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Collective motion patterns of swarms with delay coupling: Theory and experiment
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The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of
great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper,
we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling
term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating
over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only
with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics.
We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in
agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and
delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced
pattern formation in a mixed-reality swarm.
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I. INTRODUCTION

The emergence of complex dynamical behaviors from
simple local interactions between pairs of agents in a group is a
widespread phenomenon over a range of application domains.
Many striking examples can be found in biological systems,
from the microscopic (e.g., aggregates of bacterial cells or
the collective motion of skin cells in wound healing) [1–3]
to large-scale aggregates of fish, birds, and even humans
[4–6]. These systems are particularly interesting to the robotics
community because they allow simple individual agents to
achieve complex tasks in ways that are scalable, extensible,
and robust to failures of individual agents. In addition,
these aggregate behaviors are able to form and persist in
spite of complicating factors such as communication delay
and restrictions on the number of neighbors each agent is
able to interact with, heterogeneity in agent dynamics, and
environmental noise. These factors, and their effects on swarm
behaviors, are the focus of our current work.

A number of studies show that even with simple interaction
protocols, swarms of agents are able to converge to organized,
coherent behaviors. Existing literature on the subject provides
a wide selection of both agent-based [4–7] and continuum
models [2,8,9]. One of the earliest agent-based models of
swarming is Reynolds’s boids [10], which simulates the motion
of a group of flocking birds. The boids follow three simple
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rules: collision avoidance, alignment with neighbors, and
attraction to neighbors. Since the publication of Reynolds’s
paper, many models based on “zones” of attraction, repulsion,
and/or alignment have been used as a means of realistically
modeling swarming behaviors [11–13]. Systematic numerical
studies of discrete flocking based on alignment with nearest
neighbors were carried out by Vicsek et al. [7]. Stochastic
interactions between agents are modeled in Ref. [14]. In recent
years, improved computer vision algorithms have allowed
researchers to record and analyze the motions of individual
agents in biological flocks, and formulating more accurate,
empirical models for collective motion strategies of flocking
species including birds and fish [15–17].

Despite the multitude of available models, how group
motion properties emerge from individual agent behaviors is
still an active area of research. For example, Ref. [18] presents
a simulation-based analysis of the different kinds of motion
in a fish-schooling model; the authors map phase transitions
between different aggregate behaviors as a function of group
size and maximum number of neighbors that influence the
motion of each fish. In Ref. [6], the authors use simulation to
study transitions in aggregate motions of prey in response to a
predator attack.

Interaction delay is a ubiquitous problem in both naturally
occurring and artificial systems, including blood cell produc-
tion and coordinated flight of bats [19–23]. Communication
delay can cause emergence of new collective motion patterns
and lead to noise-induced switching between bistable patterns
[24–26]; this, in turn, can lead to instability in robotic
swarming systems [13,27]. Thus, understanding the effects
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of delay is key to understanding many swarm behaviors in
natural, as well as engineered, systems.

In addition, many models make the mathematically simple
but physically implausible assumption that swarms are glob-
ally coupled (that is, each agent is influenced by the motion
of all other agents in the swarm) [6,28–31]. Global coupling
is easier to analyze and a reasonable assumption in cases
of high-bandwidth communication, with a sufficiently small
number of agents. In contrast, we are interested in the collective
motion patterns that emerge when global communication
cannot be achieved. New behaviors can unexpectedly emerge
when the communication structure of a network is altered, as
in Ref. [32], where the stability of solutions for compromise
dynamics over an Erdös-Renyi communication network is
considered. However, in our system, we show robustness of
emergent motion patterns to loss of communication links in
presence of delayed coupling.

A third effect we consider is agent heterogeneity. Most
existing work assumes that the members of the swarm
are identical. However, many practical applications involve
swarms that are composed of agents with differing dynamical
properties from the onset, or that become different over time
due to malfunction or aging. Swarm heterogeneity leads
to interesting new collective dynamics such as spontaneous
segregation of the various populations within the swarm; it
also has the potential to erode swarm cohesion. In biology,
for example, it has been shown that sorting behavior of
different cell types during the development of an organism can
be achieved simply by introducing heterogeneity in intercell
adhesion properties [33,34]. In robotic systems, allowing for
heterogeneity in dynamical behaviors of swarm agents gives
greater flexibility in system design and is therefore desirable
not only from a theoretical but also from a practical point of
view.

