
PHYSICAL REVIEW E 93, 032305 (2016)

Competing opinions and stubborness: Connecting models to data
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We introduce a general contagionlike model for competing opinions that includes dynamic resistance to
alternative opinions. We show that this model can describe candidate vote distributions, spatial vote correlations,
and a slow approach to opinion consensus with sensible parameter values. These empirical properties of large
group dynamics, previously understood using distinct models, may be different aspects of human behavior that
can be captured by a more unified model, such as the one introduced in this paper.
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I. INTRODUCTION

The study of opinion dynamics, which has received consid-
erable attention from statistical physicists, network scientists,
and social scientists [1–8], explores the dynamics of com-
peting ideas or opinions via interactions between individuals.
Example application areas include voting patterns [5,6,9–16],
product competition [17], and the spread of cultural norms
and religions [18–20]. The goal of our work is to gain
new insights into opinion dynamics by introducing a well-
motivated model that can simultaneously describe multiple
empirical observations that have previously been explained by
several different models.

A variety of models have been proposed to explain
individual features of opinion dynamics observed in empirical
data. For example, some models have focused on producing
nonconsensus in equilibrium [2,4,21], while others can repro-
duce observed vote distributions [12,14] or long-range vote
correlations [22]. Because we believe these observations are
all fundamentally related, we introduce a model called the
competing contagions with individual stubbornness (CCIS)
model, which can robustly explain the above behaviors
using agent-based dynamics designed to mimic observed
human behaviors. Not only does the CCIS model match
the aforementioned observations with consistent parameter
values, but it is also general enough to incorporate a wide array
of plausible factors affecting the success of opinions in the real
world, allowing for agents with a neutral state, opinions that
are stronger than others, and opinions that may be introduced
after an earlier opinion has spread through a population. Here,
for simplified modeling and analysis, we focus on the case of
opinions of equal strength introduced at the same time, and we
leave those other cases for future work.

In the CCIS model, at any given time point, individuals can
either be in a neutral state or in one of Q different opinion
states. Opinions can change over time as individuals try to
“convince” others in their social network to adopt their opin-
ion. In our model, individuals exhibit “stubbornness,” meaning
that the longer an opinionated individual keeps his or her
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opinion, the less likely he or she is to switch to a new one. This
property has been seen empirically in previous studies [23].
We distinguish this from other models in which individuals
resist changes in their opinion independent of time, e.g.,
[6,14–16,24,25]. Within the CCIS model, individuals that have
held onto their opinion for a long time will eventually com-
pletely lose the ability to be convinced by one of their neigh-
bors to adopt a different opinion. However, all opinionated
individuals move back to the neutral state at a constant rate,
which is designed to allow for a large fraction of “independent”
voters, as is the case for the U.S. electorate [26]. Once individ-
uals become neutral, they can switch opinions to any of their
neighbors’, which creates longer time-scale opinion dynamics.

The remainder of the paper is structured as follows. We first
describe related work (Sec. II) and then provide the details
of our model and algorithm implementation (Sec. III) before
comparing the results of our model to empirical data (Sec. IV).
We then analyze the dynamics of our model using a series
of approximations (Sec. V), and we numerically study the
consensus time outside of the parameter ranges for which
our analysis is valid (Sec. VI). Finally, we conclude with a
discussion of future work (Sec. VII).

II. RELATED WORK

In this section, we review the empirical studies that motivate
the CCIS model and we discuss related models. In recent
years, large sets of empirical data have allowed researchers
to better observe collective social dynamics [12,13,22,27–30],
leading to new insights in the field. We first focus on two
themes that have received recent attention: candidate vote
distributions [12,13,22] and spatial vote correlations [22].

Two important studies on election data from several
countries demonstrate that vote distributions, when rescaled
by Q/N , where Q is the number of candidates and N is the
number of voters, often collapse to a universal distribution
(see the inset of Fig. 2) [12,13]. Two recent models have been
proposed to explain this behavior [12,14].

A model by Fortunato and Castellano [12] assumes that
voters are convinced to vote for a specific candidate unique
to each of Q social networks, with no interaction between
voters of opposing candidates. While the model provides good
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agreement with vote distribution data and demonstrates how
“word-of-mouth” or contagion-style spreading can play an
important role in observed voting patterns, it cannot capture
one important feature of real elections—that candidates seem
to often compete for a common set of voters [31–33]. Hence,
we believe that a model with competing opinions on a single
network, such as the one introduced in this paper, is needed
to provide a more complete picture of how individual level
dynamics can translate to observed voting patterns.

Another model by Palombi and Toti, which does include
interactions between supporters of different candidates, yields
qualitative agreement with empirical data on vote distribu-
tions by assuming a network of interactions with significant
structure (nonoverlapping cliques connected by sparse random
links) as well as a distribution of zealots (unwavering candidate
supporters) that is related to the underlying clique structure of
the network. By contrast, our goal is to show agreement with
empirical data on both vote distributions and voter correlations
using a somewhat more generic network of interactions
and without imposing any connection between candidate
preferences and network placement for any individuals. The
contagion-inspired framework of our CCIS model, e.g., the
inclusion of a neutral state and a tunable transmissibility pa-
rameter, gives it the flexibility to match the two aforementioned
empirical patterns of interest while simultaneously remaining
relatively simple.

Recent empirical studies have shown that the spatial
correlation of vote shares in U.S. elections and the spatial
correlation of turn-out rates in European elections decrease as
the log of the distance between two voting districts [22,34].
This is contrary to correlations of spins in many statistical
mechanic spin models, which decrease as a power law or
exponentially with distance [35], but it is a prediction of some
spin (or opinion) models, such as the voter model (VM), at an
arbitrary fixed time [9,10,36].

In addition to matching these empirical patterns by yielding
spatial opinion correlations that decrease as the log of the
distance between individuals (in the case of networks with
significant spatial structure), the CCIS model shares other
important features with the well-studied VM. In the VM, at
each time step, an individual chooses to adopt the opinion of
one of his or her randomly chosen neighbors [9,10]. In the basic
CCIS model, opinions also change via interactions with neigh-
bors, but instead of interacting with one neighbor at a time,
individuals try to persuade all their neighbors simultaneously,
similar to the approach used in the aforementioned Fortunato
and Castellano [12] paper. In Sec. V, we also consider
CCIS-type dynamics for the situation in which, as in the VM,
interactions at each time step are focused on a pair of connected
individuals instead of one individual and all of their neighbors.

The CCIS model also has important similarities to the well-
studied susceptible-infected-susceptible (SIS) model from epi-
demics. In the SIS model, individuals exist in only one of two
states: “susceptible” and “infected,” and infections propagate
via contacts between infected and susceptible individuals, with
infected individuals eventually recovering to the susceptible
state. The SIS model can be applied to the study of opinion
dynamics, but, because the basic model is explicitly a two-state
model, it can only be used to explore how a single opinion
(contagion strain) propagates through a neutral (susceptible)

population, and the SIS model must be modified to explore the
competition dynamics among multiple opinions.

