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Scale independence is a ubiquitous feature of complex systems that implies a highly skewed distribution of
resources with no characteristic scale. Research has long focused on why systems as varied as protein networks,
evolution, and stock actions all feature scale independence. Assuming that they simply do, we focus here on
describing how this behavior emerges, in contrast to more idealized models usually considered. We arrive at the
conjecture that a minimal model to explain the growth toward scale independence involves only two coupled
dynamical features: the first is the well-known preferential attachment principle, and the second is a general form
of delayed temporal scaling. While the first is sufficient, the second is present in all studied data and appears
to maximize the speed of convergence to true scale independence. The delay in this temporal scaling acts as a
coupling between population growth and individual activity. Together, these two dynamical properties appear to
pave a precise evolution path, such that even an instantaneous snapshot of a distribution is enough to reconstruct
the past of the system and predict its future. We validate our approach and confirm its usefulness in diverse
spheres of human activities, ranging from scientific and artistic productivity to sexual relations and online traffic.
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I. INTRODUCTION

Human systems are often characterized by extreme inequal-
ities. One may think, for example, of the distribution of wealth
between individuals, the sizes of cities, or the frequencies of
sexual activities [1–5]. Interestingly, inequality often tends to
manifest itself through scale-independent behavior [1–13]. In
layman’s terms, these systems are said to be scale-independent
because of the absence of a characteristic scale. Taking the
distribution of wealth as an example, the worldwide average
income is meaningless because the variance is too wide.
Neither the very poor nor the very wealthy can be reduced
to average individuals; the former are too numerous while the
latter are absurdly richer than the average.

Mathematically, this behavior takes the form of a power-law
distribution. That is, the number Nk of individuals having
a share k (e.g., personal income or sexual partners) of the
total resource K (total wealth or sexual activities) roughly
follows Nk ∝ k−γ . One of the first robust observations of scale-
independent systems concerns the distribution of occurrences
of individual words in prose [3], as illustrated in Fig. 1(a).

In this paper, we build upon two general premises to
describe the growth of scale-independent systems. First, we
assume that the underlying distribution roughly follows Nk ∝
k−γ such that a power law is an adequate approximation
for sufficiently large k (with γ > 1 for normalization in the
asymptotic limit). Second, we follow the distribution of a
resource or property that can only increase or stagnate, namely
the total activities of an individual (both past and present).

Throughout the paper, time and system size (in terms of the
resource K) are completely interchangeable. This stems from
the fact that our description of a complex system is usually
based on a fixed dataset with no temporal information. By
considering the dataset as an underlying growing system, to
which we do not have access, the only available notion of time
is the number of entries. These entries assign a new unit of the
resource [K(t) = K(t − 1) + 1] to one of the N (t) individuals.

Based on our simple assumptions, the resulting model will be
able to constrain the probabilities of various future entries in
the actual dataset.

The paper is organized as follows. In Sec. II, we construct
our theoretical framework and obtain a versatile minimal
growth model, a generalization of the standard preferential
attachment approach. In Sec. III, we use diverse databases
to validate our method: scientific productivity of authors on
the arXiv e-print archive (arXiv), one month of user activities
on the Digg social news website (Digg) [14], productivity of
actors on the Internet Movie Database (IMDb), and sexual
relations in a Brazilian escort community (sexual) [15]. Based
on the successes of this empirical evidence, we thereby confirm
that our framework can be used not only to infer the past
of known distributions, but also to construct their future.
We conclude, in Sec. IV, by summarizing the insights and
applications offered by our work. Some technical details of
the analysis and a description of our datasets and algorithms
are relegated to a separate Appendix.

II. THEORETICAL FRAMEWORK

Let us consider the growth of a hypothetical system in which
each individual i possesses a share ki(t) of the total resource
K(t) at time t . Because the system is constantly growing, in
terms of both its total population N (t) and each individual’s
share, time can be measured as the total number of events.
These events can take one of two forms: birth events, which
increase the total population N (t + 1) = N (t) + 1 by adding
a new individual j with kj (t) = 1, and growth events, which
imply ki(t + 1) = ki(t) + 1 for a given individual i.

We then introduce two functions: a birth function p(t) that
prescribes the probability that the t th event is a birth event,
and a growth function G(k) that describes the average chances
(unnormalized probability) for an individual with a current
share k of being involved in the next growth event. Assuming
that individuals with the same share are indiscernible, the state
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FIG. 1. (a) Power-law distribution of word occurrences in the writings of authors in three different languages. A power law with scale
factor γ = 1.75 is plotted to guide the eye. Numerical scale exponents are estimated to be 1.89 for Goethe, 1.76 for Cervantes, and 1.67 for
Shakespeare using the method of [33]. (b) Preferential attachment in written text with a linear relation for comparison. The algorithm to obtain
the actual G(k) is given in Appendix A 4. (c) Average birth function for samples of 1000 words; this procedure is based on the translational
invariance [34] of written texts and yields better statistics. Three instances of Eq. (17) are displayed with [α,τ,b] equal to [0.22,31,0],
[0.25,15,0], and [0.28,25,0] [with a fixed by p(1) = 1] for the writings of Goethe, Cervantes, and Shakespeare, respectively. This asymptotic
scaling is related to what is generally known as Heaps’ law of vocabulary growth in linguistics [27], but herein is given a much more general
expression for all t .

of an average individual i of share ki can be followed through
a mean-field model:

ki(t + 1) = ki(t) + [1 − p(t)]
G[ki(t)]∑
j G[kj (t)]

. (1)

Consequently, the probability that a growth event in-
volves any individual of current share k is given by
Nk(t)G(k)/

∑
k′ Nk′(t)G(k′), where Nk(t) is the number of

individuals with share k at time t . This yields the following
master equation (for k ∈ N):

Nk(t + 1) = Nk(t) + p(t)δk,1

+ [1 − p(t)]
Nk−1(t)G(k − 1) − Nk(t)G(k)∑

m Nm(t)G(m)
(2)

with N0(t) = 0 ∀t . For this model to be of any use, at least
partial knowledge of G(k) and p(t) is required. Setting G(k) =
k and a constant p(t), we retrieve the classic preferential
attachment process [7]. However, our goal is to investigate the
constraints imposed by the scale independence, Nk(t) ∝ k−γ ,
on the functional forms of both p(t) and G(k) as well as the
coupling between the two.

