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Evacuation time estimate for total pedestrian evacuation using a queuing network model and
volunteered geographic information
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Estimating city evacuation time is a nontrivial problem due to the interaction between thousands of individual
agents, giving rise to various collective phenomena, such as bottleneck formation, intermittent flow, and stop-and-
go waves. We present a mean field approach to draw relationships between road network spatial attributes, the
number of evacuees, and the resultant evacuation time estimate (ETE). Using volunteered geographic information,
we divide 50 United Kingdom cities into a total of 704 catchment areas (CAs) which we define as an area where
all agents share the same nearest exit node. 90% of the agents are within ≈ 6,847 m of CA exit nodes with
≈13,778 agents/CA. We establish a characteristic flow rate from catchment area attributes (population, distance
to exit node, and exit node width) and a mean flow rate in a free-flow regime by simulating total evacuations using
an agent based “queuing network” model. We use these variables to determine a relationship between catchment
area attributes and resultant ETEs. This relationship could enable emergency planners to make a rapid appraisal
of evacuation strategies and help support decisions in the run up to a crisis.
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I. INTRODUCTION

Interaction between individual agents, city topology, disas-
ter type, evacuation mode, information propagation patterns,
and stochastic variables can all influence the temporal extent
of a city-wide evacuation. Additionally, growing urban popu-
lations [1] amplify the impact of extreme events [2]. There is
a need to examine factors affecting evacuation time in relation
to the latest understanding of crowd dynamics and evacuation
behavior.

Evacuation time estimate (ETE) analysis (a) tells emer-
gency planners if an evacuation plan can reduce hazard
exposure time, (b) measures the effect of uncontrollable
events such as adverse weather, and (c) assesses whether
traffic management actions help reduce it [3]. A study of
flood evacuation in the Netherlands identifies a need for
alternative evacuation strategies for coastal areas after it found
that it was not feasible to evacuate preventively within a
48 hr warning window [4]. EMBLEM2, an empirical study,
categorizes research findings about evacuees’ behavior in
hurricanes into 4 evacuation route system parameters, 16
behavioral parameters, and 5 evacuation scope and/or timing
parameters to calculate ETEs [5]. A sensitivity analysis of
radiological emergency microtraffic simulation finds that the
ETE is sensitive to traffic factors (interaction with pedestrians,
intersection traversing time, car ownership, etc.) and route
choice mechanisms (shortest path and myopic behavior) [6].
NETVACl, a macrotraffic simulation, finds that ETEs for areas
surrounding nuclear power plant sites are sensitive to road
network topology, intersection design and control, and a wide
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array of evacuation management strategies [7]. Another study
produces ETEs for a 10 mile radius around 52 nuclear power
stations taking consideration of factors such as population
density, weather conditions, warning time, response time, and
confirmation time [8].

Some models take a dynamic network flow approach to
minimize evacuation time [9,10] while others use social force
based models like EPES to establish optimal earthquake
evacuation behavior [11]. The “Last-Mile” project uses a
“queuing network” model to obtain an optimal evacuation
plan for the Indonesian city of Padang using time-dependent
network attributes to imitate conditions of a tsunami [12]. The
underlying flow model simulates traffic, taking only free speed,
bottleneck capacities, and space constraints into account. This
was adapted from an early queuing model for cars [13] that
was applied to the city of Portland to assess traffic jams. This
approach is preceded by an early evacuation plan optimization
study for Yokosuda city in Japan which uses a combination
of the shortest path algorithm and minimal cost flow approach
accounting for the capacity limit of each place of refuge [14].

Evacuees’ behavior plays an important role during evac-
uations. A combination of individual traits and basic social
psychological processes such as (a) risk perception, (b) social
influence, and (c) access to resources predict evacuation
behavior while some population subgroups choose not to
evacuate depending on the severity of the storm, territoriality,
etc. according to a study conducted after Hurricanes Hugo
and Andrew [15]. Subjective perception of how bad the storm
is going to be and the severity of damage also seem to
play an important role in evacuation likelihood following a
warning [16]. The effect of compliance behavior on ETEs
has been studied using the EVAQ evacuation model and
a case study of the Rotterdam metropolitan area in the
Netherlands [17].