A number of existing works on the spatiotemporal patterns
of swarm dynamics present results that are valid in the
thermodynamic limit, where the number of agents is assumed
to be very large [7–9,24,35–39]. We follow this mean-field
approach to analytically predict transitions between regimes
of different collective swarm motions, as a function of model
parameters, for swarms with random communication graphs,
under communication delay and agent heterogeneity.

We also run extensive numerical simulations to test the
limits of the thermodynamic model, by limiting the number
of agents in the swarm. Extremely large experiments with
distributed communication architecture are difficult to run
either in the laboratory or field. The complex logistical
issues of deploying a swarm of even fifty autonomous fixed-
wing aircraft are clearly seen in Ref. [40]. However, most
experimental work on multirobot cooperative motion uses
much smaller groups [41,42] (a notable exception is Ref. [43],
which uses a centralized controller to overcome the logistical
issues involved with coordinating a very large group of agents).

We consider a generalized model of delay-coupled agents
given in Ref. [44]. We show, through a combination of
theory, simulation, and experiment, that the collective motion
patterns observed in the globally coupled system in the
presence of delayed communication [35,39] persist as the
degree of the communication network decreases, though some
characteristics of the motion patterns are altered.

II. MODEL FORMULATION

Consider a swarm of delay-coupled agents in Rd . We
assume d = 2 in the remainder of this paper, but our results
may be generalized in a straightforward way for higher
dimensions. Each agent is indexed by i ∈ {1, . . . ,N}. We use
a simple but general model for swarming motion. Each agent
has a self-propulsion force that strives to maintain motion at a
preferred speed and a coupling force that governs its interaction
with other agents in the swarm. The interaction force is
defined as the negative gradient of a pairwise interaction
potential U (·,·). All agents follow the same rules of motion;
however, mechanical differences between agents may lead to
heterogeneous dynamics; this effect is captured by assigning
different acceleration factors (denoted κi) to the agents.

Agent-to-agent interactions occur along a graph G =
{V,E}, where V is the set of vertexes vi in the graph and E
is the set of edges eij . The vertexes correspond to individual
swarm agents, and edges represent communication links;
that is, agents i and j communicate with each other if and
only if eij ∈ E . All communications links are assumed to be
bidirectional, and all communications occur with a time delay
τ . Let Ni = {vj ∈ V : eij ∈ E} denote the set of neighbors of
agent i. Unlike in Ref. [44], we consider both heterogeneity
in the agent accelerations and distributed coupling in the
interagent communication network. The motion of agent i

is governed by the following equation:

r̈ i = κi(1 − ‖ ṙ i ‖2)ṙ i − κi

∑
j∈Ni

∇xU
[
r i(t),rτ

j (t)
]
, (1)

where superscript τ is used to denote time delay, so that rτ
j (t) =

rj (t − τ ), ‖ · ‖ denotes the Euclidean norm, and ∇x denotes
the gradient with respect to the first argument of U . The first
term in Eq. (1) governs self-propulsion.

We use mean-field dynamics in the limit as N → ∞ to
examine dynamical pattern formation in the aggregate system
and describe a bifurcation diagram showing transitions be-
tween different motion patterns as we vary model parameters.
We use a harmonic interaction potential with short-range
repulsion:

U
(
xi ,xτ

j

) = cre
−‖ xi−xj ‖

lr + a

2N

(
xi − xτ

j

)2
. (2)

The harmonic potential was introduced in Refs. [45] and [46] to
model interactions between agents. This choice can be justified
empirically to some extent by noting that, for example, [16]
measures a harmonic interaction in golden shiner fish, with
an added short-range repulsion. In the model, the repulsion
force acts over a characteristic distance determined by lr . For
cr and lr sufficiently small, the repulsion force can be treated
as a small perturbation of the harmonic interaction potential.
While we derive analytical results under the assumption cr =
0, our numerical studies indicate that the collective dynamics
of the swarm are not significantly altered by the introduction
of short-range weak repulsion terms [25]. Furthermore, we
assume that the communication network for the swarm is a
fixed Erdös-Renyi random graph constructed at the beginning
of the simulation and invariant in time.