A few recent studies have modeled the coexistence of two
contagion strains on networks with SIS-like models [37–43].
Typically, in these models, individuals can only switch from
one strain to another if they recover first [38,41,42], or else two
strains can cohabit a single individual but interact on coupled
networks [40]. In the CCIS model, however, individuals can
switch directly between opinions instead of first moving to
the recovered state, and all opinions propagate on a single
network. Furthermore, no individual can have more than one
opinion at any time. These are realistic assumptions for opinion
dynamics, because individuals can directly switch between
opinions more easily than they might directly switch between
diseases, and they would be unlikely to hold contrasting
opinions at the same time. We note, however, that across a
wide parameter space in our model, one opinion eventually
dominates [e.g., Eq. (4) and Figs. 7–9], while the contagion
models described above have large parameter regimes where
two contagions can stably coexist. In Sec. V, we discuss in
more detail how the CCIS model approaches consensus.

The CCIS model is further distinguished from the VM
and SIS model by having individuals exhibit stubborn-
ness [44] (similar model assumptions are made in other works
[11,45–47]). In our definition of stubbornness, individuals
increasingly resist changing their opinion, in contrast to other
models where individuals resist changes in their opinion
independent of time, e.g., [6,14–16,24,25]. In pretrial publicity
(PTP) experiments [23], the correlation between the jury
decision and the PTP opinion was stronger when individuals
were exposed to PTP more than a week before the mock trial
than when the exposure happened closer to the start of the
trial. This provides some evidence that individuals change
their resistance to alternative opinions, but not necessarily
monotonically with time. Further evidence from voter data
is currently lacking, and this is an important area for future
study. Nonetheless, the initial evidence from jury experiments
and the strong agreement with data that we find with our
current model are suggestive that stubbornness may play an
important role in the dynamics of opinions. We also note that
stubbornness is similar to the primacy effect, well studied in
psychology [48,49], in which the first idea someone hears is
favored regardless of its validity. That effect, however, deals
only with the ordering of choices and does not take into account
the time intervals between choices.

The CCIS model is designed to offer a more general
framework than many previous models. It allows for different
opinions to be more or less likely to be adopted relative to
each other, for individual opinions to be more or less likely
to exhibit stubbornness, for some opinions to be introduced at
later times than others, and for individuals to exist in a neutral
state. These additions give it the flexibility to capture a variety
of situations. In this paper, for simplicity, we focus on the case
of opinions with equal strengths and individuals with identical
stubbornness parameters.

III. MODEL DETAILS

In this section, we describe the dynamics of the CCIS model
in detail (see Fig. 1 for a schematic). The model operates on
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FIG. 1. The schematic of our model. Arrows indicate attempts
to convince neighboring individuals, with probabilities for success
appearing next to each arrow. The length of time the nodes have held
their current opinion is indicated by the text inside the node.

a network with N nodes, in which the state of each node,
i, is si ∈ {0,1,2, . . . ,Q}, where Q is the total number of
opinionated states and 0 corresponds to the neutral state.
For ease of analysis, we study the case in which interactions
between individuals occur on a fixed, unweighted network.

At time t = 0, n0 (possibly 0) nodes are in state 0, n1 (again,
possibly 0) are in state 1, etc., such that n0 + n1 + · · · + nQ =
N . We leave open the possibility for new opinions to be added
at arbitrary times in the simulation. However, in this paper, we
focus on the case in which at t = 0, n1 = n2 = · · · = nQ (and
therefore all opinions are simultaneously introduced).

Algorithmically, we implement the model as follows:
1. Pick a random opinionated node i (i.e., a node not in

state 0)
(a) Revert i’s state to 0 with probability δ

1+δ

(b) Otherwise pick each of i’s neighbor at random:
i. Convert any neutral (state 0) neighbor to state si

with probability β

ii. Convert any contrary opinionated neighbor j to
state si with probability max{β(1 − τjμ),0},
where τj is the time since node j adopted its
current opinion.

2. Count the number of opinionated individuals, Nop =
N − n0, and repeat from step 1 with time incremented
by �t = Nop(1 + δ)−1.

Here, for simplicity, we assume that the persuasiveness of
each individual, β, the recovery rate, δ, and the stubbornness,
μ, does not depend on which opinion is held, but there may be
situations for which these parameters should be differentiated
according to opinion. We implement stubbornness in the
following way: the effective persuadability of a node j by
a neighbor with a contrary opinion, β(1 − τjμ), decreases
linearly in time until τj = μ−1, at which point individual
j ’s opinion remains fixed unless j moves to the neutral
state, which occurs at rate δ. A natural alternative to our
implementation of stubbornness is to construct an effective
persuadability that decreases exponentially, βexp(−τjμ). We
choose the linear form for its simplicity, but we expect similar
dynamics for the two cases.

Table I summarizes that model’s parameters and variables.

TABLE I. Definitions of Symbols and Parameters.

Symbol Definition

t Time
τ Time the most recent opinion has been kept
β Persuasiveness
μ Stubbornness rate
δ Recovery rate
Q Number of opinions
N Number of nodes (“voters”)
ρ(A) Opinion A density as a function of t and τ

P (A)(t)
∫ ∞

0 ρ(A)(t,τ ′)dτ ′

α Scale-free degree distribution coefficient
[p(k) ∼ k−α]

Note that at each time step, �t is normalized such that
Nop node-node interactions take place, and δNop of the
opinionated nodes recover, after a time

∑
i �ti = 1. Holding

Nop constant for each time step, �t = [(1 + δ)Nop]−1 and the
recovery probability is δ/(1 + δ). This method is based upon
a similar approached used for the SIS model to approximate
continuous-time dynamics [50].

We include the recovery rate in our model to allow for a
large fraction of individuals to remain neutral over long time
scales. This is motivated in part by the empirical observation
that a significant fraction of Americans remain unaffiliated
with any political party, and that this fraction is stable over
the time scale of years [26], yet in individual elections these
“independents” frequently vote for candidates with party
affiliations, and hence they can be thought of as having adopted
the party “opinion” over short time scales. Additional elements
of realism, such as mass media [51], party affiliation [52], and
variations in the recovery rate, have been left out of this model
for simplicity, and they may be important for future study.