Crowd dynamics is an important feature in large cities,
and understanding it is a crucial component of emergency
evacuation modeling where agent based modeling (ABM) is
increasingly being used for large scale simulations to account
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for many interacting entities [18]. The transition between low
and high density phases is common in social systems like
cities [19]. Keeping a constant lower limit on the net-time
headway has been shown as one of the key mechanisms
behind emergent crowd dynamics [20]. Observed collective
phenomena in pedestrian crowds include lane formation in
corridors and oscillations at bottlenecks in normal situations
as well as different kinds of blocked states produced in panic
situations [21]. Video recordings of the crowd disaster in
Mina/Makkah during the Hajj on January 12, 2006, reveal
two subsequent, sudden transitions from laminar to stop-and-
go [22] and turbulent flows [23]. The transition to turbulent
flow is responsible for sudden eruptions of pressure release
comparable to earthquakes, which cause sudden displacements
and the falling and trampling of people [24]. However,
from a macroscopic viewpoint, pedestrian behavior can be
assimilated into a relationship between walking speed v and
local density k, variables familiar to the transport research
community [25].

Review of existing work highlights a gap in understanding
which relates ETEs to the interaction between city population
and their topological make-up. Topologies can vary among
parts of cities, one city to another, and one region of the planet
to another, all growing in complexity at the same time. A
queuing network ABM which incorporates pedestrian behav-
ior and network topology has the potential to define a direct
relationship between city topological attributes and their ETEs.

II. METHODOLOGY

We will now describe a model used for deriving the
necessary quantities required for our analysis. We make the
following assumptions across the model:

(a) The evacuation type is a total evacuation scenario, for
which exit nodes lie at intersections between major roads and
the city administrative boundary [26].

(b) The evacuation mode is by walking only.
(c) The route to an exit node is calculated using Dijkstra’s

shortest path algorithm [27] (no dynamic routing to avoid
congestion at bottlenecks).

We incorporate Weidmann’s fundamental diagram to de-
scribe pedestrian behavior [25] shown in Fig. 1 into the model.
Equation (1) describes the relationship between density k and
velocity v in the range 0.0 � k � kv,min ped/m2 where the
minimum velocity threshold for density kv,min = 5.0 ped/m2.
When k = 0.0 ped/m2, the free-flow velocity vf is 1.34 m/s.
However, when k > kv,min, vmin = v(kv,min) = 0.04 m/s such
that the minimum velocity is never less than vmin = 0.04 m/s
(or 2.25 m/min) which we draw from a limited set of empirical
observations of high density crowds [20] which is still not
very well understood. This has a physical implication that a
minimum clearing must be available in front of an individual
before he is able to make a decision to act. Without this kind
of limit, individuals would be allowed to make infinitesimally
small progress per time step which is neither plausible nor
resolvable as simulations will tend to run indefinitely since
v → 0 m/s as we approach a maximum density of kmax =
5.4 ped/m2 if we evaluate v(kmax) using Eq. (1):

v(k) = vf

(
1.0 − e−1.913( 1.0

k
− 1.0

kmax
)). (1)

(a)

(b)

FIG. 1. Pedestrian fundamental diagram where (a) shows the
relationship between density k and velocity v(k) = vf (1.0 −
e

−1.913( 1.0
k

− 1.0
kmax

)) [25] between 0.0 � k � kv,min ped/m2 where
kv,min = 5.0 ped/m2. In this equation, the free-flow velocity vf =
1.34 m/s. At maximum density kmax = 5.4 ped/m2, v = 0 m/s.
However, when k > kv,min, vmin = v(kv,min) = 0.04 m/s. On the other
hand, (b) shows the relationship between density k and flow Q(k) =
kv(k) = kvf (1.0 − e

−1.913( 1.0
k

− 1.0
kmax

)) [25]. From this equation, we can
derive an optimum density kopt = 1.75 ped/m2 when the correspond-
ing flow is a maximum of Qmax = 1.22 ped/ms. Both (a) and (b) also
mark the position of klim at 5.0, 6.0 and 7.0 ped/m2 for the purpose
of sensitivity analysis.