The next two subsections are more technical in scope,
but they are necessary to delineate the functional forms that
will constitute the basis of the studies presented in Sec. III.
Although our analysis is based on asymptotic arguments,
and therefore is approximate, we will demonstrate that the
expression

p(t) = a(t + τ )−α + b (3)

combining three adjustable parameters [α,τ,b] (a can be
removed by normalization), together with G(k) → k and the
dynamical model of Eq. (2), captures the essence of the growth
of diverse human activities. The form of G(k) ∝ k, at least
for k greater than a certain bound k∗, is not new, but it
emerges naturally from our premises. As we will see shortly,
the temporal dependence of p(t) is inherent to the growth
toward scale independence and is coupled to the behavior of
G(k) at small k < k∗ through the parameter τ .

A. The growth function

The behavior of the growth function G(k) can be
constrained by an argument presented by Eriksen and
Hörnquist [16]. We wish to obtain G(k) solely on the basis
of Eq. (2). Instead of measuring G(k) directly by looking at
what leaves the compartment Nk(t), we can equivalently look
at what arrives in the compartments k′ > k during the time
step t → t + 1. We write this as the difference between what
is in k′ > k at t + 1 [i.e.,

∑∞
i=k+1 Ni(t + 1)] and what was in

k′ > k at time t [i.e.
∑∞

i=k+1 Ni(t)]. We substitute Ni(t + 1)
with Eq. (2) and sum over all k′ > k:

∞∑
i=k+1

[Ni(t + 1) − Ni(t)]

=
∞∑

i=k+1

{
p(t)δi,1 + [1 − p(t)]

× Ni−1(t)G(i − 1) − Ni(t)G(i)∑
m Nm(t)G(m)

}

= [1 − p(t)]
Nk(t)G(k)∑
m Nm(t)G(m)

. (4)

This last expression can be interpreted as two measures
of the activity in compartment Nk(t) between t and t + 1.
The left-hand side measures the mean number of arrivals
in compartment Nk′(t) with k′ > k; i.e., the mean number
of individuals that left compartment Nk(t). The right-hand
side is explicitly the ratio of the activity involving the
kth compartment, Nk(t)G(k), to the total growth activity,∑

m Nm(t)G(m), times the probability, 1 − p(t), that a growth
event has occurred during the time step. From this equivalence,
G(k) is readily obtained from Eq. (4):

G(k) =
∑

m Nm(t)G(m)

1 − p(t)

1

Nk(t)

∞∑
i=k+1

[Ni(t + 1) − Ni(t)].

(5)
For k 	 1, we can replace the sum by an integral, and using
our only hypothesis, i.e., Nk(t) = A(t)k−γ N (t), where A(t) is
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a normalization factor, we find

G(k) 

∑

m Nm(t)G(m)

1 − p(t)

[
A(t + 1)N (t + 1) − A(t)N (t)

A(t)N (t)

]

× k

γ − 1
. (6)

All factors independent of k are of no concern, since G(k) only
makes sense when comparing the relative values for different
k. Hence, at any given time t , we finally obtain

G(k) ∝ k (7)

at least for values of k higher than an appropriate lower
bound. This linear relation between the probability of growth
of an individual and its present size, preferential attach-
ment, is a recurrent feature in scale-independent growth
models [2,6–10,17]. This simple derivation states once again
that a scale-independent growing system implies a linear
preferential attachment. See Fig. 1(b) for examples. However,
observing preferential attachment in datasets does not imply
that preferential attachment is the active mechanism in the
growth process, but simply that past activity is at least
correlated with whatever growth mechanism is actually at
play. One should then think of preferential attachment as an
effective mechanism that reproduces the statistical properties
of growth. This statement becomes particularly relevant
when one considers, for instance, the writings of William
Shakespeare, Miguel de Cervantes Saavedra, and Johann
Wolfgang von Goethe analyzed in Fig. 1. No one would
consider preferential attachment as the operational mechanism
governing the authors’ choices of words, even if its statistical
signature is present.

In recent years, the idealized preferential attachment pro-
cess, using G(k) = k and p(t) = p, has been analyzed to great
lengths. Most studies have been concerned with the application
of this process to network growth [18,19] and have focused on
solving the resulting network structure [20,21], describing the
statistics of leading nodes [22], finite-size effects [23], and its
relation to other properties of complex networks, such as their
modular and self-similar nature [24].

B. The birth function

A time-varying birth rate p(t) has been considered before,
either in an ad hoc manner [7,25] or in a specific context [26]
based on empirical observations in, for example, written
texts [27] or human mobility [28]. Instead of investigating
how a given p(t) might influence the distribution of resources
in the system, we investigate how a given distribution of
resources informs us on the actual p(t) of that system. In
doing so, the hope is to provide a more general framework for
understanding how and why scale-independent organization
implies scale-independent growth.

In our model, the birth function has two important roles.
First, it is equivalent to the time derivative Ṅ (t) of the
population N (t); and second, it constrains the growth of the
largest share kmax(t). Two relations can be called upon to
connect N (t) and kmax, and to obtain a consistent functional
form for p(t).

The first relation is the extremal criterion [20]:∫ ∞
kmax(t) Nk(t)dk ∼ 1, intuitively meaning that the number of

individuals with a maximal share is of order 1. To simplify
the analysis, we will assume that kmax(t) 	 1, such that

the normalization A(t) = [
∑kmax(t)

1 k−γ ]
−1

has converged to a
constant A∗. We thus use Nk(t) = A∗N (t)k−γ in the extremal
criterion and solve for N (t):

N (t) ∼ γ − 1

A∗ kγ−1
max (t) → N (t)

Ṅ (t)
= kmax(t)

(γ − 1)k̇max(t)
. (8)

Note that keeping the temporal dependence of A(t) yields
the same result for the leading temporal term. The second
important relation stems from our definition of time t (in
number of events or resource K) such that K̇(t) = 1. We
write

K̇(t) = d

dt

kmax(t)∑
m=1

mNm(t)