We examine the dynamics of the system analytically in the
limit where G is almost complete ( (N−1)−|Ni |

N−1 � 1, where |Ni |
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is the number of neighbors of node i), and show via simulations
that the approximations made in the almost-complete limit
hold closely even as the mean coupling degree is reduced to less
than 50% of possible links, for an Erdös-Renyi communication
network. We also show how varying network degree and
heterogeneity in the agent dynamics affects the bifurcation
structure of the swarm motion patterns, and present numerical
simulation to verify that our theoretical results give a good
approximation to the true swarm dynamics even as the number
of agents in reduced to as few as 20.

III. SYSTEM DYNAMICS IN THE MEAN FIELD

We start our analysis of the system dynamics by considering
the mean-field motion, in the limit as N → ∞. Let R(t) =
1
N

∑N
i=1 r i(t) denote the position of the center of mass of

the swarm. Then, applying the change of variables δr i(t) =
r i(t) − R(t) and substituting in Eq. (2) for U , Eq. (1) can be
written as

R̈ + δ r̈ i = κi(1 − ‖ Ṙ + δ ṙ i ‖2)(Ṙ + δ ṙ i)

− aκi

N

∑
j∈Ni

(
R + δr i − Rτ − δrτ

j

)
, (3)

where Rτ = R(t − τ ). The motion of the center of mass can be
found by summing the above equations over all i and dividing
by N ; after simplifying, we have

R̈ = 〈κi〉(1 − ‖ Ṙ ‖2)Ṙ + 1

N
(1 − ‖ Ṙ ‖2)

N∑
i=1

κiδr i

− 1

N

N∑
i=1

(‖ δ ṙ i ‖2 + 2〈Ṙ,δ ṙ i〉)(Ṙ + δ ṙ i)

− a

N
〈κi |Ni |〉(R − Rτ ) − a

N2

N∑
i=1

κi

∑
j∈Ni

(
δr i − δrτ

j

)
,

(4)

where 〈·〉 is the average over i and 〈·,·〉 is the dot product in
R2. Our previous work shows that in many instances either
individual deviations from the center of mass are small, or in
aggregate they tend to cancel out over the whole population
[25] (we discuss situations in which this assumption breaks
in a later section). Then, neglecting all terms of order δr i

and in the limit N → ∞, the center of mass motion is given
approximately by

R̈ = 〈κi〉(1 − ‖Ṙ‖2)Ṙ − ad̄(R − Rτ ), (5)

where d̄ is the weighted, normalized mean degree of a node
for N → ∞, given by

d̄ = lim
N→∞

〈κi |Ni |〉
N

.

Note, in the current paper we do not assume correlations
between κi and |Ni | so that 〈κi |Ni |〉 → 〈κi〉〈|Ni |〉 as N → ∞.

The system dynamics are described by the set of coupled
differential equations in Eqs. (3) and (5). Note, however,
that these equations are not all independent since, from

the definition of δr i , it follows that
∑N

i=1 δr i = ∑N
i=1 δ ṙ i =∑N

i=1 δ r̈ i = 0.
Quite remarkably, simulation results indicate that the

system exhibits similar collective motions to the globally
coupled, homogeneous case, even as the variance of κi is
significantly varied or as d̄ is significantly decreased. These
collective motions include “translation,” where the entire
swarm as a group travels along a straight-line trajectory at
constant speed; “ring” motion, where the swarm agents form
concentric counter-rotating rings about the stationary center
of mass; and “rotating” motion, where the agents collapse to a
small volume and collectively rotate about a fixed point. The
collective motions of the swarm and the effects of nonglobal
coupling and heterogeneity are described in more detail in the
following sections.

IV. COLLECTIVE SWARM MOTIONS

The quasistable motion patterns of the swarm depend on
values of the coupling coefficient a and the delay τ , similar
to the globally coupled, homogeneous case [25]; in addition,
there is now a dependence on κi and on the fraction of missing
links in G. The collective motion patterns of the swarm for
different values of the parameters a and τ are described in
more detail below.

A. Translating state

In the translating state, the agent locations all lie close to
the swarm center of mass, and the swarm moves with constant
speed and direction. Following the calculation in Ref. [25], it
can be shown that the translation speed of the swarm center
of mass ‖Ṙ‖ must satisfy ‖Ṙ‖2 = 1 − ad̄τ

〈κi 〉 . The first-order

system in Eq. (5) exhibits a pitchfork bifurcation at ad̄τ = 〈κi〉,
where the translating state disappears.