The relationship between density k and flow rate Q follows
as Eq. (2). We can differentiate this equation to derive the
optimum density kopt = 1.75 ped/m2 when dQ/dk = 0. The
corresponding maximum flow rate Qmax = 1.22 ped/ms.

Q(k) = kv(k) = kvf

(
1.0 − e−1.913( 1.0

k
− 1.0

kmax
)). (2)

We use an adaptation of the queuing network
model [12,13,26] originally designed for vehicular traffic. The
model follows the given rules for each remaining agent per
time step until there are no more agents left:

(1) Calculate the link density using the area and occupancy
of the link that the agent is on.

(2) Traverse the link at a velocity corresponding to the
density using the fundamental diagram [25].

(3) If the agent reaches end of the link, go to the next link
if there is space available.

(4) If there is no space available, remain in place.
(5) If the agent reaches the final destination, remove the

agent from the simulation.
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The fundamental diagram is not able to describe system
dynamics far from equilibrium (i.e., high density crowds)
because it is an ensemble of a range of pedestrian behavior.
Therefore, we model movement at high densities by imple-
menting a network link density limit of klim = 5.0 ped/m2

as well as a minimum velocity threshold for the density at
kv,min = 5.0 ped/m2. However, the simulation dynamics may
be sensitive to different values of klim. As such, we aim to
compare the results obtained from a scenario with a density
limit of klim = 5.0 ped/m2 with alternative scenarios where
klim = 6.0 and 7.0 ped/m2. If we maintain the minimum
velocity threshold at kv,min = 5.0 ped/m2 as indicated in
Fig. 1, this corresponds to a flow threshold of 0.20,0.24, and
0.28 ped/ms at network link density limits of klim = 5.0,6.0,
and 7.0 ped/m2, respectively.

Under these assumptions, we select 50 cities similar in area
to the City of Bristol (235.82 ± 25% km2). We use network
topology approximated from OpenStreetMap (OSM) [28].
OSM is a source of volunteered geographic information
(VGI) [29], growing in both contributor base and data qual-
ity [30–32]. We further divide these cities into 704 catchment
areas (CAs), which we define as network components that
emerge as agents are assigned to an exit node nearest to
their initial position calculated using Dijkstra’s shortest path
algorithm [27]. Figure 2(a) illustrates CA formation for the
City of Bristol and Fig. 2(b) shows how the distribution of
the initial agent distance to their exit node D varies between
different CAs.

A. Characteristic variables

Characteristic variables independent of dynamic agent
interaction informs part of our analysis. The first of these is the
characteristic flow rate Qc described by Eq. (3). It is defined
as free-flow time averaged flow whereby we assume infinite
link capacity. As a consequence, Qc may sometimes exceed
Qmax. To illustrate the point, we mark the position of Qc for
an example CA in Fig. 4(a).

Qc = vf

D90%

N

W
= N

T 90%
f W

. (3)