IV. AGREEMENT WITH DATA

In this section, we show that the CCIS model can reproduce
two empirical observations: (i) distributions of votes received
by candidates, when appropriately rescaled, follow a nearly
universal function [12,13], and (ii) correlations between voters
decrease only logarithmically as a function of distance [22,34].
We find agreement between the CCIS model and both
empirical observations using spatially extended networks
with heavy-tailed degree distribution (a reasonable model for
social networks [53,54]). In agreement with Fortunato and
Castellano [12], we find that a heavy-tailed degree distribution
is important for matching the opinion model’s distribution to
the empirical vote distribution data. We emphasize that the
spatial component (meaning that nodes preferentially connect
to others that are spatially close) is necessary to create spatial
correlations that match empirical observation. The networks
are created as follows: all nodes are embedded on an

√
N×√

N

two-dimensional grid with periodic boundary conditions. The
out-degree, ki � kmin, is chosen from a power-law degree
distribution, p(k) ∼ k−α , with minimum degree kmin, which
is specified so that the desired average degree, 〈k〉, is reached.
Directed links from node i to the ki nearest (in grid-space)
other nodes are then created. A fraction f of edges are then
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FIG. 2. A comparison of scaled vote distributions between the
CCIS model (closed markers) and elections (open markers) (data
from [13]), in which data are shifted down by decades for clarity
(inset shows the original data collapse). Here v corresponds to the
number of votes, with the number of candidates, Q, and size of
the population, N , equal to the empirical data values. The initial
fraction seeded with a preference to a candidate is fitted to the scaled
vote distribution of Poland’s 2005 elections by maximum likelihood
estimation. All other parameters are fixed.

rewired at random to add noise to the network. A more detailed
description of the network is given in Appendix A.

A. Voter scaling

As Fig. 2 shows, the CCIS model with appropriate param-
eter choices can closely match empirical vote distributions
rescaled by Q/N . We simulate each election one time for
each set of parameters to test how well our model can typically
follow the empirical data, and each election is run on a spatially
distributed scale-free graph (as described above) with N and
Q the same as empirical data to account for finite-size effects.
We vary the initial fraction of individuals seeded until the
model fits the distribution from Poland’s 2005 elections (which
has the largest number of elections). All other simulation
parameters are fixed to reasonable values: β = 0.1, 〈k〉 = 10,
μ = 1, δ = 0, and α = 2.01 (see Appendix A for details
regarding the fit and the robustness of the results to changes in
the parameters).

The simulation results plotted are for networks without
random rewiring (i.e., f = 0), but we find similarly good fits
for larger values of f . In the simulations, μ > 0 and δ = 0 in
order to reach a nonconsensus equilibrium, because otherwise
we would have to stop the simulation at some arbitrary time
before consensus is reached. These same parameters are used
to fit all the other countries’ elections.

Overall, we find good fits between our model and voter
data as long as μ > 0 and the distribution is sufficiently heavy
tailed, i.e., the magnitude of the degree distribution exponent
is small (α < 3). See Fig. 11 in Appendix A for a detailed
analysis of the robustness of the fit to parameter variation.
Our findings suggest that both individual stubbornness and
heavy-tailed degree distributions in social networks [53] may
be important underlying drivers of the generic behaviors
observed in opinion dynamics.

The reason for the strong fit in Fig. 2 is partly that our
model appears to follow a nearly universal distribution when
each vote is rescaled by Q/N , like the empirical data from

FIG. 3. A comparison of the best fits between the CCIS model and
the 2005 Poland elections with a fraction of nodes initially seeded with
an opinion [P (0)] equal to 6% and 100% (see Table I for definitions
of the parameters). The parameters are the same except when P (0) =
6%, β = 0.1, and when P (0) = 100%, β = 0.65.

the elections it attempts to model. Of the elections modeled,
we find that only Switzerland’s diverges significantly from our
model due to its unusual “double-hump” distribution, plausibly
because votes are swayed by the local language differences
(primarily French and German).

We note that agreement between the model and empirical
data (Fig. 2) is a also possible when the initial fraction of
individuals seeded, P (t = 0), is 100% if the persuasiveness of
each individual, β, is adjusted to 0.65 (see Fig. 3). In this case,
because δ = 0, no individual ever reaches the neutral state.
Despite the fact that agreement with data can be achieved
without the inclusion of a neutral state, we believe that such
a state is important because most voters start out with little
knowledge of the candidates.

One natural way to seed opinions when explaining the
candidate vote distribution is to assume that only one indi-
vidual has an initial vote preference: the candidate himself.
This creates a poor fit for our model (not shown), possibly
suggesting that the initial spreading process differs from the
one that takes over after a short time.

Our work is influenced by the Fortunato and Castellano
(FC) model (introduced in Sec. II), which was developed to
describe the same distribution data [12]. In both the FC and
CCIS model, individuals try to persuade neutral neighbors
in the network at some rate. Opinions do not compete in
the FC model, but instead spread within isolated networks,
meaning that each of the Q candidates convinces voters to
vote for him or her by word of mouth to their friends, which
then spreads to their friends’ friends, etc. In this scenario,
an individual only decides whether or not to vote for one
specific candidate and never decides between candidates. The
CCIS model is designed to capture a more realistic scenario in
which candidates compete for the same set of voters [31–33].
We directly compare our model to the FC model in Fig. 3.
Both models create similar fits, based on the log-likelihood
function, with neither being significantly better.

B. Spatial correlation

Next, we show that the CCIS model creates correlations that
decrease logarithmically with distance, as seen in empirical
studies [22,34]. This behavior is not unique to our model
because many models can create logarithmically decreasing
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FIG. 4. We plot the distribution across all elections shown in
Fig. 2, excluding Switzerland, and we compare our fit to the fit of the
FC model [12].

correlations as they approach the VM universality class [55] in
some special parameter range. We find it important, however,
that our model is the first model we are aware of that can
reproduce both the previously mentioned vote distributions
and this behavior, especially over a wide set of parameters.
In comparison, the FC model [12] assumes noninteracting
opinions on random graphs, and the Palombi and Toti
model [14] assumes that opinions interact on nonspatially
distributed cliques with edges connected randomly between
them, so votes are uncorrelated in space (see Fig. 4). Analysis
of the observed logarithmic correlations in the CCIS model are
discussed in the next section. Simulations, however, suggest
that the most important property in our model to reproduce
the empirical observations is a spatial structure in our social
network, whether the network is a lattice, small-world network
(random rewiring), or the current scale-free spatial network.
Therefore, this property is very general, and it should be
generically seen in empirical data.

Figure 5 shows results from simulations of our model
on spatial scale-free networks with 106 nodes and the same
model parameters as in Fig. 2 (if f = 0). The figure also
shows results from simulations for which a fraction, f , of
edges were randomly rewired. The rewiring process reduces

FIG. 5. The correlation as a function of distance for the CCIS
model (where nodes are separated by a unit 1 distance on a 106

node network). The CCIS model parameters are the same as in Fig. 2
except here Q = 2 and 100% of nodes seeded. f fraction of edges are
randomly rewired on a scale-free spatially distributed graph (f = 0
corresponds to the network in Fig. 2) showing that the logarithmically
decreasing correlations are robust. Inset: similar correlations are seen
for data from the 2000 U.S. presidential election [34].

the spatial features of the graph by creating long-range ties
that significantly reduce the mean geodesic distance between
points. Even with large f , however, we still see strong
qualitative agreement with empirical data.

We note, however, that while empirical voting patterns
are consistent with the CCIS model operating on a spatially
extended network, we cannot rule out the possibility that the
empirical correlation data are the result of self-segregation,
e.g., that “Republicans” move to “Republican” counties. Ad-
ditional data are necessary to differentiate these two potential
explanations for spatial correlations in voting behavior.