= d

dt

[
k∗∑

m=1

mNm(t) +
∫ kmax(t)

k∗
mNm(t)dm

]
= 1, (9)

where k∗ is an appropriate bound for the integral approx-
imation of the sum. Again, using Nk(t) = A∗N (t)k−γ , we
obtain

A∗Ṅ (t)

[
C + 1

2 − γ
k2−γ

max (t) + N (t)

Ṅ (t)
k1−γ

max (t)k̇max(t)

]
= 1,

(10)
where C is a constant collecting all terms independent of t .
Replacing N (t)/Ṅ(t) with Eq. (8) allows us to solve for Ṅ (t)
[i.e., p(t)]:

p(t) = Ṅ (t) = (2 − γ )(γ − 1)

A∗[C(2 − γ )(γ − 1) + k
2−γ
max (t)

] . (11)

If γ ∈ (1,2), k
2−γ
max (t) is the leading term and p(t) decreases

as k
γ−2
max (t); if γ > 2, k

2−γ
max (t) becomes negligible and p(t) is

essentially governed by the first two terms of the ensuing
geometric series. We can summarize these results, obtained
only by assuming Nk(t) ∝ k−γ and kmax(t) 	 1, under a
general form

p(t) ∝
{

k
γ−2
max (t) if 1 < γ < 2,

k
2−γ
max (t) + const if γ > 2.

(12)

The remaining step is to establish the time dependence of
kmax(t) to obtain the explicit temporal form of p(t). In line
with our asymptotic arguments, as kmax(t) increases beyond
an appropriate bound k∗ where G(k) = k, Eq. (1) simplifies
to

kmax(t + 1) =
[

1 + 1 − p(t)

κ(t + τ )

]
kmax(t). (13)

The denominator represents the asymptotic behavior of the
normalization of growth probabilities

∑
k G(k)Nk(t), which

can be shown to converge to [κ(t + τ )] for t 	 1. The
derivation of this result and the expressions for the constant
κ and the delay τ are presented in Appendix. The initial and
arbitrary behavior of G(k) offsets the value of the sum by
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FIG. 2. Two different growth functions (a), the classic G(k) = k and a concave G(k) = k + k exp(−k/15), and their effect on the total
growth chances,

∑
i G[ki(t)] (b). The nonlinearity in the second growth functions is reproduced in the time evolution of the total system. During

the early stages of the dynamics, most events occur at small k, where G(k + 1) − G(k) > 1, causing the sum to grow faster than expected from
the asymptotic linearity of G(k). Consequently, even though

∑
i G[ki(t)] converges to a linear behavior for large t , an offset (i.e., κτ ) remains

to account for the initial nonlinearity. The temporal results (b) are obtained by iterating Eq. (2) with p(t) = 0.01, and the observed offset κτ is
in perfect agreement with the results of Appendix.

a constant expressed as a temporal delay κτ . This offset is
illustrated in Fig. 2 for two different growth functions.

Equation (13) determines the derivative in the limit of
large t ,

d

dt
kmax(t) = 1 − p(t)

κ(t + τ )
kmax(t). (14)

Since p(t) is limited to the range [0,1], we can write,
without loss of generality, p(t) = f (t) + b, where b is the
asymptotic value of p(t). This form yields the exact solution

kmax(t) = C1(t + τ )(1−b)/κexp

[
−

∫ t

t∗

f (t ′)
κ(t ′ + τ )

dt ′
]
, (15)

where t∗ is an appropriate lower bound such that Eq. (14)
is applicable. Since f (t) is bounded, the exponential factor
converges rapidly to 1, and we find the general solution for
large t ,

kmax(t) = C1(t + τ )(1−b)/κ . (16)

Inserting Eq. (16) in Eq. (12), we obtain a functional form for
the birth function (with parameters summarized in Table I),

p(t) 
 a(t + τ )−α + b, (17)

TABLE I. Definitions of important functions and parameters.

Nk(t), number of individuals of share k of a total resource K

assumed scale-independent ∝k−γ for large t

G(k), growth function: chances that a growth event
involves an element i with share ki(t) = k

κ , multiplicative factor of the delayed linear scaling
of the normalization of G(k), i.e.,

∑
i G[ki(t)] 
 κ(t + τ )

p(t), birth function: probability that the t th event
is a birth event; p(t) = a(t + τ )−α + b

α, temporal scaling
τ , temporal delay caused by nonlinearity in G(k)

b, asymptotic value
a, normalization

where we identify

α =
{

(2 − γ )/κ if 1 < γ < 2,

(γ − 2)(1 − b)/κ if γ > 2.
(18)

The first confrontation of Eq. (17) with empirical data is
displayed in Fig. 1(c).

Before we describe in the next section the procedure
adopted to fit the parameters [α,τ,b] (the parameter a is fixed
by population size) on actual data, a few comments appear
necessary. These three free parameters do not overparametrize
the function. Two of them, α and b, govern the scale exponent
in the two fundamentally different regimes γ < 2 and γ >

2, respectively, while the delay τ embodies an intrinsic
coupling between population growth and individual growth.
For instance, as our results will illustrate, a large value of τ

expresses the fact that the system features strong diminishing
returns on growth for small k [concave G(k)]. To a lesser
extent, κ plays a similar role, although it is also coupled to
other temporal (b) and organizational (γ ) features within α.

From the asymptotic nature of our derivation, it is not
to be expected that the relations of Eq. (18) between the
exponents α and γ should be strictly observed. However,
the results of Fig. 1 indicate that it is nearly true for the
three prose samples studied. These turn out to be cases
with b = 0 and κ = 1 according to Eq. (A8). The values of
α = 0.22,0.25,0.28 and the corresponding inferred values of
γ = 2 − α = 1.78,1.75,1.72 are indeed close to the numerical
estimates of the scaling exponents, γ = 1.89(4), 1.76(3), and
1.67(8), respectively, obtained independently with the method
of [33].