B. Ring state

For all values of a and τ , (5) admits a stationary solution,
R(t) = R(0). In this state, the agents form an annulus (“ring”)
about the stationary center of mass; within the annulus,
agents rotate in either direction about the center. To find the
radius of the annulus and angular velocity of the circling
swarm agents, we convert to polar coordinates (ρi,θi), where
δr i = [ρi cos(θi), ρi sin(θi)]T . In the ring state, the center
of mass is stationary; without loss of generality, we set
R ≡ 0; in addition, we have ρi = const and θ̇i = ωi = const.
Writing Eq. (3) in polar coordinates and setting the appropriate
derivatives to 0, we get the following set of equations for the
motion of individual agents in the ring state:

ρiω
2
i cos(θi) = κi

(
1 − ρ2

i ω
2
i

)
ρiωi sin(θi)

+ κia

N

∑
j∈Ni

[
ρi cos(θi) − ρτ

i cos(θi)
τ
]
,

ρiω
2
i sin(θi) = κi

(
1 − ρ2

i ω
2
i

)
ρiωi cos(θi)

+ κia

N

∑
j∈Ni

[
ρi sin(θi) − ρτ

i sin(θi)
τ
]
.
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FIG. 1. Snapshots of homogeneous (κi = 1) swarms in the ring
state; (a) all-to-all communication graph, (b) Erdös-Renyi commu-
nication graph with d̄ = 0.6. Both swarms have coupling constant
a = 1 and communication delay τ = 2.5.

For a communication graph with sufficiently high degree, the
radius and angular velocity can be approximated by

ρi =
√

N/aκi |Ni |, (6a)

ωi = ±
√

aκi |Ni |/N (6b)

(see Fig. 1 for an illustration in the case of all-to-all coupling
and heterogeneous acceleration coefficients).

The stability of the ring state is determined by the eigenval-
ues associated with the characteristic equation associated with
the system in Eq. (5):

M(λ; a,τ ) = [λ2 − 〈κi〉λ + ad̄(1 − e−λτ )]2. (7)

The ring state loses stability in a Hopf bifurcation; solving for
where roots of M cross the imaginary axis, we obtain a family
of Hopf bifurcation curves in the a − τ parameter space:

τ = 1√
2ad̄ − 〈κi〉

(
arctan

〈κi〉
√

2ad̄ − 〈κi〉
〈κi〉2 − ad̄

+ 2mπ

)
, (8)

where m ∈ Z. The rotating state, in which the agents collapse
and collectively rotate about a fixed point, is created along the
curve corresponding to m = 0 [47].

When d̄ = 1, we recover the equations for the globally
coupled system. The factor of d̄ in which results from breaking

FIG. 2. Bifurcation curves for d̄ = 1.0, (blue, solid lines), d̄ =
0.8 (green, dashed lines), and d̄ = 0.6 (violet, dash-dotted lines).
The thick lines represent families of Hopf bifurcation curves. Due
to the delay term in the mean-field equations of motion, there is an
infinite family of Hopf bifurcations, though they do not necessarily
correspond to formation of new stable physical states. The thin lines
show the location of the pitchfork bifurcation where the translating
state disappears. Note that as d̄ is decreased, the curves shift to the
right. In the mean field, the translating state occurs in region I, the ring
state in region II, and the rotating state in region III (see Supplemental
Materials for video showing simulation of the three collective motion
states [47]).

a fraction of the links in the global network represents a
perturbation from the globally coupled case. The result is a
shift in the bifurcation curves, as shown in Fig. 2 for the
homogeneous case κi = 1. The pitchfork and Hopf bifurcation
curves meet at a Bogdanov-Takens bifurcation point when
a = 〈κi 〉2

2d̄
, τ = 2

〈κi 〉 .

C. Rotating state

In the rotating state, the agents move in a tight group about
a fixed center of rotation. The radius ρrot and angular velocity
ωrot of the center of mass of the swarm in the rotating state
satisfy

ω2
rot = ad̄[1 − cos(ωrotτ )], (9a)

ρrot = 1

|ωrot|

√
1 − ad̄ sin(ωrotτ )

〈κi〉ωrot
(9b)

(see Fig. 3). In the case of global coupling with homogeneous
agents (κi = 1), all agent positions in the rotating state
coincide; however, when coupling is not global or when the
agent dynamics are not homogeneous, different agents circle
the fixed point with equal angular frequency but have different
radii, and have a fixed relative phase offset from the center
of mass, depending on their acceleration factor or coupling
degree (see Fig. 4).