V. ANALYSIS

In this section, we analyze the dynamics of our model to
better understand the behaviors it is capable of producing. To
do so, we simplify the model in three different ways, allowing
us to probe the dynamics more thoroughly than any single
approximation.

First, to probe the spatial correlation behavior discussed
in the previous section, we explore the limit in which our
model simplifies to a diffusion process. Second, we explain
how opinion sizes change in time with a transportlike equation,
which assumes individuals mix homogeneously in an infinitely
large network and tracks the time evolution of the density of
individuals who have held a specified opinion for a designated
length of time. Finally, we use the Fokker-Planck equation
to explore, for the case μ = δ = 0 (i.e., no stubbornness and
no recovery), how our model reaches opinion consensus for
finite systems with heterogeneity in the connectedness of
individuals. Under the Fokker-Planck approximation (FPA),
we handle heterogeneity in the number of connections, but we
do not capture spatial effects or incorporate stubbornness and
recovery, motivating all three separate types of analysis.

A. Spatial correlations

Spatial correlations between opinions in the CCIS model
decrease logarithmically over a wide parameter space (see
Fig. 5). We can demonstrate this spatial correlation behavior
analytically for the continuum limit of the CCIS model seeded
with two opinions (and no neutral individuals) on a lattice
grid for the case μ = δ = 0. Because δ = 0, nodes do not
independently change to any other state, and furthermore,
because μ = 0, the probability of each node changing their
state is (number of opposing neighbors)/[(2d)2β] at any time
step, where 2d is the degree of a d-dimensional lattice. In
comparison, the two-opinion VM assumes that agents are
convinced by a random neighbor’s opinion at each time
step [9,10], or equivalently, the probability of any node
changing their state is (number of opposing neighbors)/(2d),
therefore, in this parameter range, the CCIS kinetics is exactly
the same as the VM, with time scaled by 2dβ.

The VM can be approximated as a diffusion process in the
continuum limit [36], meaning the correlation as a function of
time, t , can be expressed as

C(r) ∼

⎧⎪⎪⎨
⎪⎪⎩

1 − r√
Dt

, d = 1,

1 − log(r)
log(

√
Dt)

, d = 2,

r2−d , d � 3,

(1)
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FIG. 6. The difference in equilibrium opinion densities, �P ≡
|P (1) − P (2)|, as a function of β between theory (solid lines) and
simulations, where δ = 0 and μ = 0.2. �P = 0 corresponds to a
50/50 split in opinions while �P = 1 corresponds to complete
consensus. Simulations are on networks N = 105 and degree k = 102.

in which D = d, r is the distance between nodes, and the
nodes are separated from their neighbors by a distance of one
unit. Equation (1) is the same for the CCIS model in this limit,
with D = (2d2β)−1 to reflect the rescaling of time. The spatial
correlation between opinions in the CCIS model, therefore,
decreases as log(r) for fixed time in this limit.

B. Transportlike approximation

Next, we try to better understand how opinions change in
time in the CCIS model. We present a partial differential equa-
tion similar to the transport equation to describe the dynamics
of the CCIS model in the mean field. This approximation,
which we discuss in more detail in Appendix B, holds for all
β, μ > 0, and δ = 0:

(∂t + ∂τ )ρ(A)(t,τ )

= −	(1 − τμ)(1 − τμ)βkρ(A)(t,τ )
∑
B 
=A

P (B)(t). (2)

Here, ρ(A)(t,τ ) is the density of individuals at time t that
have opinion A for a time τ . The above equation says
that ρ(A)(t,τ ) → ρ(A)(t + �t,τ + �t), and it changes to an
opinion B 
= A at a rate β(1 − τμ). If τμ > 1, the right-hand
side is 0 due to the Heaviside step function, 	. The boundary
condition (not shown) describes the gain in new individuals
[increase in ρ(A)(t,0)] via conversion of individuals who
were neutral or of an opposing opinion, allowing P (A)(t) =∫

ρ(A)(t,τ ′)dτ ′ to remain constant in equilibrium. Agreement
between the equation and simulations is poor when μ = 0,
because, after being stochastically pushed out of equilibrium,
the system quickly approaches consensus. Similar results are
seen when δ > 0, after incorporating a few additional terms.
We will discuss how to analyze the dynamics when δ > 0 in
the next section. However, excellent agreement between theory
and simulations is observed in Fig. 6 when δ = 0 and μ > 0.

C. Fokker-Planck approximation of the CCIS model

We can also analyze the model when μ = δ = 0, with
the Fokker-Plank approximation (FPA). The main difference
between the FPA and the transportlike approximation (TLA)
is that the FPA takes into account the size of the system and

the degree heterogeneity of a random graph, but it does not
incorporate the effects of stubbornness or recovery. Under
this approximation, links randomly rewire, so we have no
spatial information about the network, and we cannot say
anything about spatial correlations. It is therefore a powerful
theory but only for specific network topologies. Our analysis
may be improved upon by modeling bipartite networks,
networks with strong cliques, or using a more accurate pair
approximation [5,56,57], but our goal here is to derive simple
expressions that can describe some of the most interesting
behavior. We give the details of the FPA in Appendix C and
describe the main results here.

Consensus time, Tcons, is found to be finite and scales in
nontrivial ways with the network topology and the persuasive-
ness parameter β. If ρ is the fraction of individuals with one
of two opinions, we find that

ρ(1 − ρ)

Neff

∂2Tcons

∂ρ2
= −1, (3)

where Neff is the effective size of the network:

Neff =

⎧⎪⎪⎨
⎪⎪⎩

N
β2〈k2〉 , outward process,

N
β2〈k〉2 , neutral process,

N
β2〈k2〉 , inward process,

(4)

and where 〈k〉 and 〈k2〉 are the first and second moments, re-
spectively, of the network degree distribution. Solving Eq. (3),
we find that Tcons ∼ Neff (see Appendix C for derivation).

In Eq. (4), the outward process is one in which an opinion
spreads from an individual to its neighbors (which is assumed
in the basic CCIS model). More generally, there are two other
ways the opinion could spread: (i) the neutral process is one in
which an opinion spreads between two individuals on a random
link, and (ii) the inward process is one in which opinions spread
from neighbors to an individual.

We now discuss comparisons between simulations and
theory for the outward process (in Appendix C, we compare
Tcons in simulations to an equivalent Tcons theory for the neutral
and inward processes).