For the cases in which b �= 0, the classical preferential
attachment (CPA) limit [G(k) = k and p(t) = b] of our
model dictates that the asymptotic scaling exponent should
be γCPA = (2 − b)/(1 − b). Since the data will seldom have
reached their asymptotic regime, deviations will be recorded
and the connection between α and γ will be partly lost.
Moreover, to obtain asymptotic results for growth functions
that are not strictly linear for all values of k, one must study
each scenario on a case-by-case basis [20,21]; estimating κ

alone requires the integration of the model. Nevertheless,
despite the absence of exact expressions for p(t) and G(k),
the flexibility of the derived functional form will provide a
useful and versatile parametrization of the complete temporal
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evolution of empirical data. The results of the next section
confirm this assertion.

III. RESULTS

The model based on Eq. (2) may now be used to replicate
the growth of empirical distributions. Our objective is in part
to verify the presence of constraints on the birth, Eq. (17),
and growth, Eq. (5), of individuals, but also to use them to
determine the past and future of different systems solely from
a snapshot of their present distribution.

A. Reconstructing the past

Our model consists of iterating Eq. (2) for all k, with a given
combination of p(t) and G(k), until time t reaches the total
resource K of the system’s present state. Hereafter, we do not
at any point show actual fits of the temporal data, but instead
find the optimal combination of p(t) and G(k) that minimizes
the error produced by Eq. (2) when modeling the present state
of a given system.

A simple analogy will clarify first the strategy behind our
optimization procedure. We are given a semi-infinite vertical
chain of buckets. At the bottom of each one, we drill a small
hole of various widths such that the kth bucket has a hole of
size G(k). The first bucket, at the top of the chain, is placed
under a dripping faucet whose flow is controlled in time by the
function p(t). Our goal is to adjust both the flow of the water
p(t) and the width of the holes G(k) in order to reach a target
quantity Ñk(tf ) of water for each bucket k after a time tf . This
target quantity is itself produced by a hidden p̃(t) and G̃(k).
Since the function G(k) has an infinite number of degrees of
freedom, this means that for almost any p(t) we could find a
G(k) respecting the target distribution. However, if the chosen
p(t) is very different from p̃(t), the obtained G(k) will also
differ from G̃(k). Therefore, we constrain p(t) first, having a
few degrees of freedom, before optimizing G(k) accordingly.

The quality of our model representation [p(t),G(k)] is
assessed by counting the number of individuals {Nk(tf )} (or
water drops) assigned to the wrong share k (or the wrong
bucket) with respect to the empirical state {Ñk(tf )},

�[p(t),G(k)] = 1

2

∑
k

|Ñk(tf ) − Nk(tf )|. (19)

A number of points are worth mentioning. First, the measure
�, based on absolute errors, was chosen over, say, logarithmic
or cumulative errors because of its robustness to the tails of
the distributions where the finite-size data fall to a nonzero
value [∝N (tf )−1] while the mean-field model falls to zero.
Second, although minimization of � (or optimization of
[p(t),G(k)]) is conducted based solely on the knowledge
of the present state of the system, i.e., {Ñk(tf )}, our model
completely reconstructs its prehistory. Third, while the search
for the optimal parameter values of p(t) seems a daunting
enterprise, a number of internal and empirical restrictions
on p(t) constrains the problem: (i) since p(t) ∈ [0,1] ∀ t ,
b ∈ [0,1] and therefore −b � a(t + τ )−α � (1 − b); (ii) since
p(t) = Ṅ (t) by definition, the total empirical population Ñ (tf )

can serve as normalization, removing one degree of freedom:

a = Ñ (tf ) − btf

(tf + τ )1−α − (1 + τ )1−α
(1 − α). (20)

Because a can be positive or negative, our model can describe
a growing or decreasing birth function equally well. Finally,
the optimization procedure is carried out in two stages: (i) an
initial set of optimal triplets [α,τ,b] is obtained by scanning
parameter space to minimize � while maintaining initially
G(k) = k; (ii) the growth function G(k) is then allowed to vary
under the newly acquired best possible p(t) and constrained by
the empirical data {Ñk(tf )}. Details of the algorithm are given
in Appendix A 5. Based on the quality of the obtained model
[p(t),G(k)], no further optimization was deemed necessary.

While the systems studied in Fig. 3 vary in nature, age, and
distributions, our results indicate that they follow qualitatively
the same evolution, and they confirm the presence of both a
delayed regime of temporal scaling and preferential attachment
in all cases. Point estimates [maximum-likelihood estimation
(MLE) over the binary sequence of birth and growth events;
see Appendix A 6] of the relevant parameters are given
in Table II and are visually compared with our model in
Figs. 3(a), 3(d), 3(g), and 3(j). The behaviors extracted by
our model from static distributions (without temporal data)
are thus shown to be good estimates of the best possible fits to
the actual temporal data.

Because of the form p(t) = a(t + τ )−α + b, the comple-
mentary probability (i.e., the probability that the t th event is a
growth event) has the same form with a′ = −a and b′ = 1 − b.
This fact is highlighted by the case of the IMDb shown in Fig. 3,
and it is consistent with our analysis in which the constant a

(but not b) can be negative. Furthermore, notice that the IMDb
is not only the sole system for which p(t) is an increasing
function, but it is also the only system for which G(k) has
initially a nonlinear behavior, and consequently a large τ .
This confirms our interpretation of the role of τ as a coupling
between population growth, p(t), and individual growth, G(k).
With hindsight, this initial regime of the IMDb growth function
probably corresponds to the so-called star system: actors with
little experience are far less likely to be chosen for a role
than experienced actors, but the first few movies in a new
actor’s curriculum are also far more important than the nth
in the career of a well-established star. This influences the
introduction rate of new actors to preserve the system’s scale
independence. This interpretation is somewhat speculative, yet
the fact remains that these effects are observed in the temporal
data and that our model is able to extract them solely from the
present distribution.

With the exception of one much smaller system (sexual
data), the quality of our reconstruction of the past is sur-
prisingly good considering that it requires no temporal data
whatsoever. For instance, the Digg user activity distribution led
us to determine with very high precision that 25% of votes are
due to new users 12 h into the month, whereas this proportion
falls below 2% by the end of the month.

