.

VII. CONCLUSIONS

In conclusion, here we have presented the model of network
geometry with flavor s. This is a model for growing simplicial
complexes in dimension d. Simplicial complexes are very
useful generalizations of networks and can be used to model
interactions involving more than just two nodes, as the one
occurring, for example, in collaboration networks, or in
protein-interaction networks. Moreover, simplicial complexes
of dimension d are useful structures to discretize a geometrical
d-dimensional space, and for this reason they are widely used
in quantum gravity.

Network geometry with flavor s evolves by a nonequilib-
rium dynamics that enforces an indefinite growth of these
geometrical structures. Moreover, these networks are formed
by simplices having heterogeneous properties modeled by
assigning an energy to them that determines their evolution.
The statistical mechanics of the NGF allows us to characterize
the thermodynamic properties of these networks and to relate
these networks to complexity theory on the one side and to
quantum geometry on the other side.

The thermodynamic properties of NGF reveal that these net-
works obey the area law and the change in their entropy S de-
pends on the change of their area A. From the point of view of
network theory we observe that characterizing NGF of dimen-
sionality d > 1 allows for a significant generalization of pre-
vious results, showing that an explicit preferential attachment
is not necessary for obtaining scale-free networks in the case
of NGF of d > 1. Finally, the significant interplay between
the NGF and their quantum mechanical description in terms of
quantum network states is revealed by the statistical properties
of the generalized degrees of δ faces, whose average follows
either the Fermi-Dirac, the Boltzmann, or the Bose-Einstein
statistics depending on the dimensions d,δ, and on the flavor s.

Overall we have proposed the theoretical framework of
NGF for describing the nonequilibrium dynamics of sim-
plicial complexes. Our framework generates a large variety
of network geometries, from chains and higher-dimensional
manifolds to scale-free networks with communities and small-
world properties. Interestingly, NGFs with flavor s = −1,0,1
display a strikingly regular pattern in their structural proper-
ties. We believe that these results extend our understanding
of growing complex networks to simplicial complexes of
larger dimensionality and can be used in network theory to
model networklike structures where nodes are connected by
interactions involving more than two nodes. Finally, we hope
that this work, showing the rich interplay between NGFs and
their quantum mechanical description, will stimulate the cross
fertilization between network theory and quantum gravity.
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[3] M. Boguñá, D. Krioukov, and K. C. Claffy, Nature Phys. 5, 74
(2009).
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