We calculate Qc using CA population N , exit node width
W , and free-flow catchment area traversal time for 90% of
all CA agents, T 90%

f , which is also our second characteristic
variable. We estimate N from GRUMPv1 year 2000 population
data set [33] uniformly scaled up by a factor of 9.37% in order
to account for the rise in United Kingdom (UK) population
between the years 2000 and 2015 [34]. It has a granularity
of 1 km2. Figure 3(a) shows how N is distributed in log
scale. Values range from 102 to 105, with a mean value of
104.14 ≈ 13,778 agents. For exit nodes tagged “motorway” on
OSM, we assume W = 7.5 m and for those tagged “trunk” or
“primary”, W = 5.0 m [26]. T 90%

f = D90%/vf , where D90%

is the distance to exit node for 90% of all agents and free-flow
velocity vf = 1.34 m/s. T 90%

f is also marked in Fig. 4(a). If
we ignore all congestion and bottleneck effects, it provides a
lower bound estimate of evacuation time for 90% of all CA
agents. We use D90% because it approximates the size of a CA
as a scalar without the weight of the last decile skewing the
result. Figure 3(b) shows how D90% is distributed across all

(a)

(b)

FIG. 2. (a) CAs are obtained by allocating agents to the exit node
nearest to their initial position. For this, we use Dijkstra’s shortest
path algorithm [27]. Each color in the figure represents one of the
15 City of Bristol CAs. (b) Example showing distribution of agent
distance to exit node D for 3 City of Bristol CAs denoted by red
(CA01), green (CA02), and blue (CA03) histograms.

CAs in log scale with values ranging between 101.5 to 104.5 m
with a mean value of 103.84 ≈ 6,847 m, a distance belt within
which 90% of all CA agents are situated.

B. Simulated variables

Simulated variables are obtained by studying the dynamic
interaction of agents under the following assumptions:

(i) All agents walk to the nearest exit on a signal to evacuate
(i.e., premovement time is zero).

(a) (b)

FIG. 3. (a) Histogram of CA populations N . (b) Histogram of
agent distances to exits for 90% of all CA agents D90%.
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(a) (b)

FIG. 4. An example using a City of Bristol CA, specifically CA02
from Fig. 2, to show the position of (a) the free-flow time for 90% of
all CA agents, T 90%

f , the characteristic free-flow time averaged flow
rate Qc, (b) the simulated time for 90% of all CA agents, T 90%, and
the mean of simulated exit node flow rate in the free-flow regime, Qf .
Both (a) and (b) also specify the position of maximum flow rate Qmax

which is exceeded in the free-flow case due to noninteraction between
agents. However, the flow remains below this threshold during the
simulation as link densities cannot be exceeded.

(ii) All agents act independently (complex social behaviors
such as family regrouping, co-operation, etc. are not taken into
account).

Our first simulated variable Qf is defined as simulated
exit node flow rate Q averaged within the free-flow regime
(T < T 90%

f ). The area under the flow curve for each CA is
proportional to the total number of agents. The larger this area
is before flow transitions to the congested phase, the bigger
the Qf value, precipitating a shorter congestion. Hence, the
overall ETE is proportional to Qf . We show the position of
Qf for an example CA in Fig. 4(b). The flow curve Q it is
derived from is calculated using Eq. (2) where the density
parameter k = N/(WL), N is the number of agents arriving at
the exit node per time step, W is the width, and L is the length
of the exit link. Figure 4(b) also marks the position of T 90%,
defined as the time at which 90% of all CA agents arrive at
the exit node. Unlike T 90%

f , T 90% takes agent interaction and
emergent bottlenecks into account. While bottlenecks may be
interspersed throughout a CA as shown by the example in
Fig. 5 where observed local density k varies through distance
from exit node D and elapsed time T , it is ultimately the exit
node flow rate Q that influences the overall ETE. Figure 5 also
illustrates how velocity drops where the density is high for a
randomly picked agent trajectory.

III. RESULTS AND DISCUSSION

A. Linking characteristic and simulated variables

Now we proceed to demonstrate the link between char-
acteristic variables (Qc, T 90%

f ) and simulated variables (Qf ,
T 90%). We aggregate the simulated exit node flow Q observed
through absolute simulation time T . Then, we level the basis
for comparison between CAs by normalizing flow as Q/Qc

and time as T/T 90%
f . We substitute Q and T for Qf and T 90%

FIG. 5. Density k at distance D away from an exit node at time T

where the density ranges between 0.0 � k � 5.0 ped/m2 for a City of
Bristol CA, specifically CA02 from Fig. 2. Trajectory of a randomly
picked agent is shown in the green dotted path to illustrate how the
agent velocity is reduced where the link density is high.

and define Qf in relation to Qc. We also define ratio Qf /Qc

in relation to T 90%/T 90%
f . Using these relationships, we derive

a general description of T 90% using characteristic variables Qc

and T 90%
f .