When δ = 0, μ = 0, and βk = 1, the CCIS model is similar
to the invasion process (IP) [5], in which a neighbor is
randomly chosen to have the same opinion as the root node [5].
In the true IP, Tcons ∼ N〈k−1〉〈k〉, but in the CCIS model,
Tcons ∼ N

〈k2〉 for large N . The discrepancy is due to a fixed
fraction of neighbors, 1/〈k〉, being changed in the CCIS model,
instead of exactly one in the IP. Interestingly, this implies that
Tcons ∼ (Nβ2)−1 in a complete graph, which we observe in
Fig. 7, while in the IP, Tcons ∼ N for N � 10 (not shown). In
the CCIS model we find that, for small N , the consensus time
is roughly (2β)−1, the mean time for consensus to be reached
between two nodes. The crossover to the asymptotic limit is
when Tcons = (2β)−1 = (Nβ2)−1 or N = 2/β. In conclusion,
although some of the scaling behavior resembles previous
work on the VM, we make predictions that are completely
distinct from previous VM-like models. This discrepancy has
the potential to be tested in a social experiment by observing
the time to consensus in small groups, because the difference
is apparent even for small N . We leave this for future work.
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FIG. 7. Mean consensus time vs N for a complete graph with
β = 10−2. Theory is the dashed gray line Tcons ∼ (2β)−1 for small N ,
and the black line Tcons ∼ (Nβ2)−1 for large N . This figure contrasts
significantly with the IP model, which predicts that Tcons ∼ N .

VI. CONSENSUS TIMES FOR δ > 0

Finally, we numerically study Tcons for δ > 0, where
the previous analysis breaks down, in two ways. Figure 8
illustrates how the consensus time depends on the recovery
rate δ when μ = 0. Figure 9 shows how the consensus time
depends on the stubbornness rate μ for different values of δ.
Note that “consensus” here refers to the state in which at most
one opinion remains. Thus the consensus state may contain a
mixture of opinionated and neutral individuals, as long as all
opinionated individuals hold the same opinion.

Figure 8 shows that the consensus time decreases with δ.
Because the expected number of opinionated individuals at any
given time decreases as δ increases, the time it takes for the
opinionated individuals to reach consensus is also shorter. For
this reason, we hypothesize that Tcons ∼ Neff

∑
A P (A), with

Neff as defined previously. In other words, we generalize Eq. (4)
and claim Neff

∑
A P (A) is the new effective size of the network,

which we leave for future work to explore more deeply.
In Fig. 9, we plot Tcons versus μ for various values of δ to

understand how our model more generally reaches consensus
for finite networks. First, we find that Tcons ∼ log(N )δ−1 for
small δ and μ > 0.1, which, in this limit, is in agreement

FIG. 8. The consensus time vs δ with μ = 0 and β = 0.05 on a
〈k〉 = 10 Erdös-Rényi network. The arrow indicates the critical point
(calculated using SIS model analysis [58]) of the CCIS model, above
which all individuals quickly approach the neutral state. We note that
the consensus time appears to decrease monotonically with δ. The
initial condition is a 50/50 mixture of opinions 1 and 2.

FIG. 9. Mean consensus time for varying μ and δ on 〈k〉 =
10, N = 104 Poisson networks with β = 0.5. A minimum in the
consensus time is observed for μ ≈ 0.1, while analysis of model
behavior for μ > 0.1 reveals that Tcons ∼ log(N )δ−1.

with previous analysis [44]. The behavior of Tcons versus μ

demonstrates interesting parallels to other models [11,44,45]
(Fig. 9), whereby at a nontrivial value of μ = μc(δ), the
consensus time reaches a minimum, and at larger values
of μ the consensus time increases significantly. This may
generically imply that large groups reach consensus relatively
quickly if individuals are moderately resistant to changing
their opinion.

VII. CONCLUSION

In conclusion, we have introduced a model of opinion
dynamics that agrees with current empirical data and exhibits
interaction dynamics based upon real human behavior. In
addition, because our model makes few assumptions, it may
plausibly explain a range of behaviors, which future empirical
investigations may be able to corroborate. For example, the
model can be used to explore the “viral” spread of competing
products, in which stubbornness is mapped to increasing brand
loyalty [59,60]. In this case, the brand-share distribution might
be similar to Fig. 2.

Future work is necessary, however, to model opinions with
greater realism. As mentioned previously, this model might
benefit from additional realistic assumptions. For example,
mass media could be added, because it can be more influential
than individual persons. Similarly, we could add party affilia-
tion, which may bias which candidate(s) individuals initially
prefer, or are likely to support in the future [52]. Additionally,
the recovery rate could be tied to an individual’s stubbornness,
instead of a constant, as we assume here for simplicity.

In addition, one could model heterogeneous stubbornness,
either at the opinion level (as our model assumes) or the
individual level, because some individuals appear to stub-
bornly hold on to an idea, while others may shift their
stance more readily. This is known to add greater realism
to opinion dynamics because the most stubborn individuals
possible, known as “zealots” in previous literature, can help
push the political preference in a two-party system near
the 50/50 mark, similar to what we observe in the CCIS
model [6,15,16]. Expanding on previous work, we expect that
adding heterogeneous stubbornness to our model can further
slow down or stop consensus and potentially create better
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agreement with data. In addition, we assume agents linearly
increase their resistance to alternative opinions in time. This is
not necessarily true because PTP (pretrial publicity) a day
before a trial produced a negative correlation between the
biased news and the juror decision, while PTP exactly a week
before a trial is not statistically significant [23]. A nonlinear
or nonmonotonic stubbornness may significantly change the
dynamics.

Finally, this paper assumes that all opinions are equally
strong and spread at the same time, but this is not necessarily
true in reality, which we discuss briefly in Sec. III. MySpace
started before Facebook, for example, and therefore more
people initially preferred MySpace [37]. Facebook was later
seen as a preferred option, however, and eventually dominated
social media at the expense of MySpace and similar platforms.
Future work should therefore allow for a first-mover advan-
tage [61] and opinions that are stronger or weaker than others
to better capture reality.
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APPENDIX A: FITTING THE CCIS MODEL TO DATA

In this Appendix, we describe in more detail how the CCIS
model is fit to empirical vote distribution data and correlation
data.

1. Network model

To match the model to data, we use a spatially distributed
network, which creates a nonzero spatial correlation, and we
find that we need a scale-free degree distribution, to best match
scaled vote distribution data. Adding both of these properties
to a single network, however, is not just convenient, it is
realistic. For example, we could try to run a model on the
most natural spatial network: a grid. In a grid, individuals
only interact if they are spatially close, but previous work on
the “six degrees of separation” between two randomly chosen
individuals [62,63] and “weak ties” between socially disparate
individuals [64] suggest that ties can exist between individuals
who are spatially separated by large distances. Furthermore,
unlike grids, the degree distribution of many social networks
is a power law [53].

Combining all these properties, we can create spatial
scale-free networks, such as the one in Fig. 10. Nodes have an
out-degree k chosen from a scale-free distribution, and they are
placed on a grid with unit distance. Each node is then connected
to their nearest neighbors, although to test the robustness of
our results, a fraction f are randomly rewired. As f increases,
the model makes similar fits to the vote distribution data, but
the spatial correlation decreases. To keep 〈k〉 constant for fixed
degree distribution p(k > kmin), we change the proportion of
nodes with degree kmin until we have the appropriate 〈k〉.
The directed nature of the network reduces the chance of
multiedges or self-loops, and it seems to be a reasonable

FIG. 10. A schematic of the network chosen to fit our models to
empirical data. All nodes have a scale-free out-degree distribution
whereby a node i with degree ki (in this example, ki = 9) is then
connected to its nearest neighbors.

assumption that people with a lot of connections broadcast
their opinion to a wide audience without as much attention
paid to the ideas of those same individuals.