We now take a closer look at the distribution of agents in
the rotating state and separately examine the effects of having
heterogeneous agent dynamics and nonglobal communication.
First, note that the coupling term for agent i in Eq. (3) can be
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FIG. 3. Comparison of the theoretical values of radius (a) and
angular velocity (b) of the agents in the rotating state with full-
swarm simulations of 150 agents, with a = 1, τ = 4.5, and κi = 1,
for different connection degrees. The simulation values are obtained
by averaging over all agents in the swarm, over 10 simulation runs.
Error bars are shown one standard deviation above and below the
mean values for each swarm.

FIG. 4. Snapshot of simulation showing a homogeneous swarm
in the rotating state at t = 3000 (in normalized units). The stationary
center point is marked by ×. The colors correspond to the normalized
coupling degree |Ni |/(N − 1). Here a = 1, τ = 4.5, and d̄ = 0.75.

approximated by∑
j∈Ni

[
r i(t) − rτ

j (t)
] = |Ni |(r i − Rτ ) −

∑
j∈Ni

δrτ
j

≈ |Ni |(r i − Rτ ),

where we assume that δrτ
j are small since the system is in

the rotating state (this assumption breaks down as the degree
of the communication graph G is decreased sufficiently). The
equation of motion for agent i can be written as

r̈ i = κi(1 − ‖ṙ i‖2)ṙ i − aκi |Ni |
N

[r i(t) − Rτ (t)].

We let N → ∞ while keeping the ratio |Ni |/N constant. Let
di be defined as κi |Ni |/N , so that

r̈ i = κi(1 − ‖ṙ i‖2)ṙ i − adi[r i(t) − Rτ (t)], (10)

where the motion of the center of mass R is given by (5).
Let (ρrot,θrot) and (ρi,θi) denote the polar coordinates of the

swarm center of mass and of agent i, respectively, relative to
the center of rotation. In these coordinates, the motion of agent
i in the swarm in the rotating state ρi = const and θ̇ = ωi =
ωrot = const is described by

ρiω
2
rot cos(θi) = κi

(
1 − ρ2

i ω
2
rot

)
ρiωrot sin(θi)

+ adi[ρi cos(θi) − ρrot cos(θ − ωrot)], (11a)

ρiω
2
rot sin(θi) = κi

(
1 − ρ2

i ω
2
rot

)
ρiωrot cos(θi)

+ adi[ρi sin(θi) − ρrot sin(θ − ωrot)], (11b)

where ρrot and ωrot can be computed from Eq. (9). Let 
θi =
θi − θrot be the phase offset between agent i and the swarm
center of mass. It can be shown that ρi and 
θi must satisfy

ρi = cos(ωrotτ + 
θi)

1 − d̄
di

[1 − cos(ωrotτ )]
ρrot, (12a)

(
1 − ρ2

i ω
2
rot

)
ρi = adiρrot

κiωrot
sin(ωrotτ + 
θi). (12b)

This set of coupled nonlinear equations can be solved
numerically for ρi and 
θi for different values of a, τ , κi , and
di . We consider two cases separately. First, we assume that the
swarm agents are homogeneous, with κi = 1 for all i; in this
case, di = |Ni |/N is the normalized degree of agent i in the
communication graph G, and d̄ is the mean degree. Solution
curves for ρi and 
θi for different values of di are plotted
in Appendix A. Second, we assume that the communication
network G is all-to-all, so that limM→∞ |Ni |/N = 1, but that
agents in the swarm have heterogeneous dynamics. In this case,
di = κi and d̄ is the mean acceleration factor. The solution
curves for this case are shown in Appendix A.