Aggregating simulated flow at exit node Q across all CAs
over absolute simulation time T produces Fig. 6(a). Looking
at the 0 < T < 20 000 band, we observe that the aggregate
flows peak around Q ≈ 0.15 ped/(ms) within a wide 68%
confidence interval early on in the simulation which gradually
tapers. While the peak signals the transition from the free flow
(T � T 90%

f ) to the congested (T > T 90%
f ) regime, the exact

point of transition is not clear in this representation. We also
observe that as the sample size decreases with elapsing T , there
is an increase in the fluctuation of aggregate Q. We normalize
T by T 90%

f and Q by Qc to obtain Fig. 6(b). Q/Qc clearly
peaks within T/T 90%

f < 1 at Q/Qc ≈ 0.6 which implies that,
in general, Qc overpredicts the simulated flow. The flattening
of the curve beyond the peak at T/T 90%

f � 1 indicates the
congested flow regime which carries on up to a maximum
of T/T 90%

f ≈ 72. This is a significant gap between free-flow
and simulated time but only applies to a small number of
CAs.

For the following part, we randomly divide our 704 CAs
into two halves of 352, the first half to “train” our model and
the second half to “test” it.

Using the train data set, we look at the extent to which
Qc overpredicts Qf in Fig. 7(a). The upper bound appears
to be defined by Qf = Qc, showing that Qf never exceeds
Qc. There is a strong agreement between Qc and Qf along
the diagonal where Qc < Qmax. However, when Qc > Qmax,
Qf diverges from the Qf = Qc line. It is better defined by a
power-law fit (r2 = 0.79) described by Eq. (4) where θ = 0.82
and γ = 1.03:

Qf = γ (Qc)θ . (4)
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(a)

(b)

FIG. 6. (a) Aggregate simulated flow at exit node Q averaged
across all CAs over absolute simulation time T as represented by the
blue curve where the gray patch signifies the 68% confidence interval
which becomes narrower with decreasing amount of aggregate
data sample. (b) Aggregate exit node flow rate normalized by the
characteristic flow rate, Q/Qc, over time normalized by the free-flow
time for 90% of all CA agents, T/T 90%

f , averaged across all CAs as
represented by the blue curve showing the 68% confidence interval
using the gray patch. Q/Qc peaks within T/T 90%

f < 1 and mean
Q/Qc < 1.

We look for an equation to estimate the ETE, i.e.,
T 90%, by analyzing the relationship between ratios Qf /Qc

and T 90%/T 90%
f representing Q and T as Qf and T 90%,

respectively. Qf /Qc estimates the peak of the mean curve in
Fig. 6(b). For T 90%/T 90%

f � 1, delays due to agent interaction
are proportionately greater and as such, T 90%/T 90%

f = 1 is the
best possible desired outcome.

We use the train data set to derive the relationship seen in
Fig. 7(b) between Qf /Qc and T 90%/T 90%

f with axes. There is
a strong correlation (r2 = 0.73) between the data points. For
values of Qf /Qc≈1, T 90%/T 90%

f ≈1 implying that Qf ≈ Qc

when T 90% ≈ T 90%
f . However, Qf /Qc → 0 as T 90%/T 90%

f →
∞ since agents overflow into the congested regime. When
Qf � Qc, T 90% � T 90%

f . The relationship between the two
ratios is well described by the power law of Eq. (5) with best

(a)

(b)