Our ability to infer the birth function based on a single
snapshot also implies that we can distinguish between systems
close to or far from equilibrium (i.e., their statistical steady
state). For all investigated cases, both the inferred and observed
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FIG. 3. From left to right: birth function with temporal scaling of the form a(t + τ )−α + b; growth function with asymptotic preferential
attachment; scale-independent distributions. (a, d, g and j) The orange curves represent birth functions leading to predictions within 25% of the
minimal error between model and empirical data using the present state only. The empirical black curves are presented solely for comparison
as no temporal data are needed for our reconstruction of the past. Likewise, maximal-likelihood estimates (MLEs) of p(t), calculated with the
actual sequence of birth and death events, are shown in blue to highlight the accuracy of our model. (b), (e), (h), (k) Growth functions, and (c),
(f), (i) and (l) present distributions: only the curves with the absolute minimum error are shown. The systems are as follows: (a), (b), and (c)
distribution of papers per author in the arXiv [N (tf ) = 386 267 at tf = 1 206 570]; (d), (e), and (f) votes per user on Digg [N (tf ) = 139 409 at
tf = 3 018 197]; (g), (h), and (i) movies per actor on IMDb [N (tf ) = 1 707 525 at tf = 6 288 201]; and (j), (k), and (l) relations per individual
in the sexual data [N (tf ) = 16 730 at tf = 101 264]. The methodology to measure the empirical birth and growth functions is presented in
Appendixes A 3 and A 4.

p(t) agree that none of these systems have reached their
asymptotic b value. In the Digg database, it is even unclear
if this value exists at all. In other systems, it is interesting to
discern whether the distribution is approaching its asymptotic
scale exponent γ from above (less heterogeneity) or below
(more heterogeneity). For instance, the sexual database de-
scribes a network for which the first two moments of the
activity distribution determine whether or not the introduction
of a given sexually transmitted infection will result in an
epidemic [29,30]. These moments being defined by the scale

TABLE II. MLE point estimates of parameters using the empiri-
cal sequence of birth and growth events.

System arXiv Digg IMDb Sexual

α 0.58 0.95 0.46 0.60
τ 12 066 60 364 6 288 202 3038
b 0.240 0.012 0.976 0.072

exponent, our ability to describe the system’s approach to
equilibrium directly translates to an ability to determine which
infection could invade the network.

More generally, this idea leads to a crucial point. The
results confirm that our model encapsulates the most impor-
tant dynamical features responsible for growth toward scale
independence. These constraints appear to clearly define the
possible paths that a system can follow. A snapshot of its
present state is then sufficient to determine where it comes
from and where it is heading. This naturally leads to a second
question: can we use the reconstructed past of a system to
predict its future?

B. Predicting the future

It is a simple matter to turn our model into a predictive
tool. We first eliminate the statistical fluctuations present in
the reconstructed growth function. It is reasonable to assume
that these fluctuations stem not from the form of the growth
function itself but merely from the system’s finite size and
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actual distribution or a prediction. For comparison, a prediction using the classic preferential attachment model [7,10], with a linear G(k) = k

and a time-independent p(t) = 〈p(t)〉, is shown in green.

the stochastic nature of the dynamics. The fluctuations are
eliminated by applying a linear fit to the asymptotic behavior
of the reconstructed G(k). A prediction can then be obtained
by iterating Eq. (2) from a chosen present state to a desired
future time.

We apply this predictive model to the largest databases, i.e.,
actor productivity in the IMDb and user activities on Digg.
The results are shown in Fig. 4 (top). By using the activity
distribution on Digg after only three days (again without any
temporal data, only the current activity distribution per user),
we can extrapolate the distribution over the period of a month.
In contrast, assuming a constant birth rate (as in classical
preferential attachment [7,9,10]) leads to a predicted final
population of 475 000 users. Our model correctly compensates
for repeated traffic and predicts a population of 115 000
users, closer to the correct value of 139 000 and missing
only some sudden bursts of new user influx. This observation
embodies the strength of our model and the importance of a
time-dependent birth rate. Similar results are obtained for actor
productivity on the IMDb. Remarkably, we reproduce the state
of the system at year 2012 from its state at year 1974. Given that
extrapolation is a delicate procedure, it seems likely that these
agreements are not coincidental. As a comparison, the classical
preferential attachment model shown in Fig. 4 (bottom) is
incapable of discerning whether the scaling exponent of a
system is increasing or decreasing with time. Since the classic
model ignores the temporal dependence introduced here, our
results highlight the importance of linking the temporal and
organizational features of complex systems.

It could be argued that the growth function should depend
more generally on time to include potential changes in
mechanisms. However, our ability to predict the future with a
time-independent growth function seems to rule out, at least in
the cases studied, the necessity for a temporal dependence. In

fact, Fig. 5(a) compares the growth function inferred from the
IMDb using only records before 1974 and before 2012. While
the dataset has more than tripled in size during these 40 years,
the inferred growth functions do not significantly differ from
one another, thereby explaining the quality of our results shown
in Fig. 4. This also implies that although the growth function
has an influence on the time dependence of the dynamics
(through the coupling parameter, or delay, τ ), it does not itself
depend on time. This is particularly surprising considering
that the movie industry has changed dramatically between
these two snapshots. One recalls that 1975 saw the rise of the
blockbuster era following the release of Steven Spielberg’s
movie Jaws [31]. The following change in movie making did
not affect the dynamics of the system, which suggests that the
growth function may be intrinsic to the considered human
activity and robust to environmental or societal changes.
The growth functions of the other systems are similarly
robust through time as those datasets only span between a
few weeks to a few years of activity. While generalizations
of our model could be considered, with growth functions
varying in time or across individuals [32], the apparent time
independence of the growth function is surely worthy of
future investigations. Contrariwise, were the mechanism(s) of
a system growth function to change over time, this would be
reflected immediately in our inability to predict the future, and
it would be a precise indication of changes in the underlying
mechanism(s). Hence, even if it were to fail, this model would
offer significant insights.