2. Fitting model parameters

Next we discuss how our model is fit to data. The
Poland 2005 data set is chosen due to the large number of
elections (593, versus ∼200–400 for other countries). In our
simulations, seeded individuals are equally split among the
various candidates, but variations in seeding should create
similar results. Maximum likelihood estimation (MLE) is used
to determine the appropriate seeding fraction.

The model has no readily apparent closed-form solu-
tion, and a kernel density estimator for the model greatly
overestimates the probability for small xi , therefore we
approximate the probabilities with log-binned histograms (the
widths, however, do not seem to change the best-fit parameter
significantly).

3. Parameter values

In the FC model, only the candidate has an initial preference
of whom to vote for, while in our model we assume that a set
percentage of individuals have an initial preference toward
some candidate. The CCIS model creates a poorer fit when
Q individuals are seeded (not shown), but seeding a fixed
percentage seems to be an equally realistic assumption if we
imagine that a small percentage of voters are initial strong
supporters of the candidates.

We can also let the fraction seeded be 100%. Holding μ= 1,
the best-fit β value is 0.65, with a fit similar to Fig. 2 (see
Fig. 4). We choose to seed less than the total population
because it seems reasonable that at some starting point, not
everyone is aware of the candidates.

To fit our model to the distributions, we set β to 0.1, μ to 1,
and 〈k〉 to 10, but variations in these values do not significantly
affect our results (see Fig. 11, where we hold all parameters
fixed except for the given parameter plotted). We also fix δ = 0
in order for the distribution to remain fixed in equilibrium.
The MLE for α, however, varies depending on the type of
network chosen. For example, while α = 2.01 creates a good
fit with our current model network (spatially extend scale-free),
α = 2.5 creates a good fit on an undirected scale-free network
with no spatial structure. Whatever the optimal α, however,
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FIG. 11. The log-likelihood function vs (a) μ, (b) the fraction of
individuals seeded, P (0), (c) 〈k〉, and (d) α. Not shown in (d) is the
log-likelihood of a 10-regular spatial graph (−10 771), which is far
below the current y-axis scale. Arrows indicate the chosen values for
our fit. L varying by less than 100 does not appear to be visually
different from our fit.

we find that a wide distribution (e.g., α < 3) works best when
fitting to data. A Poisson or k-regular graph, for example, never
appears to fit well with data, regardless of the other parameter
choices.

We have more freedom to vary all parameters if our only
goal is to create vote correlations similar to empirical data
(Fig. 5). The roughly logarithmically decreasing correlation
with distance is observed for many values of δ�0, μ�0,
β > 0, P (0) > 0, and α > 2. Just one example are the
parameters chosen in Fig. 5.

4. Determining the spatial correlation

We finally mention how the correlations in Fig. 5 are
calculated. To be consistent with previous work [22,34]
and Fig. 5(a), we define the normalized correlation in our
figures as

C(r) =
〈
P

(1)
i P

(1)
j

∣∣dij ≈ r
〉 − 〈

P
(1)
i

〉2
σ 2

P (1)

, (A1)

in which P
(1)
i is the fraction of voters for candidate 1 within a

small region (which we choose to be 5×5 node squares), 〈P (1)〉
is the average fraction of voters for candidate 1, and σ 2

P (1) is the

variance in vote distribution across all regions. 〈P (1)
i P

(1)
j |dij ≈

r〉 is the two-point correlation function between regions whose
centroid is a distance r ± 1/2 from each other.

APPENDIX B: DERIVATION OF THE TRANSPORTLIKE
APPROXIMATION

In this Appendix, we use the TLA to understand the initial
jump in the opinion densities (see Figs. 6 and 12). Our model
can be described by the following equation in the mean

FIG. 12. Schematic of the scalar variable in Eq. (B1) as a function
of time, t , and time since opinion adoption, τ .

field:

(∂t + ∂τ )ρ(A)(t,τ ) = −δρ(A)(t,τ ) − 	(1 − τμ)(1 − τμ)

×βkρ(A)(t,τ )
∑
B 
=A

P (B)(t), (B1)

with the following boundary conditions:
(1) ρ(A)(t,∞) = 0,
(2) ρ(A)(t,0) = δ(0+)[βkP (A)(t)P̃ (t) + βkP (A)(t)

∑
B 
=A∫ μ−1

0 (1 − τ ′μ)ρ(B)(t,τ ′)dτ ′],
(3) ρ(A)(0,τ ) = f (τ ),

(see Fig. 12 for a visual representation), where t is time, τ is
the time an individual has had their most recent opinion, P (X)

is the fraction of individuals with opinion X at time t , and
ρ(X) is the density of individuals with opinion X at time t who
have kept their opinion for a time τ (variables and parameters
are also defined in Table I). Finally, P̃ (t) = 1 − ∑

X P (X)(t).
The right-hand side of the equation describes the ability of
individuals to recover as well as the ability to change opinions.
We can interpret the boundary conditions as follows:

(i) Normalizability.
(ii) An increase in the infection density due to neutral

neighbors and opinionated neighbors.
(iii) Initial conditions.
We focus on the simpler case of δ = 0 for our analysis

because adding δ to the equation numerically does not seem
to affect consensus, while in simulations consensus happens
quickly. Future analysis of perturbations around equilibrium,
however, may give us better insight into what happens in
simulations. We do know, however, that when δ  1, the
equation can be simplified to the one seen in [44], were they
find, to use our notation, Tcons ∼ δ−1, in agreement with our
own simulations (not shown).

The simplified equation, which is Eq. (2) from the main
text, is as follows:

(∂t + ∂τ )ρ(A)(t,τ )

= −	(1 − τμ)(1 − τμ)βkρ(A)(t,τ )
∑
B 
=A

P (B)(t),

with the same boundary conditions.

032305-9



KEITH BURGHARDT, WILLIAM RAND, AND MICHELLE GIRVAN PHYSICAL REVIEW E 93, 032305 (2016)

FIG. 13. Details regarding the theory curve of Fig. 6. Inset: For
each value of β, we vary the time-step width for Eq. (2) (�t), and
we find the resulting equilibrium value. �Peq(�t → 0) is estimated
via linear regression. Main figure: Plotting �Peq(�t → 0) and slope
for �P (0) = 0.05, we find the slope, seen in the inset, is greatest
when �Peq ≈ 0.6, implying the error from using a single value of �t

would have been largest in this range.

We first try to understand the transient “jump” in the fraction
of individuals following a given opinion on a time scale that is
in many cases much smaller than the time to reach consensus.
We wish to understand the equilibrium fraction of individuals
with a given opinion, and the time to reach equilibrium.