A direct comparison with simulation results is shown in
Figs. 3 and 5. The slight discrepancy in the rotating state radius
in Fig. 3 and in ρi/ρrot in Figs. 5(a) and 5(c) is understood as
follows. Equation (9) for the radius of the center of mass
assumes that agent positions deviate only slightly from the
center of mass. However, as the mean coupling coefficient
decreases, or as the acceleration factors of agents in the
swarm become increasingly heterogeneous, the agents become
spread out over an extended arc (as seen in Fig. 4) and that
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FIG. 5. Comparison of simulation and theoretical values for radius (a, c) and phase difference from the center of mass (b, d) for agent i.
Results are shown for two sets of swarms, the first with d̄ = 0.4 and 0.6 and κi = 1 for all i (a–b) and the second with all-to-all communication
and 〈κi〉 = 0.8 and 0.9 (c–d). For both swarms, a = 1, τ = 4.5, and the number of agents is 150.

assumption becomes invalid. In this “arc” configuration the
center of mass of the swarm moves closer towards the center
of rotation than theory predicts. The analog to a system with
perturbed coupling coefficient breaks down here; for a globally
connected swarm with decreasing coupling coefficient a,
the rotating state disappears when the system crosses the
curve āτ 2 = 2, where the rotating state radius diverges. The
swarm then transitions to a translating state. It is, however,
remarkable, that the mean-field analysis captures so much of
the overall swarm behavior even as the coupling degree is
significantly decreased.

V. EXPERIMENTAL REALIZATION

We validate our theoretical results for the homogeneous
swarm with all-to-all communication, using a mixed-reality
setup in which a small number of physical robots interacts with
a larger virtual swarm (see Fig. 6). We adopt the mixed-reality
paradigm so that we can observe motion pattern formation for
large swarms in a limited laboratory space, without having
to resolve significant logistical issues including setting up
communication between large numbers of individual agents.

We evaluate the theory using an indoor laboratory experi-
mental test bed consisting of four autonomous ground vehicles
(AGVs). The AGVs are differential drive surface vehicles
equipped with an Odroid U3 computer, an Xtion RGB-D
sensor, odometry, and 802.11 wireless capabilities (see Fig. 7).
Localization for each robot is provided by an external motion
capture system. By artificially adding delay in the recorded
robot positions, we simulate the effect of slow communication

over a network in the field. The (delayed) positions are passed
to a simulator, which uses them (along with delayed positions
of virtual robotic agents) to update the positions of virtual
agents in the swarm. In addition, the (delayed) real and virtual
robot positions are used to generate desired velocity values
for the real swarm agents. The target velocity data is passed

FIG. 6. Experimental setup with virtual swarm. The real robots
operate in a laboratory test bed. Positions are measured using an
overhead motion capture system (Optitrack). The positions of the
real and simulated agents are passed to the virtual swarm simulator,
which models the response of the virtual swarm agents to the current
swarm configuration; and to the controller, which computes the
real robot response and passes target velocities to the real swarm
agents. Delay is blown into the system artificially to simulate delays
in real communication systems. Aside from Optitrack, all parts of
the experimental system communicate with each other through ROS
(robot operating system).
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FIG. 7. Experimental platform, consisting of two-wheeled robot
cars (a). The top speed of the vehicles is approximately 12 cm/s.
Each vehicle is outfitted with reflective balls (shown) for overhead
motion capture. A group of cars approaching ring state is shown
in (b).

to the real robots, and an internal PID control is applied in
order to reach the target velocities. To avoid collisions, we
add repulsion between the real swarm agents. Experimental
results, with four real agents in ring state, are shown in Fig. 8.

To connect the theory with experimental realization, it is
necessary to dimensionalize the swarming equations, so as
to allow for actuation limits of the experimental platform.
We therefore introduce a target velocity v0 with units of
[length]/[time]; a dimensional coupling parameter α with
units of 1/[time]2; and a dimensional factor β with units of
[time]/[length]2. The equation governing the motion of agent
i can now be expressed as

r̈ i = κiβ
(
v2

0 − ‖ṙ i‖2)ṙ i − κi

α

N

∑
j∈Ni

(
xi − xτ

j

) + Frep
i , (13)

where Frep
i is the repulsion force on agent i, which acts only

between real agents, and is turned on when two agents come
within a threshold distance of each other. The nondimensional
equations can be recovered by rescaling as follows:

t ′ = βv2
0 · t, (14a)

r ′
i = βv0 · r i , (14b)

and

a = α

β2v4
0

. (15)
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(c)

FIG. 8. Snapshots of test with four real and 46 virtual agents
converging to ring state, at times (a) t = 13.8 s, (b) t = 35.8 s, and
(c) t = 59.6 s. The virtual agent positions are shown in black, the
real ones in red. The dashed lines represent the 10 s histories of
the real robot positions. The predicted ring radius for this experiment
(coupling parameter α = 0.04 s−2, delay τ = 2.5 s, goal velocity v0 =
0.12 m/s, and β = 20.0 s/m2) was 0.6 m; the measured radius was
6.01 m.