FIG. 7. (a) Relationship between characteristic flow Qc and mean
of simulated exit node flow rate in the free-flow regime, Qf . Each
CA is represented by a data point. Qf = Qc is the upper bound
in the red dashed line. Qf = γ (Qc)θ describes the power-law best
fit represented by the blue solid line. (b) Relationship between the
ratio of mean simulated exit node flow rate in the free-flow regime
to characteristic flow rate, Qf /Qc, to the ratio of simulated time to
free-flow time for 90% of all CA agents, T 90%/T 90%

f . The best fit
shown by the blue solid line is a power-law equation T 90%/T 90%

f =
β(Qf /Qc)α .

fit parameter values α = −1.39 and β = 0.98:

T 90%

T 90%
f

= β

(
Qf

Qc

)α

. (5)

In order to obtain at least the first order estimate of the ETE
for a new CA without running an ABM simulation, we can
equate T 90% solely in terms of characteristic variables T 90%

f

and Qc. We do this by substituting Eq. (4) into Eq. (5) to obtain
Eq. (6) where φ = α(θ − 1) = 0.25 and ω = βγ α = 0.94:

T 90% = ω(Qc)φT 90%
f . (6)

Substituting Eq. (3) into Eq. (6), we get Eq. (7):

T 90% = ω

(
N

W

)φ(
D90%

vf

)1−φ

. (7)
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FIG. 8. Comparing T 90%
calculated against T 90%

simulated where T 90%
simulated =

η(T 90%
calculated)ζ . The red line represents the primary case where klim =

5.0 ped/m2. The yellow and blue lines (y-axis values offset by 102

and 104) represent secondary cases used for sensitivity analysis where
klim = 6.0 and 7.0 ped/m2, respectively. The green lines are mirror
diagonals where T 90%

simulated = T 90%
calculated to allow visual comparison.

There is a good fit between the axes as indicated by the strong r2

values but higher values of T 90%
calculated slightly underestimate T 90%

simulated.

B. Verification and sensitivity analysis

Using the test data set, we compare the simulated T 90% val-
ues, T 90%

simulated, for each CA against their calculated counterpart,

T 90%
calculated, computed with the help of Eq. (7) using variables

N , W , and D90% for each CA and constants ω, φ, and vf . The
relationship between T 90%

calculated and T 90%
simulated can be written as

Eq. (8):

T 90%
simulated = η

(
T 90%

calculated

)ζ
. (8)

For the primary case where klim = 5.0 ped/m2, there is a
good agreement between T 90%

calculated and T 90%
simulated (r2 = 0.82) as

demonstrated by Fig. 8. Since the gradient of the best fit line

crosses the mirror diagonal line whenT 90%
calculated = e

ln ζ

1−η , we can
show that T 90%

calculated slightly underestimates T 90%
simulated (exponent

ζ = 1.08, coefficient η = 0.72) for values of T 90%
calculated >

101.78.
Our results do not appear to be sensitive to klim since raising

the density limit from 5.0 to 6.0 then to 7.0 ped/m2 only
changes the exponent ζ by 1% in both of our secondary cases
(from 1.08 to 1.07 then to 1.06) as visible in Fig. 8. So, our
results appear to be robust within these density limit conditions
marked in Fig. 1.

IV. CONCLUSIONS

In conclusion, by exploring the relationship between
simulated ETE and CA attributes from 50 UK cities, we
present a way to estimate ETEs using CA attributes alone:
population, CA size, and exit width. This method is even more
reliable for CAs with a characteristic flow rate lower than the
maximum flow rate of 1.22 ped/ms, and the results appear to
be robust within the range of density limit conditions explored.
We envisage our method being used to rapidly evaluate lots
of evacuation strategies and the best candidates among these
examined using ABM simulations to determine a more specific
answer. In our future work, we want to establish dominant
topological attributes that are able to account for the unique
conditions of each CA so that we can correct for discrepancies
which statistical analyses are not always able to capture.
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