C. Coupling of the growth function and the temporal delay

An important insight from the previous analysis states that
the delay τ embodies an inherent coupling between the growth
function G(k) and the birth function p(t) to ensure robust
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FIG. 5. (a) The growth function inferred on the full IMDb dataset (orange), as shown in Fig. 3, is compared with the function inferred with
30% of IMDb’s history (blue) as used in Fig. 4. The black curve is the smooth version used to predict IMDb’s future. (b) The smooth growth
function of IMDb is used with different p(t) to obtain distributions and measure their distance to a true power-law behavior. The lower the
distance, the closer the model is to scale independence. The upper horizontal dotted line corresponds to p(t) = 〈p(t)〉 with IMDb’s smooth
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close agreement with the MLE values of Table II. (c) Examples of the distributions obtained with different values of τ are compared to the
classical preferential attachment (CPA), which ignores the system’s intrinsic G(k) by using G(k) = k. The color code follows the color-coded
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scale independence. Put differently, any nonlinearity of G(k)
for small k should be compensated by the temporal delay τ if
the system is to be roughly scale-independent even for small
time t .

To examine this assertion, we create the following exper-
iment. We use IMDb’s growth function, since it is highly
nonlinear for small k, and test the plausibility of a power-law
fit to the model for different p(t). We fix the temporal scaling α

to IMDb’s 0.55, and we fix the value of a and b by setting both
p(1) and the average 〈p(t)〉 (for t ∈ [1,5 × 106]) also to that
of the IMDb. The only parameter allowed to vary freely is the
temporal delay τ . Hence, we always have the same population
growing with the same growth function for the same number
of time steps, and starting with the same initial birth rate but
with different delays τ between the initial and the final regime
of p(t).

We then iterate Eq. (2) with each p(t) to obtain the
distribution Nk/N from which we randomly generate ten
populations of size N (t) to emulate a real system of finite size.
The generated data are then fitted to a power-law distribution
with the method of Clauset, Shalizi, and Newman [33]. The
quality of the power-law hypothesis is finally measured with
the distance between the fitted power-law distribution N∗

k /N

and the original distribution Nk/N obtained from the model.
This distance D is calculated through the Jensen-Shannon
divergence of the two distributions and averaged over the
ten generated populations; see Appendix A 7 for details. This
approach provides an estimate of how surprising it would be
for a sample obtained from our distributions to have been
produced by an actual power-law distribution.

The results highlight that, given IMDb’s growth function,
the particular p(t) that was observed in the temporal data of
IMDb and obtained from our algorithm is the most robust
way for this system to grow toward scale independence.
In other words, the p(t) observed in the IMDb effectively
compensates for the nonlinear deviation observed in its growth
function in a way that ensures a fast convergence to scale
independence. Figure 5(c) illustrates this point by comparing
three distributions obtained with different p(t) with the

classical preferential attachment ([p(t) = 〈p(t)〉,G(k) = k]).
The distribution obtained with the optimal solution (τ = τc) is
clearly ahead of the other, and not so far from the CPA, on the
path to scale independence.

To intuitively interpret these results, one can think of the
need to populate both the linear and nonlinear regime (if any)
of the growth function G(k) to obtain true scale independence.
This can be done in one of three ways: either by (i) building
up population in the nonlinear regime and then allowing it
to grow into the linear regime [p(t) decreasing]; (ii) bringing
early individuals to the linear growth regime and then building
up population in the nonlinear regime [p(t) increasing]; or (iii)
continuously balancing between birth and growth events [p(t)
constant]. For instance, the form of IMDb’s growth function
explains its increasing birth function: one should quickly create
a population with large ki(t) [in the linear regime of G(k)]
rather than build up population density in the nonlinear regime.
Otherwise, this population would take a long time to move
toward the linear regime because of the diminishing returns of
growth [d2G(k)/dk2 < 0]. Yet, enriching a population fraction
with unnecessarily large shares {ki(t)} before building up the
population with small shares would obviously also slow down
the emergence of scale independence. This tradeoff explains
the existence of an optimal delay, as observed in Fig. 5(b).

In a nutshell, this simple experiment adds further strength
to the validity of our theoretical framework, and it reasserts
one of its important conclusions: arbitrary growth rules do
not all lead to scale independence, and certainly not all at the
same speed. Finally, while we have confirmed our theoretical
insights and our ability to use them in practical applications,
the mechanisms by which p(t) might self-organize in these
systems to assure scale independence remain unknown.

IV. CONCLUSION

In this paper, instead of directly studying the classical
preferential attachment model, we have derived a more general
form from the simple assumption that a power-law distribution
is a good approximation of a distribution of interest. Our
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general model differs from the classic idealized version in
two ways: the growth (or attachment) function is given some
flexibility in its initial behavior, i.e., it is only required to be
asymptotically linear, and the birth function is time-dependent
through a delayed temporal scaling. While only the constraint
on the growth function is necessary to converge toward
scale-free organization, the time-dependent birth function can
compensate nonlinearity in growth and hasten the system’s
convergence through a delayed temporal scaling. This delay
acts as a coupling between two levels of dynamics: the growth
of the population and the growth of a given individual’s
activity.

This general model is both flexible and constrained enough
to be useful. In fact, we have shown that a three-dimensional
parameter space (temporal scale exponent, delay, and asymp-
totic birth rate) is sufficient to capture the time dependence of
a present distribution.

It is important to keep in mind that our analysis is in no way
restricted by the nature of the systems under study. Considering
that scale-independent systems are ubiquitous in science and
everyday life, but that temporal data on their growth are seldom
available, our framework provides a line of investigation to
reconstruct their past and to forecast their future.
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APPENDIX: DATA AND METHODS

1. Derivation of Eq. (13): the slope κ and the delay τ

The derivation is based on the following arguments. Let
G(k) ∝ k ∀ k � k∗. Without loss of generality, the slope of the
linear behavior is taken to be equal to 1. Let us then write

SG =
∑

i

G[ki(t)] =
km(t)∑
k=1

G(k)Nk(t)

=
k∗−1∑
k=1

G(k)Nk(t) +
km(t)∑
k=k∗

kNk(t). (A1)

With our definition of time t ,

km(t)∑
k=1

kNk(t) =
[

k∗−1∑
k=1

+
km(t)∑
k=k∗

]
kNk(t) = t, (A2)

we can combine the summations to obtain

SG = t +
{

k∗−1∑
k=1

[G(k) − k]Nk(t)

}

≡ t +
{

k∗−1∑
k=1

�G(k)Nk(t)

}
. (A3)

For large enough times, we may assume that {Nk(t)} has
reached its stationary distribution, Nk(t) = A∗k−γ N (t) [see
Eq. (8) of the main text]. The previous equation then simplifies
to