We ran our experiment with parameter values α = 0.04 s−2,
β = 20.0 s/m2, v0 = 0.12 m/s, and time delay τ = 2.5 s.
Repulsion between real agents was switched on when they
came within 0.15 m of each other. For these parameter values,
we predict a ring with radius equal to 0.6 m; the measured
radius of the ring state in this case was 0.601 m. Time snapshots
of the agents converging to the ring state are shown in Fig. 8.

Our experiment demonstrates that pattern formation can be
achieved with a swarm of 50 agents (4 real and 46 virtual
agents). However, we would like to perform swarming in a
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truly physical environment, with all agents corresponding to
true physical robots. As a preliminary step, we have conducted
a series of numerical simulations aimed at determining the
effect of finite swarm size on the pattern-formation behaviors
that we analyzed in the thermodynamic limit (N → ∞). See
Appendix B for details.

Further experimental exploration of the full bifurcation
structure is ongoing and will be described in an upcoming
paper.

VI. CONCLUSION

In this paper we have analyzed the collective motion
patterns of a swarm with Erdös-Renyi communication network
structure and heterogeneous agent dynamics, using a mean-
field approach from statistical physics, with the assumption
that the number of agents goes to infinity. We derived bifurca-
tion diagrams demarcating regions of different collective mo-
tions, for different values of mean degree in the communication
network. We showed that behaviors described in Ref. [25] for
the globally coupled swarm, namely translation, ring state, and
rotation, persist under heterogeneity in agent dynamics and as
communication links are broken, even though the bifurcation
curves are shifted as coupling degree of the network decreases
far from the all-to-all situation.

We derive expressions for the speed of the swarm in the
translating state as a function of time delay and coupling co-
efficient; for the mean radius and angular velocity of agents in
the ring state; and for the angular velocity, and individual radii
and phase offsets for individual agents in the rotating state.
We have verified these calculations with simulations of the
full-swarm dynamics and presented preliminary experimental
results. It is remarkable that our model reduction, which starts
with N second-order delay-differential equations and yields
one equation of the same type, is able to quantitatively capture
so many aspects of the full swarm dynamics, even as the
coupling degree of agents within the swarm is significantly
decreased.

In the case that many agents are coordinating together,
limited communication bandwidth makes all-to-all communi-
cation infeasible, and may lead to significant communication
delays. By dropping the requirement for all-to-all communica-
tion used in our previous work, the current paper brings us one
step closer to understanding the physics of naturally occurring
swarming systems, as well as a possible implementation of
swarming control algorithms for very large aggregates of
agents. Understanding the natural emerging dynamics of the
system in these circumstances allows us to exploit them when
designing controls for swarming applications.

The current work opens up interesting new areas for future
study. As a next step, we plan to examine the dynamics of
swarm formation with pulsed communications and in the
presence of external disturbances (e.g., ambient flow for
swarms of autonomous underwater agents in dynamic flow
environments, such as the ocean). We also plan to conduct
more extensive experimental verification of our results. We
will test how our results scale with the number of agents in
the network and apply parametric control for dynamic pattern
switching.
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APPENDIX A: ROTATING STATE RADIUS
AND PHASE OFFSET

Figures 9(a) and 9(c) show solution curves for ρi and 
θi

for different values of di for a swarm where all individuals have
unity acceleration factors (thus di = Ni/N ). Figures 9(b) and
9(d) show solution curves for ρi and 
θi for a swarm with
all-to-all communication, where agents have heterogeneous
acceleration factors. In this case, di = κi and d̄ is the mean
acceleration factor. As shown in the figure, agents with higher
acceleration factor or higher coupling have a higher radius
and more positive phase offset from the swarm center of mass
than those with lower acceleration factor or lower coupling.
The effects of acceleration and coupling degree on the agents
in rotation state are similar, since both factors appear in di ;
we note, however, that variation in in the acceleration factor
has a much smaller effect on the ratio ρi/ρrot and phase offset

θi than does breaking connections in the communication
network.