We find strong agreement between theory and simulations
for the equilibrium fraction of individuals in each opinion
(Fig. 6), especially when 〈k〉 � 102. For fixed networks
with 〈k〉 < 102, the equilibrium values are on average below
theoretical values, plausibly because individuals are less
connected to their neighbors, and thus less influenced by them,
than the mean-field theory assumes. To find agreement with
simulations, we numerically determined equilibrium values by
stepping forward the equation using the forward Euler method.

This method is inherently sensitive to the time-step width,
�t , especially when �Peq ≈ 0.5, therefore we find that
the equilibrium value can be more accurately determined
by varying the time-step width and, via linear regression,
determining the asymptotic limit for the equilibrium as �t →
0 (Fig. 13). This seems to reduce our statistical error to less
than 0.5% compared to as much as 1–6%, and it is in excellent
agreement with the simulations.

Next, we determine the time to reach equilibrium. We
discretize τ , following [44], to derive a set of equations
that we linearize around a fixed point to determine the
scaling of the transient time [Eqs. (B9) and (B10)]. Our
approximations are only accurate for μ  1, but they seem
to be qualitatively similar to numerical data for μ ∼ O(1). We
define the following macroscopic variables:

P (1)(t) =
∑
τ ′

ρ(1)(t,τ ′) and P (2)(t) =
∑
τ ′

ρ(2)(t,τ ′), (B2)

in which
∑

τ ′ is shorthand for
∑∞

τ ′=0. If we let �[|] be the
conditional probability function, and ẋ ≡ d

dt
x, then Eq. (2)

becomes (for τ > 0)

ρ̇(1)(t,τ ) =�[ρ(1)(t,τ )|ρ(1)(t,τ − 1)]ρ(1)(t,τ − 1) − ρ(1)(t,τ ).

(B3)

Expanding these variables out, we find that

ρ̇(1)(t,τ ) = (1 + βk{[P (1)(t) + μ(τ − 1)]P (2)(t) − 1})
×ρ(1)(t,τ − 1) − ρ(1)(t,τ ), (B4)

and for τ = 0,

ρ̇(1)(t,0) = βkP (1)(t)[P (2)(t) − I (2)(t)] − ρ(1)(t,0), (B5)

with an equivalent set of equations for ρ(2)(t,τ ) and

I (1)(t) =
∑
τ ′

μτ ′ρ(1)(t,τ ′), I (2)(t) =
∑
τ ′

μτ ′ρ(2)(t,τ ′).

(B6)

From the above results, we can sum ρ(1)(t,τ ) to find the
equations for the macroscopic variables:

Ṗ (1)(t) = βk[I (1)(t)P (2)(t) − I (2)(t)P (1)(t)]. (B7)

To lowest order in μ, we also find that

İ (1)(t) ≈ μ(1 − βk)P (1)(t)

+βk[μP (1)(t)2 + I (1)(t)P (1)(t) − I (1)(t)]. (B8)

These equations are solvable by expanding around the solution
P (1) = P (2) = 1/2 and I (1) = I (2) = μ[1/(βk) − 1/2] to first
order. The resulting largest eigenvalue is

λ1 ≈ −βk−4μ+2βkμ+
√

16βkμ + (βk + 4μ − 2βkμ)2

4
.

(B9)

The time to reach equilibrium, Teq, is

Teq = ν
log(N )

λ1
, (B10)

where ν is a fitting parameter found to be 1.26 ± 0.04
from simulations. When βk = 1, this eigenvalue should agree
exactly with the value cited previously [44], but we find
disagreement by an overall prefactor of 1/4, which, at least to
our knowledge, may have been missed in the previous work.
Figure 14 shows how simulations agree with theory. We notice
that the disagreement is most significant when μ approaches
1, and β is small (e.g., β = 0.1).

FIG. 14. Teq vs N for various μ and βk (simulations on k-regular
random graphs, with k = 10). The inset shows collapse when Teq is
rescaled by λ1, with the best-fit slope equal to ν in Eq. (B10).
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APPENDIX C: SCALING OF EFFECTIVE NETWORK SIZE

In this Appendix, we derive Eq. (4) using a FPA, which is
distinct from the TLA in Appendix B. Our derivation is heavily
based on the derivation of consensus times for the VM and the
invasive process by Sood, Antal, and Redner [5].

1. Derivation

We use the same conventions as in Ref. [5] except for the
transition probability scaling factor, S, the degree distribution,
p(k), and associated moments, 〈km〉 = ∑

k p(k)km. Note that
we assume for now that β < 1/〈k〉 for the inward spreading
process (opinions spread inward toward an individual).

Let η(x) be the state of a node x on a network with adjacency
matrix Axy and order N . Assuming two opinions and that μ

and δ → 0, we have a two-state system. Using the conventions
of Sood, Antal, and Redner [5], the opinions of the two-state
system are “0” or “1” instead of “1” or “2.” We stress that the
0 state is an opinionated state. Lastly, ηx is the state of the
system after changing a node x:

ηx(y) =
{
η(y), y 
= x,

1 − η(x), y = x.
(C1)

The transition probability at node x is therefore

P(η → ηx) =
∑

y

Axy

NS
[�(x,y) + �(y,x)], (C2)

in which

S = β−1 (C3)

and

�(x,y) = η(x)[1 − η(y)]. (C4)

We further assume a mean-field solution, in which the
adjacency matrix becomes the average adjacency matrix:

Axy → 〈Axy〉 = kxky

〈k〉N . (C5)

Instead of individual states η(x), we can instead focus on ρk ,
the density of states with degree k:

ρk = 1

N

∑
x ′

η(x ′). (C6)

Here, x ′ is the sum of all nodes with degree k. To clarify the
below equations, we also define a variable ω:

ω = 1

N〈k〉
∑

x

kxη(x) = 1

〈k〉
∑

k

kp(k)ρk. (C7)

Next, we define our raising and lowering operators for ρk ,
which defines the probability of increasing or decreasing ρk

by a small increment:

ρk → ρ±
k ≡ ρk ± δρk, (C8)

in which

δρk =

⎧⎪⎪⎨
⎪⎪⎩

N〈k2〉
S〈k〉p(k) , outward process,
N〈k〉
Sp(k) , neutral process,
Nk

Sp(k) , inward process.

(C9)

The change in ρk is proportional to the probability that an
individual of degree k changes his or her opinion in a given
time step. This probability scales as 〈k2〉

〈k〉 , 〈k〉, and k for the
outward, neutral, and inward processes, respectively.