SG = t + N (t)�G∗, (A4)

where �G∗ is a constant quantifying the (weighted) deviation
at small k < k∗ between the actual G(k) and its linear
asymptotic behavior. The next step involves the separation of
p(t) into a time-dependent and an asymptotic part, f (t) and
b, respectively,

p(t) = f (t) + b. (A5)

Since p(t) ∈ [0,1], f (t) is bounded to the interval [−b,1 − b].
Furthermore, because p(t) is the time derivative of the total
population, p(t) = Ṅ (t), integration leads to

N (t) = N (1) +
∫ t

1
p(t ′)dt ′ = 1 + [F (t) + b(t − 1)] (A6)

and SG becomes

SG = [1 + b�G∗]t + [1 − b + F (t)]�G∗ ≡ κ[t + τ (t)]
(A7)

with

κ = (1 + b�G∗) (A8)

and

τ (t) = [1 − b + F (t)]�G∗/[1 + b�G∗]. (A9)

The constant κ will only be equal to 1 if b = 0 and/or
�G∗ = 0. What is left to investigate is the time dependence
of τ (t).

Case 1. p(t) = b and f (t) = 0. This is the simplest case in
which τ (t) = τ1 = [1 − b]�G∗/[1 + b�G∗].

Case 2. p(t) = f (t) + b with b �= 0. Since the asymptotic
growth of N (t) will be dominated by the term bt , the integral
F (t) will converge to a constant, say F ∗, leading to a constant
delay τ (t) 
 τ2 = [1 − b + F ∗]�G∗/[1 + b�G∗].

Case 3. p(t) = f (t) and b = 0. There is a remaining time
dependence from F (t), but this is correct since it is responsible
for the growth of N (t) at large times.

However, we have established in Eq. (12) a relationship
between p(t) and kmax(t), and since kmax(t) grows as t δ (0 <

δ < 1), whatever the precise value of this exponent, the result
is a sublinear growth for F (t), i.e., τ (t) 
 τ3 = �G∗ + O(tη)
(η < 1). For large enough t , the extra time dependence can be
safely discarded in front of the linear term of Eq. (A7).

To summarize, in all cases,

SG = κ(t + τ ). (A10)

Equation (13) arises then from Eq. (1) of the main text as
we follow the evolution of the leader kmax(t) beyond a certain
t � t∗,

kmax(t + 1) = kmax(t) + [1 − p(t)]
G[kmax(t)]

SG

=
[

1 + 1 − p(t)

κ(t + τ )

]
kmax(t). (A11)
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The transition to continuous time leads to the differential
equation, Eq. (14).

2. Description of databases

The definition of time, of individuals and of the resource
they share in every system is given in Table III. A more detailed
description follows.

a. Prose samples

Text files for the works of William Shakespeare,
Miguel de Cervantes Saavedra, and Johann Wolfgang
von Goethe were downloaded from the Project Guten-
berg at www.gutenberg.org/. Punctuation marks and Project
Gutenberg disclaimers were removed from the files
manually.

While not a human system, but certainly a manmade one,
these prose samples were used to obtain better statistics on
the birth function. While human systems are unique and time-
dependent, written texts feature a translational invariance [34].
This property allows us to gain better statistics of their growth
by considering multiple samples of equal length as different
realizations of the same process.

Time t and resource K(t) correspond to the total number
of written words. Individuals correspond to unique words, and
their share ki(t) to their number of occurrences.

b. Scientific authorships on the arXiv

The arXiv database consists of a chronological list of all
author names appearing on papers in the arXiv preprint archive
(in order of publication date). It was compiled using the arXiv
API to gain a full list of scientific publications available from
http://arxiv.org/ as of April 2012.

Time t and resource K(t) correspond to the total number
of paper authorships. Individuals correspond to authors, and
their share ki(t) to their number of publications.

c. Digg user activities

Digg (http://digg.com/) is a social news website where
registered users can vote on news or other types of articles
that they deem interesting. This database is a list of all user
votes on top stories (frontpage) over a period of one month in
2009 [14].

Time t and resource K(t) correspond to the total number
of votes. Individuals correspond to registered users, and their
share ki(t) is their respective number of votes.

d. IMDb castings

The Internet Movie Database (http://www.imdb.com/)
consists of an impressive amount of cross-referenced
lists (released films, cast and crew, etc.). These lists

TABLE III. Summary of database sizes and quantities.

Quantities arXiv Digg IMDb Sexual

Individuals authors users actors clients/prostitutes
N (tf ) 386 267 139 409 1 707 565 16 730
Resource papers votes castings sexual activities
K(tf ) = tf 1 206 570 3 018 197 6 288 201 101 264

can be accessed or downloaded in various ways: see
http://www.imdb.com/interfaces for details. From the list of
actors featured on IMDb, which records all movies in which
they have appeared, and the list of movie release dates, we
built the chronological sequence of “castings.”

Time t and resource K(t) correspond to the total number
of castings (a given actor playing in a given film). Individuals
correspond to unique actors, and their share ki(t) is the total
number of films in which they have appeared.

e. Sexual activities in a Brazilian community

This database was built from a public online forum for male
clients who evaluate relations with female prostitutes [15].
After preliminary results using the client and prostitute
databases separately, we concluded that it was not necessary
to distinguish between the two. The simplified database is thus
a list of unique identification numbers (IDs) corresponding to
either a client or a prostitute, in chronological order of sexual
relations (at time of online posting).

Time t and resource K(t) correspond to the total number
of such IDs (twice the total number of relations). Individuals
correspond to unique IDs (either client or prostitute), and their
share ki(t) is their respective number of relations.

3. Measuring the birth function

a. Prose samples

The translational (or temporal) invariance of written text
implies that we can consider different samples of equal
length from the same author as different realizations of the
same experiment. The files were thus broken into samples of
equal length and analyzed separately. Each experiment can be
reduced to a binary sequence of 1’s (when the word is a new
word, i.e., a birth event) and 0’s (when the word is an old one,
i.e., a growth event). The birth function p(t) of a given author
can then be obtained by simply averaging all binary sequences.

b. Other systems

In the other systems, since preliminary tests excluded
the possibility of temporal invariance, a different procedure
was used. The simplest one is merely to apply a running
average on the binary sequence of birth and growth events.
We used temporal windows of �t equal to 1% of the total
system size (final time tf ) for the two largest databases
(Digg and IMDb) and between 0.5% and 1% of the system
size for the others. This method was shown to preserve the
delayed temporal scaling on a random binary sequence whose
elements were drawn from a known probability distribution
following p(t).