APPENDIX B: FINITE N EFFECTS

The foregoing analysis was primarily focused on the
limit of agents where N → ∞. However, real networks have
finite numbers of agents; in fact, few experimental studies
involve more than a few individual agents. To explore the
effectiveness of the infinite population approximation, we
conducted numerical experiments using the equations of
motion (1) for various swarm sizes while employing all-to-all
coupling. We considered a complete graph G rather than an
Erdös-Renyi network because we wish to isolate the effects of
N from those of incomplete connectivity. Simulations were run
with random initial conditions, i.e., both position and velocity
were drawn from a uniform distribution with each element of
r i(0),vi(0) ∈ [0,2]. Each set of experiments were run for 100
trials, and statistics from these sets were compared.

Using numerical simulations, we measured two quantities:
(a) time required to converge to the ring state and (b) the radius
of the ring state. Both quantities were measured at various
population sizes, ranging from N = 2 to N = 150 although
we show results only up to N = 100 to focus on the small N

regime. We considered the system to be in the ring state once
the swarm’s mean radius to its center of mass had converged to
a value R0, although possibly with small fluctuations in time
about it. Simulations were run for the cases of homogeneous
κi = 1 and a uniform distribution of κi ∈ [0.2,1.0].

Figure 10(a) shows the time to converge to the ring state
for the homogeneous agent case as a function of N . For large
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FIG. 9. (a–b) Theoretical values for ratio of radius for agent i to radius of swarm center of mass (a) and phase difference (b) as a function
of di/d̄ , for d̄ = 1, 0.8, 0.6, and 0.4, with κi = 1. (c–d) Theoretical values for ratio of radius for agent i to radius of swarm center of mass (c)
and phase difference (d) as a function of κi/〈κi〉, for 〈κi〉 = 0.9, 0.8, and 0.6, for all-to-all coupling. All calculations are done with a = 1 and
τ = 4.5.

population sizes, the time to converge is relatively constant
independent of N , but as N decreases the time required and the
variance of these times significantly decreases. Figure 10(b)

FIG. 10. Time for the system to converge to ring state for different
values of swarm size N . Parameter values: a = 1, τ = 1, and (a)
κi = 1 while (b) κi ∈ [0.2,1] uniformly.

demonstrates very different behavior in the heterogeneous
case; here the time to converge is actually much greater for
smaller N and converges faster for larger N .

FIG. 11. Radius and average speed of agents in the ring state
for different values of swarm size N . Black dots indicate numerical
simulations; in (a) κi = 1 and red lines are theoretical predictions; in
(b) κi ∈ [0.2,1] uniformly and red lines show one standard deviation.
Parameter values for both cases are a = 1, τ = 1.

032307-9



KLEMENTYNA SZWAYKOWSKA et al. PHYSICAL REVIEW E 93, 032307 (2016)

When agents do converge to the ring state, we can make the
following theoretical prediction for the radius ρ of the ring in
the finite-N , κi = 1 case, under the assumption that all agents
move the same direction along the ring:

ω2 = a

{
1 − 1

2
[1 − cos(ωτ )]

}
, (B1)

ρ = 1

ω

√
1 + a sin(ωτ )

Nω
, (B2)

where ω is the angular frequency of the agents moving about
the ring. For N → ∞ these reduce to

ω2 = a, (B3)

ρ = 1

ω
, (B4)

which agrees with Eq. (6a) for the ring radius.
Figure 11(a) displays the radius as a function of N for

the homogeneous case; here, all agents circle about the
center of mass with equal radius so there is no standard

deviation in the radius values, independent of the number of
agents. There is good agreement between theory in Eq. (B2)
and stochastic simulation. Meanwhile, Fig. 11(b) shows the
radius of the ring as a function of N for the heterogeneous
case, where it is evident that there is a wide variation in
radius, which is expected due to the uniform distribution of
acceleration factors κi . The effects for small N in this case are
similar to that of homogeneous agents; note that the radius is
expected to be larger since κ̄ = 0.6 resulting in a greater mean
radius.

When N is very small (less than 10), a wealth of new
patterns emerge with what numerical simulations suggest to
be large basins of attraction. For example, when N = 5 the
most prevalent state arranged all five agents equally along a
circle in a pentagonal pattern, rotating in the same direction.
This pattern is not well described by the mean field or the
large population limit. Formally identifying these patterns and
justifying their unique behavior is an area of future work that
we plan to investigate; however, for the purpose of this work,
the number of agents are too small to be well classified by an
Erdös-Renyi network.
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