The raising operator is defined as

Rk = P(ρk → ρ+
k ) =

∑
x ′

∑
y

kx ′ky

S〈k〉N2
�(y,x). (C10)

With simplification, this yields

Rk = ω

S
p(k)k(1 − ρk). (C11)

Similarly, for the lowering operator,

Lk = P(ρk → ρ−
k ) = ρk

S
p(k)k(1 − ω). (C12)

The exit probability, ξ1, defined as the probability for all nodes
to reach state one in equilibrium, is the same for all cases,

ξ1 = 〈ρ〉 ≡
∑

k

ρkp(k), (C13)

and similarly, that 〈ρ〉 (or magnetization, if this were a spin
system) is a conserved quantity. The reason is because

〈�η(x)〉 = [1 − 2η(x)]P(η → ηx)

= [1 − 2η(x)]
∑

y

Axy

NS
[�(x,y) + �(y,x)], (C14)

�〈ρ〉 =
∑

x

〈η(x)〉 =∼
∑
x,y

[η(x) − η(y)], (C15)

which is trivially 0. We note that this argument is exact (not a
mean-field approximation) and is independent of the method
in which opinions spread (at least, again, assuming β < 1/〈k〉
for the inward dynamics). The time to consensus is

Tcons({ρk})
=

∑
k

�tk + [Rk({ρk})Tcons(ρ
+
k ) + Lk({ρk})Tcons(ρ

−
k )]

+
[

1 −
∑

k

Rk({ρk}) + Lk({ρk})
]
Tcons({ρk}). (C16)

The average number of interactions per time step is

�tk =

⎧⎪⎪⎨
⎪⎪⎩

p(k) 〈k2〉
〈k〉SN

, outward process,

p(k) 〈k〉
SN

, neutral process,

k
SN

, inward process.

(C17)

We expand to second order in �ρk and find that

∑
k

vk

∂Tcons

∂ρk

+ Dk

∂2Tcons

∂ρ2
k

= −1, (C18)

in which

vk ≡ �ρk

〈�t〉 (Rk − Lk) → 0. (C19)

As is shown in the original voting model paper [5], this value
reaches 0 for time Tcons ∼ O(1), which is much smaller than
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the next term:

Dk ≡ (�ρk)2

〈�t〉
(Rk + Lk)

2
. (C20)

A change of variables implies that

∂Tcons

∂ρk

= ∂Tcons

∂ρ

∂ρ

∂ρk

= p(k)
∂Tcons

∂ρ
, (C21)

therefore∑
k

M

2〈k〉NS2
(ω + ρk − 2ωρk)p(k)

∂2T

∂ρ2
= −1, (C22)

in which

M =
⎧⎨
⎩

〈k2〉, outward process,
〈k〉2, neutral process,
k2, inward process.

(C23)

This can be made into a more compact form, noting that ρ is
conserved and vk → 0, ω → ρ:

ρ(1 − ρ)

Neff

∂2Tcons

∂ρ2
= −1

[Eq. (3) from the main text], where Neff is as follows:

Neff = NS2

〈M〉 =

⎧⎪⎨
⎪⎩

N
β2〈k2〉 , outward process,

N
β2〈k〉2 , neutral dynamics,

N
β2〈k2〉 , inward dynamics

[Eq. (4) from the main text].
We find that this equation simplifies down to (24) in [5],

noting boundary condition, Tcons(0) = Tcons(1) = 0, in which

Tcons(ρ) = Neff

[
(1 − ρ)ln

1

1 − ρ
+ ρln

1

ρ

]
, (C24)

implying that Tcons ∼ Neff.
As we discuss shortly, if β > 1/〈k〉 in the inward-spreading

case, we have VM dynamics, and the mean-field consensus
time replaces β with 1/〈k〉. Furthermore, this approximation
breaks down for small 〈k〉 and small β, in which we show
in Sec. V that the consensus time scales as β−1. Future work
could improve the accuracy of the current results with a pair
approximation theory [56,57].

α

FIG. 15. Mean consensus time, Tcons, for scale-free networks with
β = 0.5, δ = 0, and μ = 0. The inset is one example of consensus
with P (1)(t) and P (2)(t). Using the FPA, the expected fit (solid lines)
is Eq. (4). Simulations are averaged over 10 networks (30 networks
for 3×104 � N < 105, and 20 networks for N = 1.2×105) with 100
trials per network.

FIG. 16. Mean consensus time for varying β (δ and μ = 0)
on 1000-node Poisson networks with different average degree, 〈k〉.
Inset: consensus time vs average degree for β = 0.99. Simulations
are averaged over 30 networks. The theory is the dashed lines
(Tcons ∼ β−2 when β and 〈k〉 large, and Tcons ∼ β−1 in the opposite
limit) and the solid line in the inset (Tcons ∼ 〈k2〉−1).

This paper mainly focuses on the outward process, but
we have also compared theory and simulation for the other
processes by varying β and 〈k2〉, in Poisson and scale-free
networks, while setting δ and μ to 0. First, we observe the
dependence on 〈k2〉 by simulating the models on scale-free
networks.

In a scale-free network, 〈k2〉 diverges with network order,
N :

〈k2〉 ∼
⎧⎨
⎩

N3−α, α < 3,

log(N ), α = 3,

O(1), α > 3.

(C25)

Therefore, for outward and inward dynamics,

Tcons ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(1), α < 2,

log(N )2, α = 2,

N2(α−2)/(α−1), 2 < α < 3,

N/log(N ), α = 3,

N, α > 3.

(C26)

2. Agreement with simulations

Figure 15 compares outward process simulations to the
FPA (inward process simulations are similar, due to the
equivalent scaling). Although a finite-size transient impedes
this scaling behavior for N � 104, we still see agreement
for large enough networks. For Poisson networks, we see
Tcons ∼ 〈k2〉−1 = (〈k〉2 − 〈k〉)−1 in the inset of Fig. 16.

The inward-spreading dynamics closely parallel the out-
ward spreading dynamics when β2〈k2〉 < 1. On the other hand,
when β is large enough, each node is, on average, infected by
multiple nodes at each time step, although, by the end of the
time step, only one opinion is chosen. This maps exactly onto
the VM, and therefore so does the consensus time (Fig. 17).
Setting the model’s mean-field consensus time equal to the
VM consensus time implies that βc = 〈k〉−1 is the critical
value between CCIS and VM dynamics.1 Neutral spreading

1We should mention that more accurate methods for determining the
mean consensus time exist for the VM, as explained further in [56,57].
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FIG. 17. Mean consensus time vs β for Poisson graphs in which
we use the inward infection method. Theory is the black line
Tcons ∼ β−1 and arrows indicate when β〈k〉 = 1, whereby we transi-
tion to true VM dynamics, which is independent of β.

(not shown), on the other hand, breaks with the other spreading
methods by only depending on the first degree moment, and
it is therefore mostly independent of the network’s degree
distribution in the mean field.

Finally, we check whether Tcons ∼ β2 for each process
(Figs. 16 and 17). Agreement with theory is closest when
β ∼ O(1) and 〈k〉 ∼ 10–20. When 〈k〉 approaches 1 or β  1,
we see that Tcons ∼ β−1. The reason is as follows: the number
of nodes convinced at each time step in this limit is very low
(i.e., 2 with probability β2 ≈ 0, 1 with probability β, and 0
with probability 1 − β), therefore the time until a given node
is convinced is a geometric process:

p(t) = β(1 − β)t−1, (C27)

which would imply that the average time until a node is
convinced is β−1. The consensus time would scale similarly.
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