4. Measuring the growth function

We now describe the procedure used to obtain the growth
function G(k) of a system from its temporal data, t ∈ [0,tf ].
We use the following notation: we keep in memory every
encountered individual i, its number of appearances (or current
share) ki(t), Nk(t) as the number of individuals with share
ki(t) = k, and the total population N (t) after time t . Starting
from t = 1, we proceed as follows:
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1: Input individual i involved in event t ∈ [0,tf ]
2: Output measured growth function G(k)
3: for all t ∈ [0,tf ]do
4: if the individual i involved in the t th event is new then
5: add it to memory and update:

N (t) = N (t − 1) + 1
kN(t)(t) = 1

N1(t) = N1(t − 1) + 1

6: else increment a function of chances:
C(k,t) = C(k,t − 1) + Nk(t − 1)/N (t − 1) ∀ k

7: increment a function of successes:
S(ki(t − 1),t) = S(ki(t − 1),t − 1) + 1

S(k,t) = S(k,t − 1) ∀ k �= ki(t − 1)

8: update the following variables:
ki(t) = ki(t − 1) + 1

Nki (t−1)(t) = Nki (t−1)(t − 1) − 1
Nki (t)(t) = Nki (t)(t − 1) + 1

9: end if
10: end for
11: the growth function is

G(k) = S(k,tf )/C(k,tf ) ∀ k.

The obtained G(k) corresponds to the ratio of actual successes
to chances under a uniform growth.

5. Reconstructing the empirical growth function

Once the best possible p(t) has been found, we adjust the
growth function G(k) by iterating the following algorithm:

1: Input target Ñk and first approximation G(k) = k

2: Output adjusted growth function G(k)
3: initial condition Nk(1) = δk1

4: for all t ∈ [0,tf ] do
Nk(t + 1) = Nk(t) + p(t)δk1

+ 1−p(t)∑
G(k)Nk (t) [G(k − 1)Nk−1(t) − G(k)Nk(t)].

5: end for
6: for all k ∈ [0,kmax(tf )] do

G(k) = G(k)
Nk (tf )/

∑∞
i=k Ni (tf )

Ñk (tf )/
∑∞

i=k Ñi (tf )

7: end for
8: set G(k) = G(k).

At step 6, the adjustment factor is simply the ratio of “the
quantity of individuals (water) that made it to share (bucket)
k but did not go to k + 1,” as calculated in the model Nk(tf )

versus the target distribution Ñk(tf ). This algorithm is usually
iterated four or five times to obtain a converged growth
function.

6. Maximum-likelihood estimation

We search for a p(t) that maximizes the binary logarithm
of the likelihood L of a given binary sequence {yi} of birth
(yi = 1) and growth events (yi = 0):

log2 L(τ,α,b | {y})

=
tf∑

i=1

yi log2 p(i) + (1 − yi) log2 [1 − p(i)].

7. Jensen-Shannon divergence

Given two distributions, M and F, with probabilities {Mi}
and {Fi}, respectively, the quantity

DKL(M‖F) =
∑

i

Mi log2

(
Mi

Fi

)
(A12)

is called the Kullback-Leibler distance [35] between M and F,
or the relative entropy between the two distributions. A close
relative of this quantity, also referred to as the Jensen-Shannon
divergence, is a symmetric form given by

DSKL = 1
2DKL(M‖A) + 1

2DKL(F‖A), (A13)

where the distribution A with probabilities Ai = (Mi + Fi)/2
is used to approximate M or F, respectively.

In our study, we want to quantify the similarity between
the distribution M generated by our mean-field model and the
distribution F obtained from a corresponding power-law fit. In
practice, the procedure goes as follows: with the distribution
M = {Nk/N}, we generate a number of population samples
{m(j )} of size N (tf ) and fit each of them to a power-law f (j )

using the standard method of Clauset et al. [33]. Each f (j )

is characterized by an exponent γ (j ) and a minimal value
k

(j )
min (here always equal to 2) marking the beginning of the

power-law tail. These power-law populations are then used to
construct the related distributions [F(j ) = {N (j )

k /N}], which
are finally compared to the tail of the original distribution
M over the range k

(j )
min � k � 5000 [∼IMDb’s kmax(t)]. The

comparison is quantified through the symmetrical Kullback-
Leibler distance averaged over the different samples,

D(M,F) = 〈DSKL(M,F(j ))〉j . (A14)

[1] D. Sornette Critical Phenomena in Natural Sciences (Springer,
Heidelberg, 2000).

[2] D. G. Champernowne, A model of income distribution, Econ. J.
63, 318 (1953).

[3] G. K. Zipf, Human Behavior and the Principle of Least Effort
(Addison-Wesley, Reading, MA, 1949).

[4] M. E. J. Newman, Power laws, Pareto distributions and Zipf’s
law, Contemp. Phys. 46, 323 (2005).

[5] L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kuhnert,
and G. B. West, Growth, innovation, scaling, and the pace
of life in cities, Proc. Natl. Acad. Sci. (USA) 104, 7301
(2007).

[6] G. U. Yule, A mathematical theory of evolution, based on the
conclusions of Dr. J. C. Willis, F. R. S, Philos. Trans. R. Soc.
London, Ser. B 213, 21 (1925).

[7] H. A. Simon, Models of Man (Wiley, New York, 1961).

032304-11

http://dx.doi.org/10.2307/2227127
http://dx.doi.org/10.2307/2227127
http://dx.doi.org/10.2307/2227127
http://dx.doi.org/10.2307/2227127
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002
http://dx.doi.org/10.1098/rstb.1925.0002


HÉBERT-DUFRESNE, ALLARD, YOUNG, AND DUBÉ PHYSICAL REVIEW E 93, 032304 (2016)
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